What tools are available for differential alternative splicing analysis and can identify alternative last exons?

Answer from top 10 papers

Several computational tools have been developed to analyze differential alternative splicing (DAS) from RNA-sequencing data, with capabilities that include the identification of alternative last exons. NBSplice is an R package designed for DAS analysis by estimating differences in relative expressions of gene transcripts, which could potentially identify alternative last exons (Seok et al., 2015). The ASDT algorithm is capable of identifying alternative splicing events, including novel ones from NGS data, which may encompass alternative last exons (Rouchka et al., 2020). PennDiff is another method that detects DAS at both exon and gene levels, offering the flexibility to potentially identify alternative last exons (Shen et al., 2012). Additionally, MATS provides a Bayesian statistical framework for hypothesis testing of DAS patterns, which could be used to identify alternative last exons (Merino & Fernández, 2020).
Interestingly, while these tools offer capabilities for DAS analysis, there may be challenges and limitations in their application. For instance, the performance of these tools can be influenced by the complexity of gene isoforms and the quality of RNA-seq data (Hu et al., 2018; Shen et al., 2012). Moreover, the accuracy of predictions and the need for extensive experimental validation are highlighted as areas for future improvement (Hu et al., 2018; Hu et al., 2019).
In summary, tools such as NBSplice (Seok et al., 2015), ASDT (Rouchka et al., 2020), PennDiff (Shen et al., 2012), and MATS (Merino & Fernández, 2020) are available for DAS analysis and have the potential to identify alternative last exons. However, the effectiveness of these tools can be contingent upon the complexity of the splicing events and the data quality, and they may require further validation to confirm their predictions.

Source Papers

RASA: Robust Alternative Splicing Analysis for Human Transcriptome Arrays.

Human transcriptome arrays (HTA) have recently been developed for high-throughput alternative splicing analysis by measuring signals not only from exons but also from exon-exon junctions. Effective use of these rich signals requires the development of computational methods for better gene and alternative splicing analyses. In this work, we introduce a computational method, Robust Alternative Splicing Analysis (RASA), for the analysis of the new transcriptome arrays by effective integration of the exon and junction signals. To increase robustness, RASA calculates the expression of each gene by selecting exons classified as not alternatively spliced. It then identifies alternatively spliced exons that are supported by both exon and junction signals to reduce the false positives. Finally, it detects additional alternative splicing candidates that are supported by only exon signals because the signals from the corresponding junctions are not well detected. RASA was demonstrated with Affymetrix HTAs and its performance was evaluated with mRNA-Seq and RT-PCR. The validation rate is 52.4%, which is a 60% increase when compared with previous methods that do not use selected exons for gene expression calculation and junction signals for splicing detection. These results suggest that RASA significantly improves alternative splicing analyses on HTA platforms.

Open Access
PennDiff: detecting differential alternative splicing and transcription by RNA sequencing.

Alternative splicing and alternative transcription are a major mechanism for generating transcriptome diversity. Differential alternative splicing and transcription (DAST), which describe different usage of transcript isoforms across different conditions, can complement differential expression in characterizing gene regulation. However, the analysis of DAST is challenging because only a small fraction of RNA-seq reads is informative for isoforms. Several methods have been developed to detect exon-based and gene-based DAST, but they suffer from power loss for genes with many isoforms. We present PennDiff, a novel statistical method that makes use of information on gene structures and pre-estimated isoform relative abundances, to detect DAST from RNA-seq data. PennDiff has several advantages. First, grouping exons avoids multiple testing for 'exons' originated from the same isoform(s). Second, it utilizes all available reads in exon-inclusion level estimation, which is different from methods that only use junction reads. Third, collapsing isoforms sharing the same alternative exons reduces the impact of isoform expression estimation uncertainty. PennDiff is able to detect DAST at both exon and gene levels, thus offering more flexibility than existing methods. Simulations and analysis of a real RNA-seq dataset indicate that PennDiff has well-controlled type I error rate, and is more powerful than existing methods including DEXSeq, rMATS, Cuffdiff, IUTA and SplicingCompass. As the popularity of RNA-seq continues to grow, we expect PennDiff to be useful for diverse transcriptomics studies. PennDiff source code and user guide is freely available for download at https://github.com/tigerhu15/PennDiff. Supplementary data are available at Bioinformatics online.

Open Access
rMAPS2: an update of the RNA map analysis and plotting server for alternative splicing regulation.

The rMAPS2 (RNA Map Analysis and Plotting Server 2) web server, freely available at http://rmaps.cecsresearch.org/, has provided the high-throughput sequencing data research community with curated tools for the identification of RNA binding protein sites. rMAPS2 analyzes differential alternative splicing or CLIP peak data obtained from high-throughput sequencing data analysis tools like MISO, rMATS, Piranha, PIPE-CLIP and PARalyzer, and then, graphically displays enriched RNA-binding protein target sites. The initial release of rMAPS focused only on the most common alternative splicing event, skipped exon or exon skipping. However, there was a high demand for the analysis of other major types of alternative splicing events, especially for retained intron events since this is the most common type of alternative splicing in plants, such as Arabidopsis thaliana. Here, we expanded the implementation of rMAPS2 to facilitate analyses for all five major types of alternative splicing events: skipped exon, mutually exclusive exons, alternative 5′ splice site, alternative 3′ splice site and retained intron. In addition, by employing multi-threading, rMAPS2 has vastly improved the user experience with significant reductions in running time, ∼3.5 min for the analysis of all five major alternative splicing types at once.

Open Access
MATS: a Bayesian framework for flexible detection of differential alternative splicing from RNA-Seq data

Ultra-deep RNA sequencing has become a powerful approach for genome-wide analysis of pre-mRNA alternative splicing. We develop MATS (multivariate analysis of transcript splicing), a Bayesian statistical framework for flexible hypothesis testing of differential alternative splicing patterns on RNA-Seq data. MATS uses a multivariate uniform prior to model the between-sample correlation in exon splicing patterns, and a Markov chain Monte Carlo (MCMC) method coupled with a simulation-based adaptive sampling procedure to calculate the P-value and false discovery rate (FDR) of differential alternative splicing. Importantly, the MATS approach is applicable to almost any type of null hypotheses of interest, providing the flexibility to identify differential alternative splicing events that match a given user-defined pattern. We evaluated the performance of MATS using simulated and real RNA-Seq data sets. In the RNA-Seq analysis of alternative splicing events regulated by the epithelial-specific splicing factor ESRP1, we obtained a high RT–PCR validation rate of 86% for differential exon skipping events with a MATS FDR of <10%. Additionally, over the full list of RT–PCR tested exons, the MATS FDR estimates matched well with the experimental validation rate. Our results demonstrate that MATS is an effective and flexible approach for detecting differential alternative splicing from RNA-Seq data.

Open Access
Differential splicing analysis based on isoforms expression with NBSplice.

Alternative splicing alterations have been widely related to several human diseases revealing the importance of their study for the success of translational medicine. Differential splicing (DS) occurrence has been mainly analyzed through exon-based approaches over RNA-seq data. Although these strategies allow identifying differentially spliced genes, they ignore the identity of the affected gene isoforms which is crucial to understand the underlying pathological processes behind alternative splicing changes. Moreover, despite several isoform quantification tools for RNA-seq data have been recently developed, DS tools have not taken advantage of them. Here, the NBSplice R package for differential splicing analysis by means of isoform expression data is presented. It estimates differences on relative expressions of gene transcripts between experimental conditions to infer changes in gene alternative splicing patterns. The developed tool was evaluated using a synthetic RNA-seq dataset with controlled differential splicing. NBSplice accurately predicted DS occurrence, outperforming current methods in terms of accuracy, sensitivity, F-score, and false discovery rate control. The usefulness of our development was demonstrated by the analysis of a real cancer dataset, revealing new differentially spliced genes that could be studied pursuing new colorectal cancer biomarkers discovery.

Open Access