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Abstract

Age of information (AoI) was introduced in the early 2010s as a notion to characterize
the freshness of the knowledge a system has about a process observed remotely. AoI
was shown to be a fundamentally novel metric of timeliness, significantly different, to
existing ones such as delay and latency. The importance of such a tool is paramount,
especially in contexts other than transport of information, since communication takes
place also to control, or to compute, or to infer, and not just to reproduce messages of
a source. This volume comes to present and discuss the first body of works on AoI and
discuss future directions that could yield more challenging and interesting research.

1 Introduction
The concept of Age of Information (AoI) was introduced in 2011 in [31] to quantify the
freshness of the knowledge we have about the status of a remote system. More specifically, AoI
is the time elapsed since the generation of the last successfully received message containing
update information about its source system. Utilizing a simple communication system
model, in a series of papers ([32], [33], [30], and [58]), the first group of characterizations of
the Age of Information metric had appeared by 2012. Since then, AoI has attracted a vivid
interest, with over 50 publications, in the last six years 1.

The attention AoI has been receiving is due to two factors. The first is the sheer novelty
brought by AoI in characterizing the freshness of information versus for example that of
the metrics of delay or latency. Second, the need and importance of characterizing the

1In this volume we take into consideration works that have been published no later than June 2017.
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freshness of such information is paramount in a wide range of information, communication,
and control systems. By now, age has been studied with considerable diversity of systems,
being as a concept, a performance metric, and a tool.

The purpose of this volume is to present a critical summary of this first body of works
performed on AoI and discuss future research directions. Already at this early point we need
to put down our first disclaimer: we have chosen to treat the early works with significantly
more detail, going deeper in the derivations and presenting more results and insights from
them than we do with more recent works. The reason for this is to achieve a tutorial nature
in the volume, which can provide a solid ground of the AoI as a concept. Moreover, the first
works, which we chose to present in more detail than the rest, aim to provide fundamentally
new knowledge in the premise of maintaining information fresh in a system. This basic goal
opens up a wide range of communication contexts that span from estimation and prediction,
to applications such as vehicular networks and information caching, to name a few.

With this in mind, we begin this volume presenting the AoI concept as it was originally
introduced. For this, we discuss the original models of Kaul, Gruteser and Yates of [33],
considering a system where a source is transmitting packets containing status updates to a
destination. The analysis presented is based on a simple queueing model. Already in that
work the minimization of AoI was shown to be non-trivial for the source sampling methods
studied. However, it had already become clear that timely updating a destination about
a remote system is neither the same as maximizing the utilization of the communication
system, nor of ensuring that generated status updates are received with minimum delay.
This is because utilization can be maximized by making the source send updates as fast as
possible which would lead to the destination receiving delayed statuses because messages
are backlogged in the communication system studied. In this case, delay suffered by the
stream of status updates can be reduced by decreasing the rate of updates. Alternatively,
decreasing the update rate can also lead to the destination having unnecessarily outdated
status information because of lack of updates.

AoI has spawned relevant performance metrics that are more tractable such as the Peak
Age of Information or the Cost of Update Delay, opening even more research opportunities.
Under the timely update context, the relevant timeliness performance metrics should
be kept at values that ensure high freshness of information. Already the first AoI lower
bound had appeared in [33] and we discuss it in Section 2. We then continue the discussion
on the early works of AoI as a performance metric in Section 3, where we present the case
of AoI for multiple sources, its use in scheduling, and demonstrate packet management
techniques that have been employed. Section 4 treats AoI as a metric for rate control,
addresses the case of packets with deadlines, and presents an optimal policy for optimizing
age, throughput, and delay.

Keeping the AoI metrics low is of high interest when AoI is being treated as a tool
to facilitate the timely update of information that will eventually improve performance
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metrics in different contexts. Consider for example remote estimation; if the process
under observation consists of highly correlated data, then the frequency of generation
and transmission of updates can be significantly reduced without affecting the timeliness of
the information at a remote receiver. In Section 5, we discuss three domains in which AoI
has been treated as a tool: Channel State Information (CSI) estimation, energy harvesting,
and scheduling.

Recent works that have appeared in the time of writing of this volume have been
categorized and treated in Section 6. Finally, in Section 7, we provide a brief discussion
of indicative future topics on which the AoI can contribute. The topics we cover there are
not a complete list, as there is an immense wealth of possible problems associated with the
notion of timeliness as captured by age, in the form of either a tool, a performance metric,
or even a concept.

2 The Introduction of the Concept
With the introduction of Age of Information (AoI) in [31] and the subsequent works of
Kaul, Yates, and Gruteser, it became clear that this new concept is novel compared to, at
that time, existing measures of information timeliness. Based on the seminal work of [33], in
this section we give to the reader the fundamentals of AoI for a status update system under
the queueing models assumed therein. As we already noted in the introduction, we provide
a good level of detail, for this first work. This is to give solid insight and background to the
reader and also to reflect the value of the contribution to the topic of information timeliness.

2.1 Age of Information

Consider a system comprising two nodes. A stochastic process X(t) is observed by the
source node, that extracts samples. These are assumed to carry information about the
status of the process at the source node. Assuming this status information is needed at
the other node, each collected sample needs to be transmitted over a communication link
to that destination. At the transmitter of the source node there is a buffer which stores
the samples in the form of packets containing (i) the value of the process X(ti), at time ti
when the ith sample was extracted and (ii) the timestamp ti. Packets are being sent along
the communication link of the two nodes, which is assumed error-free. Each such packet
arriving at the destination, is said to provide a status update and these two terms are used
interchangeably.

A simple queueing model is employed, as shown in Figure 2.1, where all packets
i = 1, 2, . . . generated at the source s need to reach the destination denoted by d. The
storage of the packets at the queue is instantaneous, thus the packet arrivals at the queue
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Figure 2.1: The basic system model.

are characterized by the sampling rate of X(t) and so the terms status update generation
and packet arrival can be used interchangeably. Consider that the status update generation
is modeled as a stochastic process of average rate λ and packets are then transmitted with
an average service rate µ. Later in this section, we will discuss cases that the arrival, or
service is a deterministic process.

The freshness of the knowledge the destination has about the status of the source node
is captured by the concept of the AoI. With AoI this freshness is quantified, at any moment,
as the time that elapsed since the last received status update was generated by the source.

Definition 2.1.1 (Age of Information – AoI). Consider a system comprising a source-
destination communication pair. Let t′k be the times at which the status updates are
received at the destination. At time ξ, the index of the most recently received update is

N(ξ) = max{k|t′k ≤ ξ}, (2.1)

and the timestamp of the most recently received update is

u(ξ) = tN(ξ). (2.2)

The Age of Information (AoI) of the source s at destination d is then defined as the random
process

∆(t) = t− u(t). (2.3)

Notice that the terms Age of Information, status age, or plain age, are used interchange-
ably throughout the remaining of this volume.

Figure 2.2 shows an illustrative example of the evolution of AoI in time. Without loss of
generality, assume that at t = 0 we start observing the system, the queue is empty, and the
AoI at the destination is ∆(0) = ∆0. Status update i is generated at time ti and is received
by the destination at time t′i. Between t

′
i−1 and t′i, where there is an absence of updates at

the destination, the AoI increases linearly with time. Upon reception of a status update the
AoI is reset to the delay that the packet experienced going through the transmission system.

The ith interarrival time is defined as the time elapsed between the generation of update
i and the previous update generation, thus Yi is the random variable

Yi = ti − ti−1. (2.4)
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Figure 2.2: Example of age evolution.

Moreover,
Ti = t′i − ti, (2.5)

is the system time of update i, corresponding to the sum of the queue waiting time and the
service time. Assuming that the observation interval is from t = 0 to t = T = t′n, we denote

N(T ) = max{n|tn ≤ T }, (2.6)

the number of arrivals by time T . Then, at times t′i for i = {1, 2, . . . , N(T )} the age
∆(t′i) is reset to Ti = t′i − ti. The reduction in age with each received update captures the
freshness of the information of the source status at the destination. For any time that we
do not have an update received at the destination, i.e. times that do not belong to the
set I .= {t′1, t′2, . . . t′N(T )} the age increases as time passes by. Therefore, the age process
exhibits the sawtooth pattern as shown in Figure 2.2.

Analysis of the average Age of Information

In the context we have been discussing so far, the objective of the communication system
would be to maintain the information from the source as fresh as possible. Ensuring the
average AoI of such a system is small corresponds to maintaining information about the
status of the source at the destination fresh. In what follows, we will go into the first
characterizations for different queueing disciplines and in subsequent sections, treating AoI
as a metric, we will see mechanisms that have been developed to keep the average AoI low.

Given an age process ∆(t) and assuming ergodicity, the average age can be calculated
using a sample average that converges to its corresponding stochastic average.
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Definition 2.1.2 (Time average Age of Information). For an interval of observation (0, T ),
the time average age of a status update system is

∆T = 1
T

∫ T
0

∆(t) dt. (2.7)

The integral in (2.7) can be calculated as the area under ∆(t). Then, the time average
age can be rewritten as a sum of disjoint geometric parts. Starting from t = 0, the area
is decomposed into the polygon area Q1, the trapezoids Qi for i = 2, 3, . . . N(T ), and the
triangular area of width Tn that we denote Q̃. Then, the decomposition of ∆T yields

∆T = 1
T

Q1 + Q̃+
N(T )∑
i=2

Qi


=Q1 + Q̃

T
+ N(T )− 1

T
1

N(T )− 1

N(T )∑
i=2

Qi. (2.8)

The time average ∆T tends to the ensemble average age as T → ∞, i.e.,

∆ = lim
T →∞

∆T . (2.9)

Note that the term (Q1 + Q̃)/T goes to zero as T grows and also let

λ = lim
T →∞

N(T )
T

(2.10)

be the steady state rate of status updates generation. Furthermore, using the definitions
(2.4) and (2.5) of the interarrival and system times respectively, we can write the trapezoidal
areas as

Qi = 1
2(Ti + Yi)2 − 1

2T
2
i = YiTi + Y 2

i /2. (2.11)

Then, substituting (2.8), (2.10), and (2.11) to (2.9) the average Age of Information in
the status update system of Figure 2.1 is given by

∆ = E[Q]
E[Y ] = E[Y T ] + E[Y 2]/2

E[Y ] , (2.12)

where λ = 1/E[Y ] and E[·] is the expectation operator. Notice that ergodicity has been
assumed for the stochastic process ∆(t) but no assumptions regarding the distribution of
the random variables Y and T , have been made nor any specific service policy has been
considered. This result also holds when the system is shared among multiple traffic streams.

Observe that the random variables Y (interarrival time) and T (system time) are
dependent and this complicates the calculations of the average age in the general case,
since we do not know their joint distribution. Intuitively, for a fixed service rate, reducing
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interarrival times correspond to packets filling up the system. This increased traffic leads to
larger system times. On the other hand, larger interarrival times allow the queue to empty
and consequently the delays are smaller. Thus, Y and T are negatively correlated. In the
next section we will discuss cases where Y and T are conditionally independent.

2.2 First Queue-theoretic System Abstractions

In the first AoI works, the communication model considered was a simple queueing system,
since queueing theory has been a core methodological framework for analysing delay. In
this framework, a first step is to identify the nature of the arrival process, the probability
distribution of the service times, the number of servers, and the queue discipline. In [33]
three simple models were studied, the M/M/1, the M/D/1, and the D/M/1, under the
first-come-first-served (FCFS) discipline. Here, we illustrate the analyses of these cases and
later, in subsequent sections, we present more complicated models that can capture more
realistically the medium through which the signal is transmitted to reach the destination,
especially in the wireless case.

The M/M/1 system model

Consider an M/M/1 system where packets are served with an FCFS policy. Such a model
captures a system with limited resources that consists of one source and one server, where
status updates are generated according to a Poisson process with mean arrival rate λ. Thus,
the interarrival times Y are independent and identically distributed (i.i.d.) exponential
random variables with E[Y ] = 1/λ. Furthermore, the service times are i.i.d. exponentials
with mean 1/µ and the server utilization is defined as ρ = λ

µ .
The average age was given in (2.12), so the terms E[Y 2] and E[Y T ] need to be calculated.

Since Y is exponentially distributed with mean arrival rate λ, we have E[Y 2] = 2/λ2. For
E[Y T ], consider that the system time of update i is

Ti = Wi + Si, (2.13)

where Wi is the waiting time and Si is the service time of update i. Since, the service time
Si is independent of the ith interarrival time Yi, we can write

E[TiYi] = E[(Wi + Si)Yi] = E[WiYi] + E[Si]E[Yi], (2.14)

where E[Si] = 1/µ and E[Yi] = 1/λ. Moreover, we can express the waiting time of update i
as the remaining system time of the previous update minus the elapsed time between the
generation of updates (i− 1) and i, i.e.,

Wi = (Ti−1 − Yi)+. (2.15)
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Note that if the queue is empty then Wi = 0. Also note that when the system reaches steady
state the system times are stochastically identical, i.e., T =st Ti−1 =st Ti. Additionally, the
probability density function (pdf) of the system time T for the M/M/1 is [44]

fT (t) = µ(1− ρ)e−µ(1−ρ)t, t ≥ 0. (2.16)

Thus, the conditional expectation of the waiting time Wi given Yi = y can be obtained as

E[Wi|Yi = y] = E[(Ti−1 − y)+|Yi = y] = E[(T − y)+]

=
∫ ∞
y

(t− y)fT (t) dt = e−µ(1−ρ)y

µ(1− ρ) . (2.17)

The expectation E[WiYi] is then obtained as

E[WiYi] =
∫ ∞

0
y E[Wi|Yi = y]fYi(y) dy = ρ

µ2(1− ρ) . (2.18)

From (2.18), (2.14) and (2.12), the average AoI is obtained as

∆M/M/1 = 1
µ

(
1 + 1

ρ
+ ρ2

1− ρ

)
. (2.19)

We are interested in minimizing the average age ∆M/M/1 with respect to the server
utilization ρ. Assuming fixed average service rate µ, the optimal server utilization corresponds
to an optimal arrival rate λ. In this case, we assume that we are able to generate status
updates as frequently as we want by extracting instances of the random process X(t) under
observation. From (2.19), we can obtain that the optimal server utilization is ρ∗ ≈ 0.53. At
the optimal server utilization the average number of packets in the system is ρ∗/(1− ρ∗) ≈
1.13.

We observe that optimizing the timeliness of status updates through the AoI results in
a policy that might sound controversial until this point. The minimum age is achieved by
keeping the server idle ≈ 47% of the time, which differs from a policy that sends updates as
fast as possible (ρ→ 1) in order to maximize throughput or follows a conservative approach
with ρ close to 0 to minimize delay. With the optimal arrival rate the server is being busy
slightly more than being idle.

The M/D/1 system model

In the M/D/1 model status updates are generated according to a Poisson process with
average rate λ and the service time is deterministic, which in (2.13) means that Si = D for
all updates i with D being a fixed value. Pursuing the objective to characterize and then
minimize the average age (2.12) the term E[Y T ] is needed, as in the M/M/1 case. Consider
the system time of update i to be Ti = Wi +D. Then,

E[TiYi] = E[WiYi] +D E[Yi], (2.20)

8
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Figure 2.3: Average age vs server utilization for the M/M/1, M/D/1, and D/M/1 systems and fixed service
rate µ = 1 [33].

where E[Yi] = 1/λ. Similar to (2.17), we can write E[Wi|Yi = y] = E[(T − y)+] = E[(W +
D−y)+] and compute this term using the expectation of the waiting time W for the M/D/1
queue given by [Table 7.1, 42]

E[W ] = E[S]ρ
2(1− ρ) . (2.21)

Having E[Wi|Yi = y] we can use the iterated expectation to derive E[WiYi]. Due to the
complexity of the analysis the exact AoI expression is not provided in the literature.

The server utilization that minimizes the average age was numerically evaluated to be
ρ∗ ≈ 0.625 in [33]. There, the authors illustrated the change of average age at the destination
as a function of ρ for service rate µ = 1 (see Figure 2.3). Observe that the performance of
the M/M/1 and M/D/1 systems is similar for small values of the arrival rate λ, where the
waiting time is less sensitive to the service rate. As ρ becomes larger the gap between the
M/M/1 and the M/D/1 system age increases. For these ρ values, we have more packets
waiting for service and the deterministic server of the M/D/1 queue performs better with
backlog phenomena. Overall, the M/D/1 system achieves smaller average age than the
M/M/1 for all ρ.

The D/M/1 system model

In a D/M/1 model the status updates are generated at a deterministic period D and
service times are exponentially distributed with mean 1/µ. We have that E[Y ] = D,
E[Y 2]/2 = D2/2, and E[Y T ] = DE[T ], so the only unknown term for the calculation of the
average age is the expectation of the system time T .

Consider the system time of update i to be T = W + S. The average system time can

9
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be written as
E[T ] = E[W ] + E[S] = β

µ(1− β) + 1
µ
, (2.22)

where 0 ≤ β ≤ 1 is the solution to the equation β = LX(µ(1− β)), with LX(·) being the
Laplace transform of the distribution of the interarrival times [42], expanded in detail in
[33].

As a result, the average AoI is calculated as

∆D/M/1 = 1
D

[
D2

2 +D E[T ]
]

= 1
µ

[
1
2ρ + 1

1− β

]
. (2.23)

The change of age with the server utilization ρ for D/M/1 is illustrated in Figure 2.3. The
optimal server utilization is ρ∗ = 0.515. The utilization that minimizes the age for the
D/M/1 queue is similar to the optimal ρ for the M/M/1 queue, but the D/M/1 system
leads to almost 50% decrease of age for all ρ.

Just-in-time lower bound

To derive a lower bound of age for the systems we presented earlier, consider that the source
can observe the state of the queue and submit a new update as soon as the previous update
completes service. Thus, there is no queueing of updates in the system and the server is
always busy. Since each delivered status update is as fresh as possible, the average AoI
obtained for this system is a lower bound to the age for any queue in which updates are
generated as a stochastic process independent of the current state of the queue.

To characterize the described system mathematically, we have that ti = t
′
i−1 for all

packets i. For any packet i, Wi = 0, and also Ti = Si, λ = 1/E[S], and Yi+1 = Si. Then,
the average age in (2.12) can be written as

∆ = (E[S])2 + E[S2]/2
E[S] . (2.24)

For a system with memoryless service at rate µ = 1/E[S], we get ∆ = 2/µ.
The property E[S2] ≥ (E[S])2 combined with (2.24) yields the lower bound

∆just-in-time LB = 3E[S]
2 = 3

2µ. (2.25)

In Section 4.1, we will present under which conditions the just-in-time policy is optimal
and provide alternative policies that achieve better performance.

2.3 Summary

Having presented the very first model on which the notion of Age of Information was
developed, and discussed three basic queueing models, in the following we open up our
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discussion to different models that have enabled the study AoI and its application in a
much wider range of application domains. Indeed in what follows, although we do not yet
depart from the queueing models, we present works with multiple sources, multiple servers,
begin the discussion on AoI in scheduling policies and introduce the first by-product metric,
that of Peak Age of Information, which enables more tractable analysis.

3 The Early Works
The first works [31, 32, 33, 30, 58] on Age of Information can be considered to provide a
new framework in the context of timely communicating information. The works [30, 33, 58]
took a queue based theoretical viewpoint of the system model. A number of subsequent
works departed from this model, however there remains a strand of research working on
adaptations of the original model of Figure 2.1. In the previous section, we illustrated
first results for different queueing models of the FCFS discipline. It remains of interest to
investigate AoI optimality under different queue disciplines and characteristics. This section,
aims to address these aspects.

We start the presentation with a system of multiple independent sources that coexist in
the network. As a first step the multiple sources are served under an FCFS policy. We then
move to different policies, that can improve the AoI performance, considering the following
three cases. The first, is based on the last-come-first-served (LCFS) queue discipline with and
without preemption. The second, considers systems with different availabilities of resources
(servers), taking also into consideration path diversity. The third, focuses on queues of finite
size and in this case, we discuss packet management schemes of the literature. Finally, a
new performance metric called Peak Age of Information introduced in [11] is presented.

3.1 Sharing the System Among Multiple Traffic Streams

Here we consider a system with multiple independent sources providing status updates
to a common destination through an FCFS-served M/M/1 queue, as studied in [58]. The
analysis provided in Subsection 2.1 holds even when the system is shared among multiple
traffic streams. Therefore, equation (2.12) can be used to derive the average AoI for each
independent source.

We consider an M/M/1 system where status updates are generated according to a
Poisson process with mean rate λi for source i, thus, we have E[Y ] = 1/λi and E[Y 2] = 2/λ2

i .
Furthermore, the service times are i.i.d. exponentially distributed with mean E[S] = 1/µ
and the server utilization of source i is defined as ρi = λi/µ. The overall load is ρ =

∑N
i=1 ρi.

The difficulty of the analysis lies in calculating the expectation E[Y T ], which is equal to
E[YW ] + E[S]E[Y ]. Let Yj , Wj and Tj be the interarrival time, waiting time, and system
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Figure 3.1: System model with multiple independent sources.

time, respectively, of the jth packet of source i2. We proceed with the characterization of
Wj via the partition

Bj = {Yj < Tj−1}, Lj = {Tj−1 < Yj}, (3.1)

where Lj is the complementary event of Bj . Then, we have

E[YjWj ] = E[YjWj |Bj ]P[Bj ] + E[YjWj |Lj ]P[Lj ]. (3.2)

To continue with the calculations consider the following properties of Poisson processes
and exponential random variables [44].

Lemma 3.1.1. Let X1 and X2 be independent exponential random variables with E[Xi] =
1/αi. Let V = X2 −X1.

(a) P[X1 < X2] = α1/(α1 + α2).

(b) Given X1 < X2, X1 and V are conditionally independent and have conditional
exponential probability density functions (pdfs)

fX1|X1<X2(x) = (α1 + α2)e−(α1+α2)x, x ≥ 0,
fV |X1<X2(v) = α2e

−α2v, v ≥ 0.

Lemma 3.1.2. Given a Poisson process N(t) with average rate λ and an independent
exponential random variable X with parameter α, the number of arrivals N(X) in the
interval [0, X] has the geometric pmf

PN(X)(n) = (1− γ)γn, n ≥ 0,

with γ = λ/(α+ λ).

2For presentation clarity, we drop the index denoting the source and focus on the packet index.
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The system time Tj−1 depends only on packets that are generated prior to the (j − 1)th
packet, therefore it is independent of Yj . Using this independence and Lemma 3.1, we have
P[Bj ] = ρi/(1− ρ−i), where ρ−i is defined as the aggregate other-source load

ρ−i = ρ− ρi =
∑
l 6=i

ρl. (3.3)

Given the event Bj , assume that packet (j − 1) is still in the system when packet j is
generated by the same source i. Then, the waiting time Wj is the remaining system time of
packet (j − 1) plus the system time of packets from other sources that arrive during the
interarrival period Yj of source i. More specifically, M = N−i(Yj) denotes the number of
packets of sources other than i arriving during the interarrival period Yj ; S1, S2, . . . , SM
denote the service times of those packets. Then,

Wj = (Tj−1 − Yj) +
M∑
k=1

Sk. (3.4)

It follows that E[YjWj |Bj ] = E1 + E2 where

E1 = E[Yj(Tj−1 − Yj)|Bj ], (3.5a)

E2 = E
[
Yj

M∑
k=1

Sk|Bj

]
. (3.5b)

Using Lemma 3.1(b) for the first term we obtain

E1 = E[(Tj−1 − Yj)|Bj ]E[Yj |Bj ]

= 1
µ− λ

( 1
λi + (µ− λ)

)
= 1
µ2(1− ρ)(1− ρ−i)

. (3.6)

For the second term, using iterated expectation we have

E2 =
∫ ∞

0
E
[
Yj

M∑
k=1

Sk|Bj , Yj = y

]
fYj |Bj (y) dy

=
∫ ∞

0
E
[
y
M∑
k=1

Sk|Yj = y

]
fYj |Bj (y) dy. (3.7)

The conditional expectation in the integral yields

E
[
y
M∑
k=1

Sk|Yj = y

]
= y E[M |Yj = y]E[Sk|Yj = y] = y(λ−iy)(1/µ)

= ρ−i y
2, (3.8)
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where the independence of Sk and Yj allows us to write E[Sk|Yj = y] = E[Sk] = 1/µ, and
the conditional expectation of the number of packets M of sources other than i, arriving
during the interarrival period Yj = y is E[M |Yj = y] = λ−i y. By Lemma 3.1, fYj |Bj is
exponentially distributed with average rate α = λi + (µ−λi−λ−i) = µ−λ−i. This implies

E2 = ρ−i

∫ ∞
0

y2αe−αy dy = 2ρ−i
α2 = 2ρ−i

µ2(1− ρ−i)2 . (3.9)

We write the expectation E[YjWj |Bj ] using (3.6) and (3.9) as

E[YjWj |Bj ] = 1
µ2

[ 2ρ−i
(1− ρ−i)2 + 1

(1− ρ)(1− ρ−i)

]
. (3.10)

Given the event Lj , packet (j − 1) has already departed the system when packet j is
generated. In this case, the waiting time of packet j depends on the number of other-source
packets in the system when packet j is generated. By Lemma 3.2, the number of other-source
packets in the system is geometrically distributed and independent to both the additional
delay Yj − Tj−1 until the arrival of packet j and the prior system time Tj−1. Then, we
obtain (see details in [61])

E[YjWj |Lj ] = E[(Tj−1 + (Yj − Tj−1))Wj |Lj ]
= E[(Tj−1 + (Yj − Tj−1))|Lj ]E[Wj |Lj ]

=
( 1
µ− λ−i

+ 1
λi

)(
ρ−i

µ(1− ρ−i)

)
. (3.11)

Substituting the derived conditional expectations in (3.2) we obtain

E[YW ] = 1
µ2

[
ρi(1− ρρ−i)

(1− ρ)(1− ρ−i)3 + ρ−i
ρi(1− ρ−i)

]
. (3.12)

Finally, the average AoI of source i in a shared system is given by

∆i,M/M/1 = 1
µ

[
ρ2
i (1− ρρ−i)

(1− ρ)(1− ρ−i)3 + 1
1− ρ−i

+ 1
ρi

]
. (3.13)

Consider a system shared by two sources. The average age of equation (3.13) is illustrated
for each one of them, and for various server utilizations, as shown in Figure 3.2 [61]. The
total load is fixed to ρ = ρ1 + ρ2 and the service rate is µ = 1. The sum ∆1 + ∆2 is
minimized at ρ1 = ρ2 = 0.306 yielding ∆1 = ∆2 = 5.30. The region of feasible age pairs
(∆1,∆2) is bordered by the ρ = 0.612 curve and expands on the right. When a source i
is limited by a load constraint ρi ≤ ρ̄i and sources other than i offer a combined load ρ−i,
then source i can decrease its average age ∆i by unilaterally increasing ρi to ρ̄i. The Nash
equilibrium of a system is achieved when each source i operates at its maximum allowed
load ρ̄i and is depicted for ρ = 0.684 in our case. Recall that serving only one source we
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Figure 3.2: Average age for two sources sharing an M/M/1 FCFS queue with fixed service rate µ = 1
and fixed total load ρ = ρ1 + ρ2.With ∗ is the minimum achievable age and with 4 the Nash equilibrium
achieved by unilateral optimization [61].

obtain minimum age ∆1 = 3.48 and the optimal server utilization is ρ = 0.53. This implies
that serving two sources through separate systems with service rate µ = 1/2 each, would
yield ∆1 = ∆2 = 6.96. We can therefore conclude that combining two sources (source 2 can
be considered equivalent to an aggregate of multiple Poisson streams) in a common queue
is more efficient than serving them separately.

3.2 Basic Scheduling Through Queues

An important property of the status update systems that we will consider from now on
until the end of the monograph is the Markov property of the stochastic process X(t) under
observation. We assume that if the obtained data have this property, then only the latest
status update is important and the receiver does not have to retain a history of updates.
This fact agrees well with the nature of sensing and actuation applications dealing with
time critical information. Therefore, if a packet arrives at the destination after a newer
generated packet has already arrived, then it does not contain useful information. Thus, it
is of interest to investigate the performance of the last-come-first-served (LCFS) discipline.

So far we have presented the case where a status update system is modeled as a simple
M/M/1 queue and provided a closed form expression of AoI for both a single and a multiple
source system. In addition, we presented the effect of the interarrival times and the service
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times on the system performance. The work in [30] first breaks the FCFS assumption
by allowing newly generated status updates to surpass older updates. The idea is to use
the LCFS discipline; thus the most recent updates have the priority in transmission, and
furthermore to replace queued updates with the arrival of newer ones from the same source.
This packet control mechanism improves the performance of the system with respect to the
Age of Information.

3.2.1 The Last-Come-First-Served Queue Discipline

Here, two LCFS systems, with and without the ability to preempt a packet in service, will
be discussed. First, under LCFS without preemption, the new status packet replaces any
older status packet waiting in the queue. However, it has to wait for the packet currently
under service to finish. Second, under LCFS with preemption, the new packet is allowed to
replace the packet currently in service.

The age process exhibits a sawtooth pattern as shown in Figure 2.2, however, in this case
the interarrival times Yi and system times Ti refer only to packets that have been served.
Under these general assumptions equation (2.12) holds for the LCFS queue discipline with
and without preemption. An M/M/1 system is considered, and the average age for multiple
independent sources with preemption is calculated in [30].

LCFS without preemption

An example of the evolution of ∆(t) over time for the LCFS discipline without preemption is
illustrated in Figure 3.3. The time instants, ti, for i = 1, 2, . . . , n correspond to the packets
i that receive service. Packets generated between time ti and ti+1 may include packets from
other sources that may or may not complete service. In addition, this time interval may
include packets from the source under consideration that do not receive service as they are
replaced by a new packet arrival. (Such updates are generated at times denoted by tik for
k = 1, 2, . . . .)

Using the notation of Section 2.2, under the LCFS discipline without preemption, we
have that the ith interarrival time is denoted by Yi = ti − ti−1. This corresponds to the
time interval between the arrivals of two consecutive successfully transmitted packets. If the
ith transmitted packet finds an empty system upon arrival, i.e. the (i− 1)th transmitted
packet has completed service, then Yi is exponentially distributed with mean 1/λ. On the
other hand, if the ith packet is not the next to arrive after the (i− 1)th packet, but one or
more packets arrive in between them, then Yi is a random sum of exponentially distributed
interarrival times Ỹ with mean 1/λ. Hence,

Yi =
Ni∑
k=1

Ỹk. (3.14)
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Figure 3.3: Example of age evolution of a given source for a system using LCFS without preemption [30].

The random variable Yi does not have the memoryless property of the interarrival times
and is difficult to characterize. This observation significantly complicates the calculations of
the average age. For this reason, in Subsection 3.5 an alternative approach through a model
that will be called M/M/1/2* is presented. A comprehensive analysis of an M/M/1 LCFS
system with and without preemption and multiple sources can be found in [61]. In this
work, the authors introduce an analytic technique called stochastic hybrid systems (SHS)
[20] to determine the feasible average age region.

LCFS with preemption

Under the LCFS queue discipline with preemption, a packet arrival preempts the packet
currently in service, if any. Packets arrive from one or multiple independent sources. Every
packet enters the service immediately after its generation but it may or may not complete
service. A new arrival and the packet being preempted may not belong to the same source.

Figure 3.4 shows an example of the evolution of ∆(t) over time for one source. The time
instants, tj , for j = 1, 2, . . . , n,3 correspond to the packets j that complete service. The
interval Yj = tj − tj−i is therefore defined as the time elapsed between the generation of
such packets. Let Zj be the time interval between the departure of packet (j − 1) and j

Zj = t′j − t′j−1. (3.15)

Any arrivals of a given source during Zj , other than j, are preempted. However, it is possible
for arrivals of other sources to complete service. Figure 3.4 shows Z3, which consists of a

3Note that the index denoting the packet is now j and the index i refers to the source.
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Figure 3.4: Example of age evolution of a given source for a system using LCFS with preemption.

random number L of time intervals. Each time interval 1 ≤ k ≤ L, of length Bk, consists of
an idle period of length Dk followed by a busy period of length Sk. That is

Zj =
L∑
k=1

Bk =
L∑
k=1

(Dk + Sk). (3.16)

Note that packet j arrives during SL and then spends Tj amount of time in service.
To calculate the terms E[Y ], E[Y 2] and E[TY ] we can write

Yj = Tj−1 + Zj − Tj . (3.17)

Also note that when the system reaches steady state the system times are stochastically
identical, i.e., Y =st Yj , T =st Tj−1 =st Tj , and Z =st Zj . Thus,

E[Y ] = E[Yj ] = E[Zj ] = E[Z]. (3.18)

Since Zj and Tj are dependent, but each one is independent of Tj−1, we obtain

E[Y 2] = E[Z2] + 2 Var[T ]− 2 Cov[ZT ]. (3.19)

Using the fact that Yj and Tj are mutually independent, we have

E[YjTj ] = E[Yj ]E[Tj ] = E[Y ]E[T ] = E[Z]E[T ]. (3.20)
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Finally, substituting (3.18), (3.19), and (3.20) to (2.12) the average AoI of source i for
general queue models is given by

∆i,LCFS,preempt = E[T ] + E[Z2]
2E[Z] + Var[T ]− Cov[ZT ]

E[Z] . (3.21)

Next, we consider a specific arrival and service process, that is, an M/M/1 system where
status updates are generated according to a Poisson process with mean rate λi for source i,
as illustrated in Figure 3.1. The overall arrival rate is λ =

∑N
i=1 λi. Furthermore, the service

times are i.i.d. exponentially distributed with mean E[S] = 1/µ and the server utilization
of source i is defined as ρi = λi/µ. Given the general result in (3.21) we need to calculate
the terms E[T ], E[T 2], E[Z], E[Z2], E[ZT ]. Using the analysis in [30], we have that Tj is an
exponentially distributed random variable with

E[Tj ] = 1
λ+ µ

, and E[T 2
j ] = 2

(λ+ µ)2 . (3.22)

Moreover, the first and second moment of the interdeparture time of source i are given by

E[Zj ] = µ+ λ

λiµ
, and E[Z2

j ] = 2 λ
λi

(
λ

λi

[ 1
λ

+ 1
µ

]2
− 1
λµ

)
. (3.23)

Finally, the expectation E[ZjTj ] is computed to be

E[ZjTj ] = 1
λµ

(
λ− λi
λi

)
+ 1
λ(λ+ µ) + λ+ 2µ

(λ+ µ)2µ
. (3.24)

Using these results and substituting in equation (3.21) we obtain that the average AoI of
source i in a shared system is given by

∆i,M/M/1,LCFS,preempt = λ

λi

( 1
λ

+ 1
µ

)
. (3.25)

Note that if we fix (λ− λi) and let λi →∞, the average age ∆i tends to 1/µ. Thus, as
the arrival rate of source i increases and the rates of sources other than i are kept fixed,
the average age of source i converges to the average packet service time. Similarly, for N
sources and λ1, λ2, . . . , λN →∞, with λu = λv ∀ u and v, the average age ∆i of each source
tends to N/µ. Numerical results of the LCFS discipline with preemption will be presented
in comparison with other system models in Subsection 3.5.

Gamma distributed service times

Up to this point we have modeled status update systems assuming exponentially distributed
interarrival and service times. An interesting alternative studied in [40] is to model the service
times as gamma distributed random variables. The gamma distribution is a reasonable
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approximation for models capturing relay networks [44]. In a relay network the source and
the destination are interconnected by means of a number of relays. In the studied case, the
transmission time for each hop is exponentially distributed, thus the total transmission
time is the sum of i.i.d. exponentials which leads to a gamma distribution.

A sequence of random variables Sn ∼ Γ(kn, θn) converges in distribution to a deter-
ministic variable D as k becomes very large. That is, for E(Sn) = 1

µ and some µ > 0,

Sn → D, as k →∞, (3.26)

where D = 1
µ with probability 1. This enables the extension of the gamma distributed

service times to deterministic service times by letting k →∞. The analysis of the average
AoI assuming gamma distributed service times under the LCFS queue with and without
preemption can be found in [40].

One of the key observations of this work is the following. Under LCFS with preemption
as k increases the average age increases for all values of λ. On the other hand, under LCFS
without preemption as k increases the average age decreases for all values of λ expect the
ones close to zero. Overall, for both deterministic and gamma distributed service times the
best strategy is not to preempt especially in a system with high arrival rate.

3.3 Peak Age of Information

In addition to AoI, a new metric called peak age is proposed to serve two objectives. First,
depending on the application, it may be a suitable alternative to age and average age.
Second, it is a more tractable solution in the analysis of complicated models.

Consider a system consisting of a source-destination link, as shown in Figure 2.1.
Observing the peak values in the sawtooth curve we characterize the maximum value of the
AoI immediately before an update is received called the Peak Age of Information (PAoI)
[11], [12]. The peak age can be utilized in applications where there is interest in the worst
case age or we need to apply a threshold restriction on age. This metric can be used instead
of AoI, with the advantage of a simpler formulation, as it will be presented.

Definition 3.3.1 (Peak Age of Information). Let Yi be the interarrival time of the ith update,
and Ti be the corresponding system time. Then, the Peak Age of Information (PAoI) metric
is defined as the value of age achieved immediately before receiving the ith update

Ai = Yi + Ti. (3.27)

Figure 2.2 shows an illustrative example of the evolution of AoI as a function of time t.
The values of peak age are depicted with Ai. Note that peak age is a discrete stochastic
process that takes values at the time instances that belong to the set I .= {t′1, t′2, . . . t′N(T )}.
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In analogy to the AoI, we are interested in small average PAoI in order to maintain
fresh information.

Definition 3.3.2 (Time average Peak Age of Information). Suppose that our interval of
observation is (0, T ). The time average peak age of a status update system is

AT = lim
T →∞

1
T

N(T )∑
i=1

Ai, (3.28)

where N(T ) is the number of samples that completed service by time T .

Using the definition (3.27), the average Peak Age of Information in the status update
system of Figure 2.1 is given by

A = E[Y + T ] = E[Y +W + S], (3.29)

where λ = 1/E[Y ] and E[·] is the expectation operator. We assume ergodicity of the
stochastic process ∆(t) but we make no assumptions regarding the distribution of the
random variables Y and T , or the service policy. This result also holds when the system is
shared among multiple traffic streams.

Comparing the average AoI in (2.12) and the average PAoI of (3.29), we have

∆−A = λ
(
E[Y T ] + E[Y 2]/2− E[Y ]E[Y + T ]

)
= λ

(
E[Y T ]− E[Y ]E[T ] + E[Y 2]/2− E[Y ]2

)
. (3.30)

The difference in (3.30) is a way of estimating how close the two metrics are to each other.
The authors in [22] derive exact PAoI expressions for the M/G/1 and the M/G/1/1 models
and they show that PAoI serves as an upper bound for AoI. The following lemma shows
that PAoI approximates AoI for general G/G/1 models.

Lemma 3.3.1. For a G/G/1 model, we have that

A− 3λE[Y 2]
2 − λE[Y ]2 ≤ ∆ ≤ A+ λE[Y 2]/2. (3.31)

Proof. See details in [22].

Next, for completeness we provide the average peak age for the M/G/1 as well as the
M/M/1 system model. The average PAoI for an M/G/1 system is given by

AM/G/1 = E[Y ] + E[S] + λE[S2]
2(1− ρ) . (3.32)
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The result derives from (3.29) and the P-K formula for the system time T provided in [6].
Finally, the average PAoI for an M/G/1/1 system is given by

AM/G/1/1 = E[S] + E[Y ] + E[Y ]ρ. (3.33)

The peak age is a suitable metric in applications that impose a threshold restriction on age.
In the following subsection we introduce the reader to the notion of obsoleteness and

present the first analysis of a system with multiple servers. The need for treating waste of
resources becomes apparent and leads to packet management techniques in Subsection 3.5,
where PAoI is used to provide tractable analysis.

3.4 Availability of Resources

After the introductory models in Section 2, some works departed from the simple model of
the M/M/1 to more elaborated ones that capture the availability of more resources in a
network. In this setup, we take into consideration a more dynamic feature of networks, that
is, packets traveling over a network might reach the destination through different paths
thus the delay of each packet might differ. In this case, we say that the source and the
destination are separated by a network cloud as depicted in Figure 2.1.

We assume that status updates are instantaneously served upon generation, which
means that there is no buffer between the source and the network cloud, nor delays due
to waiting times. Following our previous definitions, where the system time of update i
is Ti = Wi + Si, we now refer to service time of update i as Si = t′i − ti, for Wi = 0 ∀i.
The service times are modeled as i.i.d. exponentially distributed random variables with
mean 1/µ. The random network delay is a simplified model that captures the possibility of
packets arriving at the destination out of order, due to various dynamics of the network,
such as link scheduling, competing data traffic, or multiple paths.

Definition 3.4.1 (Informative packet). Consider a system consisting of a source-destination
communication link, separated by a network cloud. Assume Yi and Si are the interarrival
and service times of update i, respectively. Then, we define an informative packet as a packet
that carries the newest information compared to the packets arriving at the destination
prior to it. Mathematically, the condition for a packet m being informative is

Sm < Sr +
r∑

a=m+1
Ya, ∀ r > m. (3.34)

Definition 3.4.2 (Obsolete packet). A packet l is said to be obsolete if there is at least one
(packet with) k ≥ 1 generated after l, such that t′l > t′l+k. An informative packet is one that
is not rendered obsolete.
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The model described can be viewed as a system with infinite memoryless servers with the
Kendall notation M/M/∞. However, modeling the network as M/M/∞ does not reflect the
fact that packets entering the system first, most likely will finish service first. This is the case
with a single server queue, where we consider in-order reception. On the other hand, a single
server system does not reflect the dynamics of a network (e.g., changing topology) which
might cause out-of-order reception of packets. Therefore, we are interested in investigating
different systems with two or more servers which reflect both the transmission path diversity
and the service priority principles [27]. A suitable combination of queueing and out-of-order
reception can model various network topologies. Towards this direction, this subsection
compares the performance of the M/M/1, M/M/2, and M/M/∞ cases and demonstrates
the tradeoff between the AoI at the destination and the waste of network resources as the
number of servers varies.

3.4.1 The M/M/∞ system model

We consider the system model described in this subsection consisting of a source that
transmits packets through a network with infinity numbers of servers. For modeling purposes
a server can be viewed as a wireless channel in a queue theoretic setup. Status updates are
generated according to a Poisson process with mean λ and the service times of each server
are modeled as exponential random variables with mean 1/µ. We begin with a preliminary
analysis of the probability of possible events within this framework. Next, we present a
closed form expression for the average AoI of this system.

We start by denoting E(n) the event that a packet is informative and that it renders
n other packets obsolete. Let E1(i) be the event that a packet is informative and E2(n)
be the event that a packet renders exactly n of the previous packets obsolete, i.e., arrives
before the previous n packets and after the (n+ 1)st previous packet. Eventually, we have
E(n) = E1(i) ∩ E2(n). Note, that the steady-state probability of E(n) is independent of i.

First, the conditional probability of E1(i) given its service time Si and the interarrival
times Y∞i+1 of future packets, are derived. We continue by deriving the conditional probability
of E2(n) given the service time Si and the interarrival times of the previous n packets
Y i
i−n, and then averaging over all the yii−n to obtain Pr(E2(n)|Si = si). Observe that the

probability of the intersection of the events E1(i) and E2(n) is equal to the probability of
their product since they are conditionally independent given Si. This is true because E1(i)
depends on S∞i and Y∞i+1, while E2(n) depends on Sii−n−1 and Y i

i−n, and all the interarrival
and service times are independent. Finally, we obtain (see details in [27])

Pr(E(n)) = Pr(E1(i) ∩ E2(n)) = λnµ∏n+1
k=1(λ+ kµ)

. (3.35)

To compute the average status age, we also need the statistics of the interarrival and service
times conditioned on the event E(n). For completeness we provide all the terms the average
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status age consists of. We start with the calculation of the conditional expectation of the
service time of update i, E[Si|E(n)], that is given by

E[Si|E(n)] = 1
λ+ (n+ 1)µ

(
1 + λ

λ+ (n+ 2)µ

)
. (3.36)

Following the same methodology we derive useful conditional expectations related to Y i
i−n

[27]. The conditional sum of means is

E
[

i∑
k=i−n

Yk|E(n)
]

=
n∑
k=0

1
λ+ kµ

+ n+ 1
λ

σ(n), (3.37)

where

σ(n) =
∞∑
r=1

[
λr

(n+ r + 1)
∏r
k=1(λ+ (n+ k)µ)

(
1− λ

λ+ (n+ r + 1)µ

)]
.

The conditional sum of second moments can be similarly derived

E
[

i∑
k=i−n

Y 2
k |E(n)

]
=

n∑
k=0

2
(λ+ kµ)2 + 2(n+ 1)

λ2

(
1 + λ

λ+ (n+ 1)µ
)
σ(n). (3.38)

Finally, the conditional sum of crossterms is given by

E
[

i−1∑
j=i−n

i∑
k=j+1

2YjYk|E(n)
]

=

=
n−1∑
j=0

n∑
k=j+1

2
(λ+ jµ)(λ+ kµ) + (n+ 1)σ(n)

λ

n∑
k=1

2
λ+ kµ

. (3.39)

Before the calculation of the average status age for the M/M/∞ model the derivation of the
probability of a packet rendered obsolete which is equal to the probability of a packet not
being informative is presented. The result can be used as an indicator of the performance of
the system, since obsolete packets correspond to waste of resources. Thus, it is meaningful to
minimize the percentage of obsolete packets among the transmitted packets. The probability
of a packet i becoming obsolete is

1− Pr{E1(i)} =

= ρ

ρ+ 1 −
∞∑
r=1

ρr

(r + 1)
∏r
k=1(ρ+ k)

(
1− ρ

ρ+ r + 1

)
, (3.40)

where ρ is the server utilization. This expression indicates that the probability of a packet
rendered obsolete is solely a function of ρ.
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Average age analysis derivation and bounds

In the M/M/∞ case, the key element compared to the previously discussed models is that
some of the interarrival times Yi might correspond to non-informative packets, therefore for
each informative packet we should also consider the previous n packets rendered obsolete.
As a result we have

1
E[Y ] = λ Pr(E(n)),

E[Y 2]/2 =
(
E
[

i∑
k=i−n

Y 2
k |E(n)

]
+ E

[
i−1∑

j=i−n

i∑
k=j+1

2YjYk|E(n)
])/

2,

E[Y S] = E
[

i∑
k=i−n

Yk|E(n)
]
E
[
Si|E(n)

]
.

Substituting equations (3.35), (3.36), (3.37), (3.38), and (3.39) to (2.12) we obtain

∆M/M/∞ = λ
∞∑
n=0

Pr(E(n))

[
n∑
j=0

(
1

λ+ jµ

( 2λ+ (n+ 2)µ
(λ+ (n+ 1)µ)(λ+ (n+ 2)µ) +

n∑
k=j

1
λ+ kµ

))
+

(n+ 1)σ(n)
λ

(
2λ+ (n+ 2)µ

(λ+ (n+ 1)µ)(λ+ (n+ 2)µ) +
n+1∑
l=0

1
λ+ lµ

)]
. (3.41)

It is apparent that the exact analysis of AoI becomes harder as the model becomes
more complicated. Due to this complexity we consider upper and lower bounds. A simple
upper bound is to compute the average of the trapezoid areas for all packets, whether or
not they are informative. Therefore, the bottom edge of the trapezoids consists of only one
interarrival time (either of an informative or an obsolete packet) and we obtain

∆UB,M/M/∞ = λ (E[Y ]E[S] + E[Y 2]/2) = 1
λ

+ 1
µ
. (3.42)

A lower bound can be computed as follows; consider that the service time of a packet
can not be greater than the interarrival time of the next generated packet. Conditioning on
the probability that Sα < Yα+1 we assume that a new status update is generated after the
previous update finishes service. This assumption is similar to the just-in-time bound on
Subsection 2.2 where the server state is considered known. The area under the sawtooth of
∆(t) is now smaller than that of the original system and thus the lower bound is obtained

∆LB,M/M/∞ = 1
λ

+ 1
λ+ µ

− λµ

(λ+ µ)3 . (3.43)
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The bounds are tighter for small values of the server utilization ρ and they become looser as
ρ increases. This is more evident for smaller values of µ where the effect of the assumptions
is stronger [27].

In [27] the expression (3.41) of the average age for the M/M/∞ model has been evaluated
as shown in Figure 3.5. The theoretical and simulated status age is plotted versus the
utilization ρ for µ = 0.5, 1, 1.5. The upper and lower bounds ∆UB,M/M/∞ and ∆LB,M/M/∞
are also depicted with dotted and dashed lines, respectively. We observe that the average
age is monotonically decreasing as the server utilization increases, since more frequent
transmissions lead to a more updated destination node. However, this comes with the cost
of wasted network resources due to obsolete packets as we will see in detail in Section 3.4.3.

3.4.2 The M/M/2 system model

In this subsection we study a status update system consisting of two servers captur-
ing both the possibility of packets arriving at the destination out of order and the ef-
fect of queuing. More specifically, we assume that the interarrival times Yi and the ser-
vice times Si are exponentially distributed with mean 1/λ and 1/µ, respectively. We
will refer to this model as M/M/2 and we will present the average status age analy-
sis.

In this setup, although we have in order queueing we might have out-of-order reception.
Packets are served with a first-come-first-served discipline and if upon generation they find
both servers busy they have to wait in the queue, and the waiting time is Wi. Furthermore,
assume that the system is empty and a packet arrives and enters into the first server. Then,
a second packet arrives and finds the first server busy, so it enters into the second server. If
packet 2 finished service before packet 1, it means that it renders packet 1 obsolete since
packet 2 is the most recently generated packet.

Note that for a two-server system, two consecutive packets cannot be made obsolete,
since this would mean that a packet that enters the system after them will complete service
first. This, however, is not possible for an M/M/2 system with a FCFS, because two packets
will occupy both servers, and one of them must complete service prior to any future packets
entering service. We denote Ỹi the interarrival time and T̃i the system time of the ith
informative packet. Observe that Ỹi can consist of either one or two interarrival times of
generated packets, while T̃i is equal to W̃i + S̃i. After applying expression (2.7), the average
age can be therefore written as

∆M/M/2 = E[Ỹ S̃] + E[Ỹ 2]/2
E[Ỹ ]

= E[W̃ Ỹ ] + E[Ỹ ]E[S̃] + E[Ỹ 2]/2
E[Ỹ ]

. (3.44)

We now proceed by categorizing the informative packets of an M/M/2 system into
two different types. The event A that defines an informative packet of type α, is the
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Figure 3.5: Average status age vs server utilization for the M/M/∞ queue [27].

case where an informative packet is preceded by another informative packet. In the case
where informative packets are separated by an obsolete packet, event B, we categorize the
informative packet that renders the previous packet obsolete as of type b. For the first
type, the interarrival time Ỹα consists solely of a single interarrival time, whereas for type b,
Ỹb consists of exactly two typical interarrival times, one of an informative and one of an
obsolete packet (i.e. Ỹi = Yi + Yi+1). Encountering both packets of type α and b, we cover
the whole sample space of packets that contribute to the Age of Information of the system
at the destination. Thus, we have

∆M/M/2 = λ

[
pα
(
E[W̃αỸα] + E[Ỹα]E[S̃α] + E[Ỹ 2

α ]/2
)

+ pb
(
E[W̃bỸb] + E[Ỹb]E[S̃b] + E[Ỹ 2

b ]/2
)]
, (3.45)

where pα is the probability of event A and pb is the probability of event B.
The expected value E[W̃αỸα] can be derived using iterated expectation, i.e.,

E[W̃αỸα] =
∫ ∞

0
y E[Wi|Yi = y]fYi/α(y) dy. (3.46)
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Similarly, for informative packets of type b we have

E[W̃bỸb] =
∫ ∞

0

∫ ∞
0

(y1 + y2) E[Wi|Yi−1 = y1, Yi = y2]

× fYi−1/b,Yi/b(y1, y2) dy1 dy2. (3.47)

The derivation details of equations (3.46) and (3.47) can be found in [26] and [27]. Note
that the distribution of the interarrival times and the system times for a packet of type α
or b are not the same with those of a typical packet. Computation of fYi/α and fYi−1/b,Yi/b

requires knowledge of the joint distribution of Y and T , which is difficult to derive. A way to
proceed is conditioning on events that can be computed in a straightforward manner using
the memoryless property of the exponential interarrival and service times. The probabilities
of events of type A are given in [27, pp. 1365-1366] and the probabilities of events of type B
are given in [27, pp. 1366-1367]. The probabilities pα and pb can be then derived by taking
the sum of the probability of events of type A and B, respectively. The probability that
a packet is rendered obsolete is the probability that a packet is not informative, which is
equal to 1− (pα + pb).

Average age analysis: approximations and bounds

The analysis of the average AoI for the M/M/2 queue is clearly difficult, thus here we will
proceed by providing approximations and bounds. We let the distribution of the interarrival
time of an informative packet of type α to be an exponential interarrival time Yi, while for
a packet of type b, the approximated interarrival time is the sum of two i.i.d. exponential
interarrival times. As another approximation, we consider that E[S̃] is the same for both
type α and b packets. Then, the approximate average age can be computed as (see details
in [27])

∆M/M/2 ≈ λ
[
pα
(
E[W̃ Ỹα] + E[Ỹα]E[S̃] + E[Ỹ 2

α ]/2
)

+ pb
(
E[W̃ Ỹb] + E[Ỹb]E[S̃] + E[Ỹ 2

b ]/2
)]
. (3.48)

In addition, a simple upper bound is obtained by encountering all transmitted packets
as informative, similar to the M/M/∞ case. This upper bound is given by

∆UB, M/M/2 = 1
µ

(
1 + 1

2ρ + 2µρ3

(1 + ρ)(1− ρ)

)
. (3.49)

For the lower bound, assume that the interarrival time is the same with a single typical
interarrival time, and argue that the interarrival time of an informative packet is stochasti-
cally greater than or equal to that of a typical packet. Let E3(i) be the event that packet i
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is informative in an M/M/2 system. In [27] it is shown that Pr(Yi > y|E3(i)) ≥ Pr(Yi > y)
holds, thus, a lower bound can be given by

∆LB, M/M/2 = λ̃
(
E[W̃ Ỹα] + E[Ỹα]E[S̃] + E[Ỹ 2

α ]/2
)
, (3.50)

where Ỹα is equal to a typical interarrival time and λ̃ = λ(pα + pb).
In Figure 3.6, we evaluate the performance of the M/M/2 model by comparing the

average simulated age with the approximation and the upper and lower bounds as a function
of the server utilization ρ, for µ = 1 [27]. Additionally, the age for the M/M/1 model is
plotted as a point of reference. We observe that the approximated age is very close to the
simulated age. Furthermore, the upper and lower bounds are relatively tight for smaller ρ,
but they start deviating as ρ increases, especially in the upper bound case. As ρ approaches
1, the number of obsolete packets increases, thus, we encounter more of them as informative
and the gap between the theoretical age and its upper bound increases. For the lower bound,
we assume that an informative interarrival time is stochastically the same as a typical
interarrival time, therefore as ρ increases informative interarrival times are more likely to
consist of two typical interarrival times. Finally, we can conclude that the status age for
the M/M/1 model is almost twice of that for the M/M/2 model.

3.4.3 Tradeoff between status age and obsolete packets

Figure 3.7 depicts the average status age for the M/M/1, M/M/2 and M/M/∞ models
versus the arrival rate λ, when the service rate is µ = 1. Note that as ρ increases, the
number of packets in the system P increases as well, and as ρ → 1, we have P → ∞. If
ρ > 1, the server cannot sustain the arrival rate and the queue length increases without
bound. Therefore, for M/M/c, c=1, 2, the age also approaches infinity as λ approaches c.
Overall, increasing the number of servers in the system, results in decreased status age.

Figure 3.7 also depicts the percentage of packets that are rendered obsolete. For the
M/M/1 model, it is not possible for packets to arrive out of order, thus there are no
obsolete packets. From the M/M/2 and M/M/∞ cases we see that more servers lead to
more obsolete packets, since more packets are served simultaneously. The utilization of
more servers reduces the average status age, but this comes at the cost of wasted network
resources in heavy loads.

3.5 Packet Management

To avoid congestion in networks, packet management techniques or flow control can be
utilized in order to manage the traffic entering a network. The focus of this subsection
is on packet management by dropping or replacing packets. In this way the network can
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Figure 3.6: Average status age vs server utilization of the M/M/2 and M/M/1 queues, for µ = 1 [27].

Figure 3.7: Average status age and % of obsolete packets vs arrival rate for the M/M/1, M/M/2, and
M/M/∞ queues, for µ = 1 [27].

utilize the resources more efficiently and reduces the imposed packet delay thus, the Age of
Information performance can be improved.

In this subsection, we consider a system with a single or multiple independent sources
that can discard some of the generated packets. The selection process of packets to discard
is referred to as packet management [11], [12]. The packet management can improve the
performance of the system with respect to the staleness of the transmitted information,
similar to the case with the LCFS queue discipline. We consider three packet management
policies and we compare the results of the average age. For all policies we assume Poisson
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arrivals, an FCFS discipline and exponentially distributed service times.

1) For the first policy, we assume that a packet which arrives while another packet is
being served is discarded, and packets that find the server idle immediately receive
service. This means that no packets are kept in the queue waiting for transmission.
The described policy is modeled as an M/M/1/1 queue, where the last entry in the
Kendall notation refers to the total capacity of the queue, which is a single packet in
service.

2) The second policy, assumes that a single packet may be kept in the queue waiting for
transmission if another packet is being served at the same time. A packet which finds
both the server and the single queue position occupied is discarded. A packet that
finds the server idle is immediately receiving service. Here the capacity of the system
model is one packet in queue and one packet in service. Thus, the described policy is
modeled as an M/M/1/2 queue.

3) The third packet management policy also assumes that a packet which arrives while
another packet is being served may be kept in the queue waiting for transmission.
However, the packets waiting for transmission are replaced by newly generated packets.
This model will be identified as M/M/1/2∗ [12]. Note that this is a non-traditional
queueing model, for which some of the classic results from queueing theory, such as
Little’s law, do not apply [35]. Furthermore, we discuss the extension of this policy
for a system with N independent sources provided in [45]. In this case, we maintain a
queue with only the latest status packet of each source by replacing any previously
queued packet from that source. We refer to this policy as M/M/1/(N+1)∗.

Next, an illustrative example is presented in order to highlight the effect of packet
management policies on the packets that receive service and the effect on the age. Recall
that the system time of update i is denoted by Ti and the interdeparture time of update i
is Zi. In Figure 3.8, for the M/M/1/1 queue, the packets that arrive at times t? and t??
are discarded, since they find the server busy. For the M/M/1/2 queue, age is depicted
in Figure 3.9 where the packet generated at time t? finds the server busy and the queue
occupied thus it is discarded. Figure 3.10 shows how M/M/1/2∗ responds in this scenario
of arrivals and we see that the packet generated at time t? spends some time in the queue
waiting for transmission and then is replaced by a new packet arriving at time t4. Since
no packets arrive between the interval t4 and t′3, the new packet is served. Note that the
subindex i is used to refer to successfully transmitted packets only. Packets generated
between ti and ti+1 include packets that do not receive service.
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Figure 3.8: Example of age evolution for an M/M/1/1 system [12].
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Figure 3.9: Example of age evolution for an M/M/1/2 system [12].
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Figure 3.10: Example of age evolution for an M/M/1/2∗ system [12].

Preliminary analysis

To derive the average age and peak age for the three packet management policies we revisit
equations (2.12) and (3.29) as in [12]. In Figures 3.8, 3.9, and 3.10 we observe that the
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trapezoid areas Qi can be calculated as

E[Qi] = 1
2E[(Ti−1 + Zi)2]− 1

2E[T 2
i ]

= E[ZiTi−1] + E[Z2
i ]/2, k ≥ 3, (3.51)

where the second equality follows from the fact that Ti−1 and Ti are identically distributed
for k ≥ 3. This alternative definition allows us to rewrite the average age as

∆ = λeE[Q] = λe(E[ZT ] + E[Z2]/2), (3.52)

where Y , T , Z denote the interarrival, system, and interdeparture times. The effective arrival
rate is λe, and E[·] is the expectation operator. Furthermore, the peak Age of Information
is redefined as

Ai = Zi + Ti−1, (3.53)

thus, yields the average Peak Age of Information

A = E[Z + T ] = E[Z +W + S], (3.54)

Remark 3.5.1. The results from equation (3.52) and equation (3.54) holds when the system
is shared among multiple traffic streams.

We note that the random variables Z and T are dependent and this complicates the
calculations of the average age in the general case, since we are not aware of their joint
distribution. Nonetheless it is possible to describe an event such that Zi and Ti−1 are
conditionally independent.

We denote ψi the event that the system is empty after the ith successful transmission.
Under the assumption of Poisson arrivals, the remaining time until the next arrival is expo-
nentially distributed with mean 1/λ. Then, the arriving packet will be served immediately,
and completes service after an exponentially distributed period with mean 1/µ. Further,
let ψ̄i be the complementary event that the ith packet left behind a system with a packet
waiting in the queue. In this case, the first packet in the queue will receive service imme-
diately after the departure of packet i and it will complete service after an exponentially
distributed service time.

The conditional distribution of the interdeparture time Zi is independent of the queuing
model we consider. Given the event ψi−1, the distribution of Zi is given by the convolution
of the distribution of Yi and Si, which yields

f(z|ψi−1) = λµ

µ− λ

[
e−λz − e−µz

]
, (3.55)

E[Zi|ψi−1] = 1
λ

+ 1
µ
, (3.56)
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E[Z2
i |ψi−1] = 2(λ2 + λµ+ µ2)

λ2µ2 . (3.57)

The interdeparture time Zi, conditioned on ψ̄i, coincides with the service time Si, that is

f(z|ψ̄i−1) = µe−µz, (3.58)

E[Zi|ψ̄i−1] = 1
µ
, (3.59)

E[Z2
i |ψ̄i−1] = 2

µ2 . (3.60)

The variables Zi and Ti−1 are conditionally independent under the event ψi−1. Then, the
expectation E[ZiTi−1] is calculated as follows

E[Ti−1Zi] = P(ψi−1)E[ZiTi−1|ψi−1] + P(ψ̄i−1)E[ZiTi−1|ψ̄i−1]
= P(ψi−1)(E[Zi|ψi−1]E[Ti−1|ψi−1])

+ P(ψ̄i−1)(E[Zi|ψ̄i−1]E[Ti−1|ψ̄i−1]). (3.61)

The M/M/1/1, M/M/1/2, and M/M/1/2∗ models are studied in [12] for a single source
system. In this case, the probability that a departure leaves the system empty, is equal to
the steady state probability that the system is empty [10, Ch. 5] and it can be calculated
for each model separately. Moreover, for each model we will derive the pdf of the peak age
by conditioning the pdfs of Ti−1 and Zi on the event ψi−1. The conditional pdf of the peak
age then is obtained as the convolution

f(α|ψi−1) = f(t|ψi−1) ∗ f(z|ψi−1). (3.62)

Following the same methodology for the event ψ̄i−1 we get the distribution of the PAoI

f(α) = P(ψi−1)f(α|ψi−1) + P(ψ̄i−1)f(α|ψ̄i−1). (3.63)

In the remaining of the section, the average age and peak age are calculated for each one of
the described models. In each case, we need to derive the steady state distribution of the
number of packets in the system, in order to calculate the probability P(ψi). In addition,
the conditional distribution of the system time Ti−1 given ψi−1 is needed.

The M/M/1/1 system model

The M/M/1/1 queue can be described through a two-state Markov chain, where each state
represents the server being idle or busy. It can be then easily shown that the steady state
probabilities of the system are [35, Ch. 3]

p0 = µ

λ+ µ
and p1 = λ

λ+ µ
. (3.64)
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The probability that the ith packet leaves an empty system upon departure is P(ψi) = 1.
The system time is equal to the service time which is exponentially distributed with expected
value E[Ti−1] = 1/µ. Packets enter the system whenever the server is empty, thus, the
effective arrival rate is λe = (1/E[Y ])(1− p1). Substituting (3.57) and (3.61) to (3.52) the
average status age ∆ is

∆M/M/1/1 = 1
λ

+ 2
µ
− 1
λ+ µ

. (3.65)

Note that for infinitely large arrival rate λ the average age yields

lim
λ→∞

∆M/M/1/1 = 2
µ
. (3.66)

This is equal to the just-in-time lower bound for a queue with an FCFS discipline found in
Section 2.2. Therefore, an M/M/1/1 queue with arrivals independent to the current status
of the server can perform equally good to a system with just-in-time service-depended
arrivals.

For the peak age, equation (3.63) yields

f(α)M/M/1/1 = f(α|ψi−1) = f(t|ψi−1) ∗ f(z|ψi−1)

=
(

µ

λ− µ

)2
λ(e−λα − e−µα + (λ− µ)αe−µα). (3.67)

Then, the probability that the peak age surpasses a threshold is

P(A > α)M/M/1/1 =
(

µ

λ− µ

)2
e−λα +

[
1−

(
µ

λ− µ

)2
]
e−µα

+ λµ

λ− µ
αe−µα. (3.68)

Finally, the average peak age can be calculated directly as

AM/M/1/1 = E[Z + T ] = 1
µ

+ 1
λ

+ 1
µ

= 1
λ

+ 2
µ
. (3.69)

The M/M/1/2 system model

The M/M/1/2 queue can be described as a three-state Markov chain, where each state
represents an empty system, a single packet receiving service or a system with two packet,
one in service and one in the queue. Denoting by ρ = λ/µ the server utilization, it can be
shown that the steady state probabilities of the system are given by [35, Ch. 3]

pj = ρj

1 + ρ+ ρ2 , j ∈ {0, 1, 2}. (3.70)
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Recall that the probability that a departure leaves the system empty is equal to the steady
state probability that the system is empty. We normalize the probabilities thus

P(ψi) = p0
p0 + p1

= µ

λ+ µ
, (3.71)

P(ψ̄i) = p1
p0 + p1

= λ

λ+ µ
. (3.72)

Packets enter the system whenever the server or queue is empty, thus the effective arrival
rate is λe = (1/E[Y ])(1− p2).

Now we can calculate the second term in (3.52), that is
1
2E[Z2

i ] = 1
2
(
P(ψi−1)E[Z2

i |ψi−1] + P(ψ̄i−1)E[Z2
i |ψ̄i−1]

)
= 1

2

(
2(λ2 + λµ+ µ2)

(λµ)2
µ

λ+ µ
+ 2
µ2

λ

λ+ µ

)
= 1
λ2 + 1

µ2 . (3.73)

Next, we characterize the conditional distribution of the system time Ti−1 given the events
ψi−1 and ψ̄i−1. In accordance to these derivations, the conditional expectations of Ti−1 are
obtained in [12] as

E[Ti−1|ψi−1] = 1
µ
, (3.74)

E[Ti−1|ψ̄i−1] = 2
µ
. (3.75)

Substituting the probabilities (3.71), (3.72), the conditional expectations of the system time
(3.74), (3.75), and the conditional expectations of the interdeparture time (3.56), (3.59), to
(3.61) we obtain

E[Ti−1Zi] = 2λ2 + λµ+ µ2

λµ2(λ+ µ) . (3.76)

Finally, using (3.73) and (3.76) the average AoI is calculated as

∆M/M/1/2 = 1
λ

+ 3
µ
− 2(λ+ µ)
λ2 + λµ+ µ2 . (3.77)

For infinitely large arrival rate λ, the average age yields

lim
λ→∞

∆M/M/1/2 = 3
µ
. (3.78)

This value is greater that the just-in-time lower bound for a queue with an FCFS discipline
described in Section 2.2 and the M/M/1/1 case. Intuitively, for large values of the arrival
rates it is better to discard the packets in the queue, since queueing would cause an increase
in the information age.
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Using the same approach as in the M/M/1/1 case, the probability the peak age surpasses
a threshold is

P(A > α)M/M/1/2 = µ3

(λ− µ)2(λ+ µ)e
−λα + λ

2(λ− µ)2(λ+ µ)e
−µα

×
[
µ2α2(λ− µ)2 + 2λµ(λ− µ)α+ 2(λ2 − λµ− µ2)

]
. (3.79)

Finally, the average peak age can be calculated directly as

AM/M/1/2 = E[Z + T ] = 1
λ

+ λ

µ(λ+ µ) + µ+ 2λ
µ(λ+ µ)

= 1
λ

+ 3
µ
− 2

(λ+ µ) . (3.80)

The M/M/1/2* system model

The M/M/1/2* queue can be described as a three-state Markov chain, where each state
represents an empty system, a single packet receiving service or a system with two packets,
one in service and one in the queue. Therefore, the steady state probabilities of the system
are the same with the M/M/1/2 model. Moreover, the number of packets in the system is
not affected by the replacements taking place, thus, the probabilities P(ψi) and P(ψ̄i) are
given by (3.71) and (3.72), respectively. The average number of packets in the system is
E[N ] = 0p0 + 1p1 + 2p2, and the effective arrival rate is λe = (1/E[Y ])(1− p2), as in the
M/M/1/2 model. The second term in (3.52) 1

2E[Z2
i ] also remains the same as obtained in

(3.73), since conditioning on the events ψi and ψ̄i the distribution of the interdeparture
time is independent of the system time and the selected queuing model.

To characterize the average age of the system, we need to calculate the terms E[Ti−1|ψi−1]
and E[Ti−1|ψ̄i−1]. In the M/M/1/2* queue the packets waiting for transmission are replaced
by newly generated packets. In this case, the age is updated by the packets that are served. A
packet may spent some time waiting in the queue and then be discarded by a newly received
packet or entering the server. In order to characterize the system time for transmitted
packets let T be the system time for any packet, which may or may not be discarded.
Then, the probability that the system time surpasses a threshold can be partitioned in the
following three events; a packet either receives service if the server is idle, or waits and then
is transmitted (tx) if the server is busy, or gets dropped (drop). Thus, we have

P(T > t) =P(idle)P(T > t|idle) + P(busy, tx)P(T > t|busy, tx)
+ P(busy, drop)P(T > t|busy, drop). (3.81)

The average age for the M/M/1/2* model is calculated similarly to the M/M/1/2 model.
The resulting conditional expectations of the system time Ti−1 are

E[Ti−1|ψi−1] = λ

(λ+ µ)2 + 1
(λ+ µ) = 2λ+ µ

(λ+ µ)2 , (3.82)
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E[Ti−1|ψ̄i−1] = λ

(λ+ µ)2 + 1
µ

+ 1
(λ+ µ) = 1

µ
+ 2λ+ µ

(λ+ µ)2 . (3.83)

Substituting the probabilities (3.71), (3.72), the conditional expectations of the system time
(3.82), (3.83) and the conditional expectations of the interdeparture time (3.56), (3.59), to
(3.61) we obtain

E[Ti−1Zi] = 1
µ2 + 1

λµ
− 2λ+ µ

(λ+ µ)3 . (3.84)

Finally, using (3.73) and (3.84) the average Age of Information is calculated as

∆M/M/1/2* = 1
λ

+ 2
µ

+ λ

(λ+ µ)2 + 1
λ+ µ

− 2(λ+ µ)
λ2 + λµ+ µ2 . (3.85)

For infinitely large arrival rate λ the average age yields

lim
λ→∞

∆M/M/1/2* = 2
µ
. (3.86)

This value is equal to the just-in-time lower bound for a queue with an FCFS discipline
presented in Section 2.2. Intuitively, for very high arrival rates, packets containing fresh
information are always available for transmission in both the M/M/1/1 and the M/M/1/2*
queues.

For the peak age, the probability that it surpasses a threshold is

P(A > α)M/M/1/2∗ = e−(λ+µ)α

λ(λ+ µ)(λ− µ)(λ3 − 3µ3 + λµ(λ+ µ)

(1 + (λ− µ))) + e−µα

λ(λ+ µ)(λ− µ)(3µ3 + λ(λ+ µ)(λ− µ)

+ λµα(λ+ λµ− 2µ2))− e−λα

(λ+ µ)(λ− µ)(λ2 − λµ+ µ2). (3.87)

Finally, the average peak age can be calculated directly as

AM/M/1/2* = E[Z + T ] = 1
µ

+ λ

(λ+ µ)2 + 1
λ

+ 1
µ

1
(λ+ µ) . (3.88)

The M/M/1/(N+1)* system model

A fourth packet management policy can be viewed as an extension of the M/M/1/2* model
for the system of Figure 3.1 consisting of N independent sources. This model will be
identified as M/M/1/(N+1)*. The M/M/1/(N+1)* queue keeps at most N packets waiting
for transmission, one for each source. The packets waiting for transmission are replaced by
newly generated packets if any. Upon arrival of a new status update, we examine the queue
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Figure 3.11: Average age vs server utilization of the M/M/1/1, M/M/1/2, and M/M/1/2* queues, for
µ = 1 [12].

for an existing packet of the same source. If such a packet exists it is replaced with the new
arrival. Otherwise, the packet is placed at the end of the queue. The queue evolution can
be modeled as a discrete time Markov chain, where each state represents the packets in the
system. For more details we refer the reader to [45].

Numerical results

In [12] the performance of the three packet management schemes has been evaluated and
compared with some of the models discussed previously. Performance is measured with
respect to the Age of Information and the Peak Age of Information. For service rate µ = 1
we examine the average behavior of our performance metrics as a function of the arrival
rate λ.

In Figure 3.11, we plot the average AoI for the M/M/1/1, M/M/1/2, and M/M/1/2*
models versus ρ. The average age is monotonically decreasing for all the three schemes, and
the M/M/1/2* model outperforms the other two for the entire range 0 < ρ ≤ 1.5. When
λ = 0.6, the average age of the M/M/1/2* case is approximately 5% smaller compared to
the M/M/1/1 and M/M/1/2. At λ = 0.6 there is also a cross point where the ∆M/M/1/1
curve achieves smaller values than the ∆M/M/1/2 curve. This is due to the fact that as the
arrival rate increases the packet waiting in the queue becomes less useful and the absence
of buffering becomes a preferable option.

Figure 3.12 illustrates the average age for the M/M/1 using FCFS, M/M/1/2*, M/M/1
using LCFS with preemption, and M/M/∞ models. In the first model a packet is stored in
the queue if the server is busy and the next packet that receives service is the one at the
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Figure 3.12: Average age vs server utilization of the M/M/1, M/M/1/2*, and M/M/∞ queues, for µ = 1.

head of the queue. In the second model, at most two packets can be kept in the system;
one in the server and one in the queue, and the packet waiting for transmission can be
replaced with a newly arrived packet if any. In the third model, a packet arrival preempts
the packet currently in service, if any. In the fourth model we consider an infinite number of
servers which means that there is no queue and all packets are instantaneously served upon
generation. For λ� µ, the four models have similar behavior since the small arrival rate is
the one that determines the age at the destination node, that is, the larger the interarrival
time the smaller the effect of the respective model to the result. However, as the arrival
rate increases and specifically for ρ > 0.5, we observe that the ∆M/M/1 curve increases with
ρ due to backlog that causes queuing delay. Recall that for the M/M/1 the age approaches
infinity as ρ approaches 1. This effect is eliminated with the rest three schemes which
provide significant improvements in the average age. As ρ increases, the gap between the
∆M/M/1/2* and the ∆M/M/∞ curve increases as well. As λ→∞ the average age approaches
1/µ = 1 when preemption is allowed. This corresponds to a 50% reduction in minimum age
compared to the just-in-time lower bound. The M/M/∞ model serves every new arrival
immediately, hence more frequent transmissions lead to a more updated destination node.
However, this comes with the cost of wasted network resources due to packets rendered
obsolete as discussed in Section 3.4.1. Indicatively, for λ = 1.5 the performance of the
M/M/∞ model is approximately 53% better that the M/M/1/2*.

To illustrate the behavior of the packet management schemes with respect to the peak
age, Figure 3.13 shows the complementary cumulative distribution function for the peak
age obtained by the equations (3.68), (3.79) and (3.87). We consider service rate µ = 1,
and the arrival rates λ = 0.5 and λ = 1.3. For all the three models, the probability that the
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Figure 3.13: Probability that the peak age surpasses a threshold α vs threshold α for the M/M/1/1,
M/M/1/2, and M/M/1/2* queues, for λ = 0.5 and λ = 1.3 [12].

peak age surpasses a threshold α reduces for a larger arrival rate λ. The M/M/1/2* queue
results in smaller peak age over the entire threshold range. The M/M/1/2 model performs
better than the M/M/1/1 model for smaller arrival rates such us λ = 0.5, but has worse
performance for larger arrival rates such as λ = 1.3.

3.6 Summary

Continuing on the queue-theoretic model of age in this section we provided a host of results
for different queue disciplines and packet management techniques, treating age as a metric
to be optimized. Through these early works, the need for metrics based on age capturing
timeliness in a more tractable fashion became evident, and this led to the introduction of
Peak Age of Information (PAoI) which was also presented here. This understanding has
also led to spawn more metrics relevant to AoI, such as the Age Penalty, and the similar
Cost of Update Delay but also the Value of Information of Update which we will see in later
sections. In what follows we discuss how age can be minimized introducing rate control or
introducing packet deadlines, and finally how age can be jointly optimized with throughput
and delay.

4 Subsequent Works and Extensions
The previous section illustrated the potential of the AoI metric in a large scope of systems.
How to minimize the AoI at a destination depends on the topology, the characteristics of
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the network, and the available means to control it. There is a growing body of literature
that recognises this fertile ground and tries to extend the early works in the field either by
introducing new models of the medium or by controlling different parts of the system.

In this section, we first assume an a-priori knowledge of the server state and look at the
optimal rate control policy with respect to the freshness of the information at the destination.
In addition, we present a packet management mechanism that controls packets by attaching
a deadline constraint to them. It will be shown that the packet deadline in a system with
capacity two can outperform both the M/M/1/1 and M/M/1/2 systems without a control
mechanism. Furthermore, we present an optimization problem with different objectives such
as age, peak age, throughput or delay, and efficient algorithms to find the optimal policies
are discussed.

4.1 Rate Control Optimization

An approach to manage the timeliness of the transmitted information from a source to
a remote destination, is to assume perfect knowledge of the service state. With such a
knowledge, updates can be generated only when the server is not busy, as shown in Figure 4.1.
Thus, the waiting time W at the queue is eliminated and the system time T consists only of
the service time S. In contrast to the models presented until now, we assume that the source
is able to generate status updates on demand, thus, we control the Age of Information of
the system by considering the sampling to be a function of the service process.

s d

idle/busy

server

Figure 4.1: System model with feedback.

The just-in-time policy, meaning that, update i is generated as soon as update i − 1
finishes service, might seem the optimal policy. This policy was defined in [52] as the
zero-wait policy. Here, we illustrate that the zero-wait policy is not necessarily optimal with
respect to the average Age of Information of the system. This policy achieves the maximum
throughput and the minimum delay but is not the optimal with respect to AoI. Moreover,
we investigate the conditions under which the zero-wait policy is optimal.

In Figure 4.2, an example of the age process of the presented system model is depicted.
Once the service of update i is finished the source may wait a time interval Li ∈ [0,M ]
before extracting update i + 1 from the stochastic process under observation X(t). The
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Figure 4.2: Example of age evolution for the system model in Figure 4.1 [52].

variable M denotes the maximum waiting period allowed by the system. The service time
of update i is denoted by Si. The service process (S0, S1, . . . ) is modeled as a stationary
ergodic Markov chain with an uncountable state space and positive and finite mean E[Si].
The proposed modeling eliminates the memoryless property of the system and generalizes
the i.i.d. assumption of the service times holding in the previous sections. Later we will see
that the zero-wait policy is close to optimum when the service times are highly random.

Consider the definition of the time average AoI of a status update system in (2.7), and
the decomposition into disjoint geometric parts in (2.8). The areas Qi are calculated as

Qi =
∫ t′i

ti−1
(t− ti−1) dt−

∫ t′i

ti

(t− ti) dt
(a)
=
∫ Si+Li+Si+1

Si

t dt, (4.1)

where equality (a) follows from the fact that the time interval (t′i−1, ti) is well defined
in contrast with the basic system model of Figure 2.2. We rewrite the disjoint parts as
Qi = q(Si, Li, Si+1) where

q(s, l, s′) =
∫ s+l+s′

s
t dt. (4.2)

The objective of the status update system is to minimize the average Age of Information
by controlling the sequence of waiting times (L0, L1, . . . ). Let π

.= (L0, L1, . . . ) denote
a status update policy. Let Π denote the set of all causally feasible policies satisfying
Li ∈ [0,M ] for all i. The time interval Li is determined based on past realizations of the
service process (S0, S1, . . . , Si). The conditional distribution of (Si+1, Si+2, . . . ) based on
(S0, S1, . . . , Si) is available. Then, the stochastic optimization problem of minimizing the
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average Age of Information can be formulated as [52]

copt = min
π∈Π

lim
n→∞

sup E[
∑n−1
i=0 q(Si, Li, Si+1)]

E[
∑n−1
i=0 (Si + Li)]

(4.3)

s.t. lim
n→∞

inf 1
n
E
[
n−1∑
i=0

(Si + Li)
]
≥ Tmin,

where the expectation is taken over the service process (S0, S1, . . . ) for a given policy π;
Tmin is the minimum average waiting time of the source due to hardware and physical
constraints, hence M should exceed Tmin. Note that (S0, S1, . . . ) is stationary and ergodic
thus E[

∑n−1
i=0 (Li + Si+1)] = E[

∑n−1
i=0 (Si + Li)].

The problem in (4.3) belongs to a class of constrained semi-Markov decision processes
(SMDP) with a possibly uncountable state space, which is well-known for its difficulty. The
authors in [52] prove that there exists a stationary randomized policy that is optimal for
the problem in (4.3). Further, it is proven that there is an optimal stationary deterministic
policy for this problem. Finally, a low-complexity algorithm is developed to find the optimal
stationary deterministic policy that solves problem (4.3).

Consider two possible scenarios regarding the service time S. If Tmin ≤ E[S], the zero-
wait policy is the preferable choice, i.e. πzero-wait = (0, 0, . . . ). If Tmin > E[S], the minimum
average waiting time is E[l(S)] = Tmin − E[S], but the optimal policy may also add waiting
time such that E[l(S)] > Tmin − E[S].

The solution to problem (4.3) can be generalised to any measurable, non-negative,
monotonically increasing function of time. Considering age as a special case of such a
function and i.i.d. service times Si, leads to a simple solution that explicitly indicates
whether the optimal policy is the minimum wait or not. The trapezoid areas shown in
Figure 4.2 can be calculated as

q(s, l, s′) = 1
2(2s+ l + s′)(l + s′). (4.4)

Then, the expectation of q(s, l, s′) is given by

E[q(S, l(S), S′)] = E[12(S + l(S))2 + (S + l(S))S′]

= 1
2E[(S + l(S))2] + E[(S + l(S))] E[S′]. (4.5)

Then (4.3) can be reformulated as

copt = min
l∈L2(µS)

E[(S + l(S))2]
2E[(S + l(S))] + E[S] (4.6)

s.t. E [(S + l(S))] ≥ Tmin (4.7)
0 ≤ l(s) ≤M, ∀s ≥ 0,
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where µS is the probability measure of Si and the function l : [0,∞)→ [0,M ] belongs to
the Lebesgue space L2(µS) [47, Ch. 3], because∫ ∞

0
|l(s)|2 dµS(s) ≤

∫ ∞
0

M2 dµS(s) = M2 <∞. (4.8)

Lemma 4.1.1. The functional h : L2(µS)→ R defined by

h(l) = E[(S + l(S))2]
E[S + l(S)] (4.9)

is convex on the domain

dom h = {l : l(s) ∈ [0,M ],∀s ≥ 0, l ∈ L2(µS)}. (4.10)

Proof. See [52] and references therein.

The Karush-Kuhn-Tucker (KKT) theorem for infinite dimensional space and the calculus
of variations are used to obtain the following result.

Theorem 4.1.2 (Optimal solution of β minimum policy). The optimal solution to problem
(4.6) is

l(s) = (β − s)M0 , (4.11)
where (x)M0 = min[max[x, 0],M ] and β > 0 satisfies

E[S + l(S)] = max
(
Tmin,

E[(S + l(S))2]
2β

)
. (4.12)

Proof. See [52] and references therein.

Equation (4.11) implies (β)M+S
S = S + l(S). If Tmin ≥ E[(S+l(S))2]

2β , then the optimal
policy l(·) satisfies

E[S + l(S)] = Tmin ≥
E[(S + l(S))2]

2β , (4.13)

and the minimum average waiting time is E[l(S)] = Tmin −E[S]. If Tmin <
E[(S+l(S))2]

2β , then
the optimal policy l(·) satisfies

E[S + l(S)] = E[(S + l(S))2]
2β > Tmin, (4.14)

and the average waiting time is E[l(S)] > Tmin − E[S]. For the special case Tmin = 0,
constraint (4.7) is always satisfied and we have Tmin ≤ E[S]. By substituting Tmin = E[S]
into (4.13) and (4.14) we obtain the criterion on whether the zero waiting policy is optimal.

Finally, we compare the optimal policy provided by Theorem 4.2 with two “default”
policies for two models of the service processes. The substance of the result does not depend
on the distribution of the service time Si but the performance depends on the properties of
the service process. The two policies are the following:
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(a) (b)

Figure 4.3: Average age vs Tmin for i.i.d. (a) discrete service times and (b) log-normal distributed service
times [52].

• Constant wait: Each update is followed by a constant delay L before submitting the
next update with const = Tmin − E[S].

• Minimum wait: An update is followed by a delay given by the deterministic function
L = l(Si), where l(·) is given by (4.11) and β is chosen to satisfy E[l(S)] = Tmin−E[S].

When Tmin = E[S], both constant wait and minimum wait policies reduce to the zero wait
policy. Figure 4.3 shows the average Age of Information of the system as a function of Tmin
for i.i.d. (a) discrete and (b) log-normal distributed service times. In both plots, the constant
wait policy results in the largest AoI over all Tmin. When Tmin surpassed a certain threshold
the optimal policy meets the constraint (4.7) with equality. For small values of Tmin up to
that threshold, the constraint is not active and the minimum wait policy deviates from the
optimum. When Tmin surpassed that threshold the optimal policy meets the constraint (4.7)
with equality. Looking deeper into general functions and correlated service processes, it can
be shown that the zero-wait policy is optimal if the correlation coefficient between Si and
Si+1 is -1, or the service times are equal to a constant value or age is a constant function.

4.2 Packet Deadlines

Another interesting concept in the research of the AoI is that of packet deadlines [28].
Instead of using different queueing models to optimize AoI, a deadline is imposed on packets
waiting in the queue and they are dropped in case they are still waiting for transmission
once their deadline expires. Intuitively, longer deadlines lead to stale updates occupying the
system and unnecessarily outdated status information potentially arriving at the destination,
while a shorter deadline would mean that fresh updates are discarded without updating the
destination and reducing age.
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Figure 4.4: Example of queue evolution on time spent in each state.

For the analysis an M/M/1/2 queue is considered that can be described as a three-state
Markov chain. Each state of the Markov chain represents an empty system, a single packet
receiving service or a system with two packets, one in service and one in the queue. However,
assuming fixed deadline we lose the memoryless property of the system. Furthermore, the
steady state probabilities of the system depend on the deadline period and not just the
arrival and service times as in Subsection 3.5.

To derive the average Age of Information of the system, (3.52) is used. Recall that
the random variables Zi and Ti, denote the interdeparture and system time of update i,
respectively, refer to transmitted packets. Then, we need to calculate the effective arrival rate
λe and the E[ZT ] and E[Z2]. Before calculating these terms we present some preliminary
results of the queue in equilibrium.

Let p0, p1, and p2 be the steady state probabilities of the number of packets in the
system. Since classic results from queueing theory cannot be applied, a sample average
that converges to the stochastic average is used as follows. Let Jij be the duration of the
jth visit to the state with i packets, as shown in Figure 4.4. Let α(T ), β(T ), and γ(T ) be
the total number of visits to state 0, 1, and 2, respectively. Suppose that our interval of
observation is (0, T ). Then, the percentage of time spent in state 0, as T → ∞, is

p0 = lim
T →∞

∑α(T )
j=1 J0j

T

= lim
T →∞

∑α(T )
j=1 J0j∑α(T )

j=1 J0j +
∑β(T )
j=1 J1j +

∑γ(T )
j=1 J2j

. (4.15)

After calculations we have

p0 = π0E[J0]
π0E[J0] + π1E[J1] + π2E[J2] . (4.16)

where, πi is the percentage of visits to state i and E[Ji] is the average time spent in state
i. The expressions for the probabilities p1 and p2 are derived in the same manner. Then,
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applying a Markov chain analysis to the process of visits to state i, we obtain the equilibrium
distribution of visits

π0 = µ

2(λ+ µ) , π1 = 1
2 , π2 = λ

2(λ+ µ) . (4.17)

The Markov chain is shown in Figure 4.5.

Figure 4.5: The Markov chain of the number of packets in the system [28].

Next, we present the derivation of the average time spent in each state. The time spent
in state 0 is equal to the interarrival time, i.e.,

E[J0] = 1
λ
. (4.18)

The time spent in state 1 is equal to

E[J1] = P(Y < S)E[Y |Y < S] + P(Y > S)E[Y |Y > S]

= λ

λ+ µ

1
λ+ µ

+ µ

λ+ µ

1
λ+ µ

= 1
λ+ µ

. (4.19)

Packets are dropped from the system whenever the server is busy for a period longer than
the deadline, thus the time spent in state 2 is

E[J2] = 1
µ

(1− e−µD). (4.20)

Finally, the percentage of the time spent in each state is obtained as

p0 = µ2

µ2 + λµ+ λ2(1− e−µD) , (4.21)

p1 = λµ

µ2 + λµ+ λ2(1− e−µD) , (4.22)

p2 = λ2(1− e−µD)
µ2 + λµ+ λ2(1− e−µD) . (4.23)

Packets that receive service are those that don’t find a full system and are not dropped
due to the packet deadline. The effective arrival rate is λe = λ(1−p1e

−µD−p2). To calculate
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the first and second term in (3.52), we follow the approach in Subsection 3.5. That is, we
describe the event ψi−1 such that Zi and Ti−1 are conditionally independent. Conditioning
on whether the (i− 1)th packet leaves behind an empty system, we are able to calculate
the second moment of the interdeparture time as follows

1
2E[Z2

i ] = 1
2
(
P(ψi−1)E[Z2

i |ψi−1] + P(ψ̄i−1)E[Z2
i |ψ̄i−1]

)
= 1

2

(
µ

µ+ λ(1− e−µD)
2(λ2 + λµ+ µ2)

(λµ)2 +
(

1− µ

µ+ λ(1− e−µD)

) 2
µ2

)

= (µ(λ2 + λµ+ µ2) + λ3(1− e−µD))
λ2µ2(µ+ λ(1− e−µD)) . (4.24)

Next, the expectation E[Ti−1Zi] will be calculated using the partition (3.61). To char-
acterize the conditional distribution of the system time Ti−1 given the events ψi−1 and
ψ̄i−1, we write the system time of update (i− 1) as Ti−1 = Wi−1 + Si−1, where Wi−1 is the
waiting time and Si−1 is the service time of update (i− 1). The waiting time of a packet
is zero, if the system is empty and it is equal to the service time of the previous packet if
the server is busy. The remaining waiting time until the next departure is exponentially
distributed with mean 1/µ. Note that the waiting time of packet (i − 1) is independent
of future arrivals and therefore of the event ψi−1. Moreover, for the conditional expected
service time we need to consider the state of the system as a function of time. We refer the
reader to [28] for more details.

For infinitely large value of arrival rate λ the average age yields

lim
λ→∞

∆M/M/1/2D = 3
µ
−
(
D + 1

µ

)
e−µD. (4.25)

For infinitely large value of packet deadline D the average age yields

lim
D→∞

lim
λ→∞

∆M/M/1/2D = 3
µ
. (4.26)

This value is equal to the average age for the M/M/1/2 queue for infinitely large arrival
rate λ (3.78). Setting D = 0 results in ∆M/M/1/2D = 2

µ that is equal to the average age for
the M/M/1/1 queue for infinitely large arrival rate λ (3.66).

Figure 4.6 shows the average Age of Information for the M/M/1/2D queue as a function
of the packet deadline D, for service rates µ = 1 and µ = 2. The minimum age for each
arrival rate λ is indicated with 4. Observe that ∆M/M/1/2D initially decreases for a small
range of D and then increases with D toward an asymptotic value. For fixed D, as λ
increases, the age decreases since the destination is updated more often. The results show
that the deadline has a larger impact for higher λ. Furthermore, for µ = 2 the age is smaller
than µ = 1, and the deadline effect is more pronounced.
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Figure 4.6: Average age vs deadline of the M/M/1/2D queue, for µ = 1 (left) and µ = 2 (right) and various
arrival rates λ. With 4 are the minimum values, with ◦ the M/M/1/1 age and with × the M/M/1/2 age
[28].

If D = 0, the system is equivalent to the M/M/1/1 queue where no packets are kept
in the queue waiting for transmission. In addition, as the deadline goes to infinity the
system become equivalent to the M/M/1/2 queue. Therefore, the packet deadline scheme
can be seen as a way to transit between the M/M/1/1 and the M/M/1/2 queue. The results
indicate that the performance can be actually improved.

4.3 Optimizing Age, Throughput, and Delay

In [4], an information-update system is considered, where updates in form of packets
are stored in a queue and then are forwarded to a remote destination through multiple
servers, as shown in Figure 4.7. In this model, the status updates do not necessarily
arrive in the order of their generation times 4. Two fundamental topics are addressed (i)
Establishing age-optimality in a general policy space under an arbitrary arrival process
and (ii) Simultaneously optimizing multiple performance metrics, such as age, throughput,
and delay. Furthermore, one of the key outcomes of this work is that a setup with multiple
servers outperforms in terms of age, the setup of one single server under the same policy.

The authors prove that if the packet service times are i.i.d. exponentially distributed,
then for an arbitrary arrival process and any queue size, a preemptive last-generated
first-served (LGFS) policy achieves an age process that is stochastically smaller than any
causally feasible policy.

This implies that the preemptive LGFS policy minimizes many data freshness metric,
including time-average age, average PAoI, and the time-average age penalty. The intuition
is that the freshest update packets are served as early as possible in the preemptive LGFS
policy. The distribution of the age process of the preemptive LGFS policy is invariant over
all queue sizes.

4This is the first work that considered this case.
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Abstract—In this work, we investigate the design of
information-update systems, where incoming update packets are
forwarded to a remote destination through multiple servers (each
server can be viewed as a wireless channel). One important
performance metric of these systems is the data freshness at
the destination, also called the age-of-information or simply age,
which is defined as the time elapsed since the freshest packet
at the destination was generated. Recent studies on information-
update systems have shown that the age-of-information can be
reduced by intelligently dropping stale packets. However, packet
dropping may not be appropriate in many applications, such
as news and social updates, where users are interested in not
just the latest updates, but also past news. Therefore, all packets
may need to be successfully delivered. In this paper, we study
how to optimize age-of-information without throughput loss. We
consider a general scenario where incoming update packets do
not necessarily arrive in the order of their generation times. We
prove that a preemptive Last Generated First Served (LGFS)
policy simultaneous optimizes the age, throughput, and delay
performance in infinite buffer queueing systems. We also show
age-optimality for the LGFS policy for any finite queue size.
These results hold for arbitrary, including non-stationary, arrival
processes.

I. INTRODUCTION

The ubiquity of mobile devices and applications, has in-
creased the demand for real-time information updates, such as
news, weather reports, email notifications, stock quotes, social
updates, mobile ads, etc. Also, in network-based monitoring
and control systems, timely status updates are crucial. These
include, but are not limited to, sensor networks used in
temperature or other physical phenomenon, and autonomous
vehicle systems.

A common objective in these applications is to keep the
destination updated with the latest information. To identify
the timeliness of the updates, a metric called data freshness,
also called age of information, or simply age, was defined in
[1]–[4]. At time t, if U(t) is the time when the freshest update
at the destination was generated, age �(t) is �(t) = t�U(t).
Hence, age is the time elapsed since the freshest packet was
generated.

There have been several recent works on characterizing
the time-average age of different information-update policies
under Poisson arrival process, and finding policies with a small
time-average age [4]–[10]. In [4]–[6], the update generation
rate was optimized to improve data freshness in First-Come
First-Served (FCFS) information-update systems. To improve
the age, these studies also reduced the update generation rate,
which in turn sacrificed the system throughput. In [7], [8], it
was found that the age can be improved by discarding old
packets waiting in the queue if a new sample arrives. This can
greatly reduce the impact of queueing delay on data freshness.
However, many applications may not want to discard packets,

This work has been partially supported by grants from the National
Foundation CNS-1421576, Army Research Office W911NF-14-1-0368, and
Office of Naval Research N00014-15-1-2166.
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Figure 1: System model.

e.g., where the users are interested in not just the latest
updates, but also past news, in which case all packets must be
successfully delivered. In [9], [10], the time-average age was
characterized for Last-Come First-Served (LCFS) information-
update systems with and without preemption; and FCFS with
two servers under a Poisson arrival process. Applications
of information updates in channel information feedback and
sensor networks were considered in [11]–[13].

Another important problem is how to maximize data fresh-
ness in information-update systems. This involves jointly con-
trolling both the generation and transmission of packet updates
[12]–[14]. An information update policy was developed in
[14], which was proven to minimize the time-average age and
time-average age penalty among all causally feasible policies.
In this setting, a counter-intuitive phenomenon was revealed:
While a zero-wait or work-conserving policy, that generates
and submits a fresh update once the server becomes idle,
achieves the maximum throughput and the minimum average
delay, surprisingly, this zero-wait policy does not always
minimize the age. This implies that there is no policy that
can simultaneously minimize age and maximize throughput, if
the generation and transmission of update packets are jointly
controlled.

In this paper, we consider an information-update system
which enqueues incoming update packets and forwards them
to a remote destination through multiple servers, as shown in
Fig. 1. In this setting, the updates are generated exogenously
to the system, which is different from [14]. We aim to answer
the following questions: How to establish age-optimality in a
general policy space and under arbitrary arrival process? Is
it possible to simultaneously optimize multiple performance
metrics, such as age, throughput, and delay? To that end, the
following are the key contributions of this paper:

• We consider a general scenario where the update packets
do not necessarily arrive in the order of their genera-
tion times, which has not been considered before. We
prove that, if the packet service times are i.i.d. expo-
nentially distributed, then for an arbitrary arrival process
and any queue size, a preemptive Last-Generated First-
Served (LGFS) policy achieves an age process that is
stochastically smaller than any causally feasible policies

2016 IEEE International Symposium on Information Theory
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Figure 4.7: The system model of [4], comprising one source, m servers, and a remote destination.

Regarding the age penalty, introduced in [52], the authors define an age penalty function
to model the level of “dissatisfaction” due to data staleness or the “need” for a new
information update. This function is a general non-decreasing function, that depends on
specific applications. Note that the Cost of Update Delay (CoUD) metric introduced in [36],
which will be outlined as a recent work in Section 6, could serve as an alternative measure
of age penalty.

If the packet service times are i.i.d. exponentially distributed across time and servers,
then for all packet generation and arrival times, and for the case of infinite buffer size the
preemptive LGFS policy is throughput-optimal and mean delay-optimal among all the
causal policies.

The plots in Figure 4.8 present the time average age versus the server utilization ρ for
the scenario where five servers are available. A first comment is that the age performance
for each policy is better than the case with one server because of the diversity.

The preemptive LGFS policy achieves the best age performance among all the considered
policies. As mentioned also earlier, the age performance of the preemptive LGFS policy is
the same for any queue size B.

However, the age performance of the non-preemptive LGFS policy and the FCFS policy
depends on the queue size B when there are multiple servers. Furthermore, in case of FCFS
policy with B =∞, the average age is increasing rapidly when the traffic intensity is high.
The reason behind this is the increased congestion in the network leading to a delivery of
stale packets. Moreover, in case of th e FCFS policy with B = 10, the average age is high
but remains bounded at high traffic intensity. This is because a fresh packet has a better
opportunity to be delivered in a relatively short period compared with FCFS policy with
B =∞.
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Figure 4: Average age versus traffic intensity ⇢ for an update
system with m = 5 servers and queue size B.

V. CONCLUSION

In this paper, we considered an information-update system,
in which update packets are forwarded to a destination through
multiple network servers. It was showed that, if the packet
service times are i.i.d. exponentially distributed, then for any
given arrival process and queue size, the preemptive LGFS pol-
icy simultaneously optimizes the data freshness, throughput,
and delay performance among all causally feasible policies.
We will extend these results to more general system settings
with general service time distributions.

APPENDIX A
PROOF OF LEMMA 3

Suppose that a packet is delivered in policy P which has a
time stamp ↵̂l,P . By coupling, a packet is delivered in policy
⇡ at the same time, which has a time stamp ↵̂l,⇡. Hence, we
have

Û 0
P = ↵̂l,P � ↵̂l,⇡ = Û 0

⇡, (11)

which holds for any queue zise B � 0. Invoking the definition
of the system state, we can obtain

↵̂0
i,P = Û 0

P , i = 1, . . . , l � 1,

↵̂0
i,⇡ = Û 0

⇡, i = 1, . . . , l � 1.
(12)

In policy P , if the queue is empty, then one server will be
idle after the packet is delivered (i.e., served). Otherwise, if
there exist packets in the queue, one of these packets will be
assigned to the available server. Because policy P follows a
preemptive LGFS principle, the time stamp of this assigned
packet must be smaller than ↵̂l,P , and hence the packet is
stale. In both cases, we will have

↵̂0
l,P = Û 0

P ,

↵̂0
i,P = ↵̂i,P , i = l + 1, . . . , m.

(13)

We consider two cases for policy ⇡.
Case 1: After the packet delivery, the queue is empty or the

packet which will be assigned to the server is outdated. In this
case, similar to (13), we have

↵̂0
l,⇡ = Û 0

⇡,

↵̂0
i,⇡ = ↵̂i,⇡, i = l + 1, ..., m.

(14)

Combining this with (7), (11), (12) and (13), we can obtain

↵̂0
i,P = Û 0

P � Û 0
⇡ = ↵̂0

i,⇡, i = 1, . . . , l,

↵̂0
i,P = ↵̂i,P � ↵̂i,⇡ = ↵̂0

i,⇡, i = l + 1, . . . , m.
(15)

Case 2: After the packet delivery, the packet which will
be assigned to the server is not outdated. Assume this packet
has a time stamp h. Without loss of generality, let us assume
that h = ↵̂0

k,⇡. This packet has three possible scenarios under
policy P : (i) This packet is preempted by a fresher packet and
stored back in the queue or a fresher packet is delivered under
policy P . Thus, this packet is outdated regarding to policy P .
Hence, we have ↵̂0

k,P � ↵̂0
1,P � h = ↵̂0

k,⇡. (ii) This packet is
already delivered in policy P , then ↵̂0

k,P � Û 0
P � h = ↵̂0

k,⇡.
(iii) This packet is being processed under policy P . Without
loss of generality, let us assume that h = ↵̂0

n,P . We must have
n  k. Otherwise, policy ⇡ would have n � k fresh packets
that do not exist under policy P , which contradicts the fact that
the arrival process is fixed for all policies and that policy P is
preemptive LGFS. Hence, we have ↵̂0

k,P � ↵̂0
n,P = h = ↵̂0

k,⇡.
As a result, for all these cases we have

↵̂0
i,P � ↵̂0

i,⇡, i = 1, . . . , m. (16)

Hence, (8) holds for any queue size B � 0, which complete
the proof.
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Figure 4.8: Average age vs server utilization ρ, for five servers with queue size B [4].

4.4 Summary

In this section we discussed how age can be minimized introducing rate control or introducing
packet deadlines, and finally how age can be jointly optimized with throughput and delay.
In what follows, the age metric is being treated as a tool to address different areas. Clearly
the areas discussed are ones that have already begun to be explored.

5 Age as a Tool
This section departs from modeling and characterization of AoI and provides directions
on how to apply the notion of AoI in different areas. Although the notion of AoI has
only recently started evolving, there has already been a number of works that study its
application as a tool. Clearly, this new concept can be applied towards achieving a wide
range of objectives in communication systems that deal with time critical information while
having limited resources. The range of possibilities may become more apparent to the reader
in the next section where we will present the latest contributions in the field that cover an
extended space.

5.1 Channel State Information

In cellular networks, each base station (BS) needs to estimate the channel responses from
the user equipments (UEs) that are active in the current coherence block. The channel
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Figure 5.1: Periodic reports of CSI with period τ . The CSI is available after an interval δ [13], [14].

responses are utilized by the BS to process the uplink and downlink signals. In practice,
these values need to be estimated regularly thus, they add a non negligible overhead to the
system. The knowledge of the current channel response realizations is the channel state
information (CSI). If the uplink and downlink are separated in frequency, for example using
a frequency division duplex (FDD) protocol, i.e. the respective channels are different thus,
we can not rely on reciprocity.

In non-reciprocal wireless links, the transmitter knows the current channel state through
the CSI feedback sent from the receiver. In this case, the available information at the
destination has aged over time, affecting the efficiency of the communication. The channel
information ageing is caused by multiple factors such as (i) measuring times, (ii) trans-
mission delay, (iii) processing time required to decode and estimate the channel quality,
(iv) processing time to run adaptation functions, (v) frame times, and (vi) the interval
between consecutive reports from the UE. In [13] and [14] the factors (i)-(v) are collectively
represented by a random variable that captures the time elapsed from the generation up to
the reception of the CSI. Factor (vi) is denoted by τ . The case of deterministic τ corresponds
to a system with periodic feedback, while the case of random τ corresponds to a system
with aperiodic feedback. In current standards such as Long Term Evolution (LTE) both
feedback modes are supported [Ch. 8, 49]. Figure 5.1 illustrates the system with periodic
feedback that is the subject of recent studies.

Applying this setup to the AoI framework discussed in the previous sections we are
interested in the effect of outdated CSI on the performance of feedback links and protocols.
In [13] and [14] utility functions are used as a general performance metric that accounts
for various scenarios and includes the cost of feedback. Thus, the tradeoff between utility
and frequency of reports can be characterized. As a first step, the channel in these works is
modeled as a Finite State Markov Channel (FSMC) with two states representing the fading
conditions, one good and one bad, yielding tractable analytic results.

Details regarding the probability of error on channel estimation and the proposed utility
function can be found in [13] and [14]. For very large values of the feedback cost the utility
value decreases as the frame duration τ increases. For very small values of the feedback
cost, decreasing τ leads to a decrease in the utility value. Otherwise, we should expect an
optimal operation point with respect to τ . In general, the higher the cost, the smaller the
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utility value. Results on Rayleigh fading channels indicate that the cost-utility tradeoff is
more prominent for smaller values of Doppler shift, and the degradation of the utility value
with the CSI age is more severe for high values of Doppler shift.

CSI for wireless networks with reciprocal channels

The work in [34] considers theoretical bounds and protocols to estimate and disseminate the
global CSI in wireless networks with reciprocal channels. The networks that are considered
in that work are assumed to be fully connected. The term global CSI is to capture that
each node maintains its own table of estimates for all the channels in the network, for
example in an N -node wireless network there are L = N(N − 1)/2 channels. The nodes
obtain estimations of the channels to which they are not directly connected via CSI
dissemination. Nodes disseminate CSI by including one or more CSI estimations in each
packet transmission. Thus, the other nodes can learn the states of channels to which they
are not directly connected. Each node in the network directly estimates the N − 1 channels
to which it is directly connected and estimates the remaining L−N + 1 channels in the
network by collecting the disseminated CSI. The global CSI can be utilized by the nodes
in the network in order to allow them to adapt their roles or their operations dynamically
over time, such as serving as a relay at one time point. In [34] the case that CSI errors are
caused by time-variation and staleness is considered, i.e., the time elapsed from when the
time-varying channel was estimated and the current time. In general, there is a deterioration
of performance with respect to perfect CSI knowledge as CSI is ageing. The authors in
that paper developed a general framework for quantifying the staleness of global CSI in
wireless networks. The developed framework departs from the queueing theoretic analysis
that is dominant, so far, in the works considering AoI. Bounds on the minimum achievable
CSI staleness throughout a network are provided. In addition, CSI dissemination protocols
are developed, for which performance evaluation in terms of the maximum and average
staleness is provided. Since each node maintains its own global CSI and fully connected
networks are considered, the total number of estimates scales as O(N3), thus, global CSI
can be feasible for reasonably sized networks.

Furthermore, it is considered that each packet consists of the overhead, the data, and the
disseminated CSI information. Denoting by D the number of words that describe the data
and the overhead, and M the number of channel estimates, then the total packet length is
P = M +D words. The term word is a general time unit representing the amount of time
required to transmit a single CSI estimate. The authors proved that the maximum staleness
is lower bounded by L(D + 1) for the case where only one CSI estimate is disseminated
by each packet, i.e. M = 1. Similarly, a lower bound on the average staleness is given by
N3−3N2+8N−8

4N (D + 1). We refer the reader to [34] for more details and general results.
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Figure 5.2: System model with an energy harvesting source [2].

5.2 Energy Harvesting

Consider the system model in Figure 5.2, consisting of a source - destination communication
system with energy harvesting capability at the source. The time-varying availability of
energy and battery constraints at the transmitter can limit the sampling rate at the source.
Therefore, it is of interest to investigate how a stochastic energy harvesting system affects
the AoI at the destination and to find the optimal policy.

The minimization of AoI under such considerations was studied in [2]. Consider the
energy harvesting process H(t) as the total energy harvested over time [0, t]. The number
of status updates that can be served depends on H(t). In the continuous time setup of the
problem, the sequence of the extracted samples (i.e. status updates) should be selected
to minimize the energy-constrained average AoI. The discrete time setup of the problem
accounts for the state of the source that is either busy or idle, hence we have a binary
decision problem at each time slot. Apart from the stochastic energy arrival process, another
difference of this work compared to previous studies is the assumption of instant transmission
of packets. A problem formulation that encounters transmission delays still needs to be
determined. In this setup, the authors derive an offline solution that minimizes the time
average AoI for an arbitrary energy replenishment profile, using a discrete time dynamic
programming formulation. It is also found that the expected value of the current age as well
as the current energy level at the transmitter is sufficient information to generate an optimal
threshold policy. An effective online heuristic, named Balance Updating (BU), achieving
performance close to an offline policy is also proposed. Simulations of the policies indicate
that they can significantly improve the age over greedy approaches. Finally, the authors
consider an extension of the previous formulation for stochastically generated updates.

Energy harvesting constraints are also considered in [56], where in contrast to [2] the
randomness is on the service times and not on the energy arrival process. A complete
representation of an energy harvesting system with a minimum AoI objective would include
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the age process ∆(t), the available energy at the source H(t)−U(t), where U(t) is the energy
consumption process, and the energy harvesting process H(t). An optimal rate control
policy would use this information to make the optimal decisions on the interarrival times of
status updates. Such policies can be complex, even under simple harvesting assumptions.
However, under the ergodicity assumption for the energy harvesting process,

lim
t→∞

H(t)/t = η, (5.1)

follows a simpler approach that uses averaging [56]. From (5.1) and the arrival rate in (2.10)
the condition λ < η is obtained. Managing the average energy consumption is sufficient
since in a sufficiently large battery removes the need for precise energy management. Then,
the optimal rate control policy of this work assuming knowledge of the server state has
been generalized and presented in Section 4.1. Parameter β of Theorem 4.2 can be chosen
such that λ = η − ε, for arbitrarily small ε > 0.

The following two works have been presented in the time this volume was being put
together and are thus, only briefly outlined.

First, [3] addresses the continuous time problem of optimizing when status updates
should take place such that the average Age of Information will be minimized for a given
energy harvesting profile. The online problem, where the energy profile is a stochastic process
with known statistics is also investigated within a dynamic programming formulation. The
key outcome is that tracking the expected value of the current age (a linear operation),
together with the knowledge of the current energy level at the sender side is sufficient for
generating an optimal threshold-type policy.

Second, [55], investigates a scenario where a sensor continuously monitors a system
and transmits status updates to a destination. The sensor stores the harvested energy in
a battery, and three cases are considered regarding the battery size, infinite, finite, and
battery of size one. The authors design an optimal status update policy that minimize the
long term average AoI. For the infinite battery scenario, a best-effort uniform status update
policy is shown to be optimal. For the finite battery scenario, an energy-aware adaptive
status update policy is asymptotically optimal, when the battery size goes to infinity. When
the battery size is one, a threshold based status update policy is proposed and it is proved
to be optimal.

In Section 6.2, we also outline work [1] that treats energy harvesting, where the commu-
nication model departs from single-hop.

5.3 Scheduling

Link scheduling is a fundamental problem in wireless communications. The problem has
been widely studied in the context of access coordination. A subproblem of it, the so called

56

The final version of record of this article is published in: 
Antzela Kosta, Nikolaos Pappas and Vangelis Angelakis (2017),  
"Age of Information: A New Concept, Metric, and Tool",  
Foundations and Trends® in Networking: Vol. 12: No. 3, pp 162-259. 
http://dx.doi.org/10.1561/1300000060 



link activation problem, aims to determine links that can be simultaneously active in a
shared channel. The optimal scheduling policy is usually governed by an objective related
to some cost criterion. The most common performance objectives have been those of the
maximum throughput or the minimum completion time for all the links.

The notion of AoI opens a new research direction for optimal scheduling, in particular
because minimization of the completion time leads in general to suboptimal solutions in
terms of AoI. The authors of [18] propose a novel approach of optimizing the transmission
scheduling with respect to age. The system model consists of a set of source-destination
pairs, or links, that share a common medium. Given the sets of packets residing at the
sources, the task is to solve the minimum age scheduling problem (MASP), for which a
schedule consists of activation of link subsets and the sequence of the activations. In addition
to proving the NP-hardness of MASP, an integer linear programming (ILP) is provided
for performance benchmarking. Moreover, a suboptimal but fast algorithm is provided. A
similar problem is studied in [17]. There, the objective is to minimize the maximum Peak
Age of Information, to address both information freshness and fairness among the sources.

As with the case for energy harvesting, works that have appeared in the time this volume
was being prepared are briefly outlined below.

The minimum-time link scheduling problem for emptying a wireless network with
deadlines is considered in [19], in which fundamental results of optimality characterization
for arbitrary rate region have been derived. The authors demonstrate how link deadlines
can be equivalently viewed as modifications of the rate region, and derive an optimization
formulation that incorporates deadlines without the need of modeling the transmission
sequence explicitly.

The work in [59] considers scheduled access and slotted ALOHA-like random access.
Under scheduled access the nodes take turns and they get feedback on whether a transmitted
packet was received successfully by the sink. A node may transmit more than once to
overcome channel uncertainty. For the slotted ALOHA-like access scheme, each node
attempts to transmit in every slot with a given probability. For the scheduled access and
the slotted ALOHA-like schemes AoI is derived. In particular, for the slotted ALOHA-like
access, an approximation on transmission probabilities that minimize the AoI is presented.

The work in [21] considers a broadcast network, where many users are interested in
different pieces of information that should be delivered by a base station. The paper focuses
on long-run average Age of Information and shows that an optimal scheduling algorithm is a
simple stationary switch-type. That is, given the age of all other users, an optimal decision
for a user is based on an age threshold. The authors leverage an infinite state Markov decision
process; however considering practical cases, a sequence of finite state approximations is
proposed and shown to converge. An optimal offline and an online scheduling algorithm are
given; the latter does not require arrival statistics for the problem setup investigated.

In [25], the authors consider an unreliable broadcast network, where a base station

57

The final version of record of this article is published in: 
Antzela Kosta, Nikolaos Pappas and Vangelis Angelakis (2017),  
"Age of Information: A New Concept, Metric, and Tool",  
Foundations and Trends® in Networking: Vol. 12: No. 3, pp 162-259. 
http://dx.doi.org/10.1561/1300000060 



sends updates to a set of clients and formulate a discrete-time decision problem to find
a scheduling policy that minimizes the expected weighted sum AoI of the clients in the
network. Results presented show that a Greedy Policy, which transmits the packet with the
highest current age, is optimal for the case of symmetric networks.

In [24] the authors outline the inefficiency of conventional approaches in maintaining
fresh information updates of multiple continuous flows, and show the critical value of both
age and interarrival times. They develop a new scheduler, which can operate regardless of
knowledge of arrival rates, and accounts for both age and interarrival times of incoming
packets. Upper and lower age performance bounds are provided. Analytical results were
obtained for heavy-traffic conditions, however numerical outcomes also support the proposed
scheduler even in lightly-loaded conditions.

Here we outline the work in [4] which is treated in Subsection 4.3 and the work in [5]
which is treated in Subsection 6.2 to cover all existing works in scheduling to the best of
our knowledge.

5.4 Summary

In this section we chose to close the discussion of the age with three areas where AoI has
been utilized as a tool to deliver novel solutions. We remind once more, at this point, that
the discussion depth of different works is varying in this volume, for reasons having to do
even with the freshness of the work. Indeed age is a very fast evolving topic of research and
pausing to account for past works is bound to yield non-equal treatment. Clearly, we chose
to list some works here that have been presented, mostly in conferences, in the last few
months. The following section is entirely dedicated to such works, for which we provide also
a classification into different areas of application.

6 Latest Contributions
In the preceding sections we reviewed in some detail the first wave of research that followed
the introduction of the concept of age which have appeared between 2011 and 2017. The
explosive growth of work on this concept that ensued since then has led to approximately
50 papers, published between 2011 and today, that have explored an amazing diversity of
topics in which age plays a role. In this section, we offer a brief review if not a mere outline,
of most of this work.

6.1 Effect of Errors

One common assumption in most works until 2016 is that the status update delivery is
always successful. We list here a set of recent papers that take into account the case of
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imperfect packet transmission. The first work addresses transmission policies considering
PAoI in an M/M/1 queueing system with packet delivery errors. The second work leverages
transmission of coded updates over the binary erasure channel. The third work examines
preempting or dropping an update in a buffer-less system where transmission takes place
over an erasure channel. The fourth work considers schemes utilizing the correlation in
source update messages to transmit differential information to the destination. The fifth
work addresses a data protection scheme examining random linear coding versus timely
delivery for updates over erasure channels.

• In [8], the authors consider the Peak Age of Information (PAoI) in an M/M/1 queueing
system with packet delivery errors. They consider two policies: (i) the last-come-first-
served (LCFS) scheduling and (ii) to keep transmitting the most recent packet upon
reception by retransmissions. Exact expressions for PAoI for both policies are derived.
Both policies eliminate the queueing delay and they can ensure a small PAoI.

• The work in [60] investigates the transmission of coded updates through a binary
erasure channel to a destination by using AoI. More specifically, the average age is
derived for an infinite incremental redundancy (IIR) system in which the transmission
of a k-symbol update continues until k symbols are received. Then, the authors
compare the IIR system with a fixed redundancy (FR) system. In the FR system,
an update is transmitted as a packet with n symbols and the packet is successfully
received if and only if at least k symbols are received, otherwise it is discarded. For
the case of single destination, the authors show that the FR system can perform
as well as the IIR system, however, as the number of destinations increases the FR
system outperforms the IIR system.

• In [41], a system with randomly generated updates to be transmitted to a destination
is considered. However, only a single update can be in the transmission service at
a time. Thus, the source needs to prioritize between two transmission policies, the
preemption of the current update or discarding the new one. The authors consider
Poisson arrivals and general service time, which is referred as an M/G/1/1 queue.
They study the average age and the optimal update arrival rate for these two schemes
under general service time distribution. Then, they apply the derived results on two
scenarios where the updates are transmitted through an erasure channel. Two cases
are considered for the transmission, (a) an IIR Hybrid ARQ (HARQ) system and
(b) a FR HARQ system. It is shown that in both schemes the best strategy is to not
preempt. In addition, it is also proven that IIR is better than FR regarding AoI.

• In [7], the authors consider data transmission schemes for a single source, sending
periodic updates to a receiver through an unreliable channel. Two schemes are
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considered that exploit the correlation in the source messages in order to transmit
differential information to the receiver. In the first scheme, the source by utilizing
the receiver feedback, can decide to send among the differential and the actual
information at each transmission opportunity. On the other hand, in the second
scheme without feedback, the source periodically transmits the actual information,
interspersed with differential messages. It is observed that the differential encoding
improves the timeliness performance, when there is feedback at the receiver.

• The authors in [46], consider the tradeoff between data protection and timely delivery
of collected data in the context of real-time status updates over erasure channels. The
authors consider random linear coding for the transmission and they show the effect
of coding parameters on the performance.

6.2 Beyond Single-hop Communication

Here we list six recent works published in 2017 that address multiple communication links
between the source and destination.

The first paper addresses minimization of AoI in general multihop networks. The
second considers two fixed-delay hops with energy harvesting. In 5.3 we have included
for completeness of the scheduling treatment there four more works. Broadcasting and
scheduling over unreliable channels is addressed in [25]. The wireless broadcast network
case is explored in [21]. A scheduler that addresses multiple continuous flows accounting
AoI and interrarival times is presented in [24]. Finally, towards emptying a wireless network
with deadlines we outline [19].

• The first attempt to address multi-hopping for status update transmission is made
in [5], where the authors minimize the AoI in general multi-hop networks. The key
outcome of this work is that there are simple policies which can achieve optimality of
the age processes under arbitrary network topologies. If update packets do not enter
the network in order, the last-generated first-served (LGFS) policy achieves smaller
age, assuming exponentially distributed packet transmission times. Furthermore, for
arbitrary distributions of packet transmission times, the non-preemptive LGFS policy
minimizes the age processes at all nodes in the network among all non-preemptive work-
conserving policies. Age-optimality here can be achieved even if the transmission time
distribution differs from one link to another, i.e., the transmission time distributions
are heterogeneous.

• In [1], the authors propose age optimal policies for energy harvesting two-hop networks
assuming fixed transmission delays. They show that the optimal policy is that the
relay’s data buffer should not contain any packets waiting for service and the source
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should send an update to the relay when it is ready to forward. This allows for
treatment of the source and relay nodes as one combined node communicating with
the destination node, and reduces the two-hop problem to a single hop one. Thus,
the single hop problem was solved by balancing the inter-update times to the extent
allowed by energy arrival times and transmission delays.

6.3 Other Topics

Aside from the two large classes we already categorized the recent works, there are more
works published of late and we list them here, reminding the reader that we cover works
up to mid-2017. The first two works explore fundamental relations between AoI and the
related metrics of PAoI and VoUI. The third work changes the update stochastic flow
from the source to the destination to a demand-based “pull” scheme. The fourth work
addresses streaming source coding for optimal blocklength. The fifth work address QoE in
cloud gaming optimizing for age of video frame updates. The sixth work addresses global
CSI estimation and dissemination, for fully connected wireless networks with reciprocal
channels. With respect to topics related to energy harvesting we refer the reader back
to Subsection 5.2, where we have already outlined two works ([3] and [55]) that recently
appeared.

• In [23] the stationary distribution of the AoI, is studied and an invariant relation
among the distributions of the AoI, the Peak AoI, and the system delay is derived. This
relation holds for a wide class of information update systems, including both FCFS
and LCFS disciplines. Furthermore, for the stationary ergodic FCFS GI/GI/1 queue,
the paper gives the stationary distributions of the AoI and the peak AoI in terms
of the system delay distribution. Finally, explicit formulas for the Laplace-Stieltjes
transforms (LSTs) of the stationary distributions of the AoI and the peak AoI, as well
as the first two moments of AoI, in the stationary FCFS M/GI/1 and GI/M/1 queues
are given.

• The work in [36] aimed to expand the concept of information ageing by introducing
the Cost of Update Delay (CoUD) metric to provide a flexible measure of having
stale information at the system monitor. The work further introduced the metric
of Value of Information of Update (VoIU) capturing the reduction of CoUD upon
reception of an update. Small CoUD corresponds to timely information while VoIU
represents the impact of the received information in reducing the CoUD. Therefore,
in a communication system it would be highly desirable to minimize the average
CoUD, and at the same time maximize the average VoIU. To this end we obtain the
average VoIU for the M/M/1 queue and discuss how the optimal server utilization
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with respect to VoIU can be used combined with the CoUD average analysis. A key
in the flexibility of these notions is the potential for usage of non-linear functions to
represent them, giving ground to establish differentiated service classes in monitoring
systems.

• The work in [48] introduced an updates “pulling model”, where the destination requests
the source for updates through a request replication scheme leveraging multiple servers.
The authors consider a Poisson updating process and also, they assume exponentially
distributed response time. A closed-form expression of the expected AoI at the user’s
side is derived and the optimal solution is obtained. In the AoI minimization problem
under the pull model, replication schemes exhibit a unique property and capture a
novel tradeoff between different levels of information freshness and different response
times across the servers. The key outcome is that waiting for more than one response
can be exploited to minimize the expected AoI at the user’s side.

• The authors in [64], consider backlog-adaptive streaming source coding systems, the
status age analysis is applied and it is assumed that the state of the channel interface
is known at the encoder. It is shown that the average age can be reduced by allowing
the encoder to dynamically adjust the blocklength. In addition, a scheme that enables
the encoder to constrain the maximum allowed blocklength is introduced, this scheme
improves the age performance. This work extends the authors’ previous work in [63]
where age analysis was applied to a streaming coding system using fixed-to-variable
lossless coding schemes.

• The work in [62] introduces a model for cloud gaming systems5 in order to optimize the
timeliness of video frames based on an AoI metric. The authors provide a quantified
representation of the user-perceived quality of experience of latency-sensitive real-
time cloud-assisted gaming. In cloud gaming systems, is important to ensure “timely”
updates of the players thus, AoI was employed to characterize the system performance.

• The work in [34]6, develops a general framework to quantify the staleness of global
CSI in wireless networks. This framework considers the number of channel states
disseminated in each packet and the additional data and overhead in each packet which
contribute to the staleness of the CSI. In addition, CSI dissemination protocols are
developed and their performance is evaluated by quantifying the maximum and average

5Cloud gaming, allows direct, on-demand video streaming of a game onto computers, consoles and
mobile devices. The game itself is stored, executed, and rendered on a remote server and the user action
results are streamed directly to their device(s) over the network.

6Notice that this work was already treated in Subsection 5.1, but is presented here in brevity, for
completeness of this section.
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staleness as a function of the number of nodes in the network and the composition of
each packet.

6.4 Summary

As these lines are written there is intense activity in the community on the many questions
that have arisen in the cause of the last six years concerning AoI. Literally, one would have
to generate “updates” of this volume very few months to capture the ongoing research
and the accompanying innovations. Instead, we close this section by pointing out that
in the next, and final, section of this volume we present our thoughts on some of the
fundamental implications of the concept of age as a guide to possible future investigations.
Should the reader need a timely updated repository of publications on and about age,
Prof. Y. Sun, maintains, to our knowledge, the most well kept at his professional website:
http://www.auburn.edu/~yzs0078/AoI.html.

7 Future Directions and Open Questions
There is an immense wealth of possible problems associated with the notion of timeliness
as captured by age, in the form of either a performance index, a tool, or even a concept.

The importance of age as a performance index is primarily based on the desire to predict
accurately. So, the notions of Effective Age, Value of Information of Update, etc. are related
to minimizing age. In turn, this observation clearly connects to fundamentals aspects of
information of the signal. Thus it leads naturally to connections with information theoretic
questions, sampling theory, compression, and causal signal reconstruction.

In addition, age as a tool can play a role in formulations of caching problems, the
IoT, social networks, and in several other applications. Finally, age may have a critical
role in dynamic control systems, specifically, in the context of networks of autonomous
vehicles and control (when multiple sources are involved). Similarly, in machine learning and
distributed inference, which is the theoretical underpinning of autonomous vehicle control,
the relative values of the age of signals that are received and that lead to enabling actuators
to implement actions are of crucial importance. That is, whether the age of source 1 is
less than or greater than that of source 2 (observing a different sensor) can make a huge
difference as far as the consequences of control strategies.

7.1 Connection with Information Theory

Connection of Age of Information of a source with entropy and mutual information will be
of importance and also it can lead to interesting studies regarding the predictability of a
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source. In addition, differential transmission schemes based on feedback or knowledge of
the source or the destination can decrease the amount of transmitted information inside a
network without sacrificing the accuracy of the knowledge. This is becoming quite important
since networks are rapidly growing in size and congestion levels are also increasing.

The need to deliver status updates, messages in general, in a timely manner prohibits
the use of long codewords. Thus, the application of coding strategies with low latency is of
major importance. In addition, when messages are transmitted through unreliable wireless
channels, longer codewords can offer smaller probabilities of failure but longer latency. The
derivation of optimal codeword length for minimizing the average AoI is an important
research direction that relates to recent advances in information and coding theory.

In addition to the connections of AoI with information theory, age is a perfect example of
introducing context in Information, Communication, and Control Systems. As mentioned
in the Shannon lecture at the IEEE ISIT 2017, by D. Tse, part of which can also be found
in the IEEE IT Newsletter September 2017 [53], the context in message transmission has so
far been overlooked. In [50] is was stated that

“The fundamental problem of communication is that of reproducing at one point either
exactly or approximately a message selected at another point. Frequently messages have
meaning... These semantic aspects are irrelevant to the engineering problem.”

In addition to setting the strict limits on which the development of information theory
was based, Shannon’s quote above eliminated an important part of the communication
process. Although “meaning” and “content” of information still elude a formal incorporation
into the theoretical investigation of the communication process, “context” is not. That
is, communication may occur in order to control or to compute or to infer and not just
to reproduce messages chosen at the source. Age of Information is a perfect example of
context introduction. In fact, depending on the context age can be modified to migrate
to an Effective Age, different for each application. This we view as an important future
challenge.

7.2 Connection with Signal Processing

As discussed earlier, making decisions in networked control and monitoring systems is based
on the timeliness of the delivered information. Thus, a fundamental part of sampling of the
source signal becomes its timeliness requirement. Unavoidably, this draws a clear connection
between the concept of AoI and the theory of sampling for signal reconstruction. Moreover,
in the same context, it is important to reconstruct correctly source messages from received
samples, that have been delivered through an erroneous/noisy channel. This problem and
its connection with AoI is a first direction to be considered that can lead to significant
results.
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7.2.1 Sampling and Remote Estimation

From the first publication in this direction [51], it was proven that for a Wiener process
sampling that minimizes AoI is not optimal for prediction. Rather, the optimal sampling
policy is a threshold-based one. However, as proven in that work, if the sampling times are
independent of the observed Wiener process, the optimal sampling problem reduces to an
AoI optimization problem. A step further is to consider more realistic signal models, such
as, for example, the Ornstein–Uhlenbeck process [54]. The Ornstein–Uhlenbeck process can
be considered as the continuous-time analogue of the discrete-time AR(1) process.

In addition, it is important to consider the case where the samples are transmitted
through multiple paths and arrive with random delays at the remote receiver. The latter
describes more realistic scenarios in wireless transmissions. The problem of optimal sampling
and remote reconstruction can be also considered with the by-product metrics of AoI such
as the VoIU that we recently defined. Clearly, there are a lot of research opportunities
towards this direction. For example, considering the delay/deadline constrained remote
reconstruction of a source is a problem that has not been considered yet in the current
literature, extending the work in [28]. This can be motivated by scenarios where the
information needed to be received and reconstructed at a remote receiver has specific delay
or deadline constraints, such as real-time critical information, for example a remote surgery.

If the process under observation consists of highly correlated data, then the frequency
of transmission of updates can be significantly reduced without affecting the timeliness of
the information at a remote receiver. Consider for example the case of a constant process,
then the transmission of a single sample is sufficient to sustain zero AoI. Thus, defining
the Effective Age and connecting it with the autocorrelation properties of the source under
observation is of major importance. In addition, the relation of Effective Age with AoI and
its by-product metrics call for further investigations.

7.2.2 Sampling and Information Theory

A fundamental part of the AoI concept is the process of sampling of the source signal.
Unavoidably, this draws a clear connection to the theory of sampling for signal reconstruction.
Nyquist sampling theory needs to be extended to apply to causal reconstruction. Namely,
most of the emphasis in sampling-related research in signal processing considers signal
reconstruction that is not limited to causal samples. An important, unexplored issue, is
whether, and to what degree, can we reconstruct signals based only on past and/or delayed
samples. There is an obvious connection between sampling and information theory that
has been explored by Y. Eldar and A. Goldsmith, among others, in [9], [15]. Going beyond
that, the question arises whether the age of information, after reception of a signal that
introduced random delay plays a role in the reconstructability of the signal. This question
is different than the one that merely considers prediction quality as it involves deeper issues
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of signal structure and sampling patterns.

7.3 Applications

In this part, we address a couple of more practical directions where AoI and the by-product
metrics can be utilized. We clearly do not cover all possible fields of application for AoI
as a tool, giving only the broad areas of content caching and machine learning based data
analytics.

7.3.1 Caching

An immediately promising area for work lies in caching and content placement in general.
Already there have been the first works on caching policies aiming to minimizing cache
misses [29] using the request rates and popularity, based on content age, and updating
dynamic content in a cache in order to minimize the average age of cached items [57]. Both
these works deliver optimal policies for their models, however, it is directly indicated in
them that more general cases (generic request models that can for example model viral
content) are not tractable, even for toy-problem models. Caching of messages has lately
become of critical importance due to the pervasiveness of highly demanding online services
(such as online gaming, video on demand, and augmented reality applications) and the IoT.

7.3.2 Data Analytics

Data analytics, based on machine learning (ML), relies on the so called data analytics
pipeline [37], which is a string of data and process manipulations aimed at making ML cope
with Big Data [38]. One of the crucial steps in that pipeline is the so called “processing
manipulations” which focuses on modifying how data are processed and stored. Processing
techniques can take advantage of the inherent parallel nature of algorithms to provide
significant performance improvement. Within those, the horizontal scaling paradigm refers to
distributed systems where processing is dispersed over networked nodes. Involving distributed
nodes requires network communication and coordination. Such horizontal scaling systems
can be categorized as Batch- and Stream- oriented ones. The latter operate on small sets
of recent data in real-time or near real-time. Developers of algorithmic trading, fraud
detection, and surveillance systems have been especially interested in such solutions [16].
The importance of real-time processing of data from sensors, mobile devices, and IoT
deployments has resulted in the emergence of a number of streaming systems; examples
include Twitter’s Storm [39] and Yahoo’s S4 [43]. The importance of the Age of Information
here is evident as the volume of data input can significantly be decreased, should certain
data sources provide non-timely data.
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7.4 Summary

As we have seen in this section, AoI and the notions of Peak Age, Value of Information of
Update, and so forth can be tools with which one can open up new areas in well-established
domains. One can also use these as metrics and tools and address problems with a new set
of requirements and defining constraints that are themselves timely in view of the evolving
trends in communication, where the context is shifting from the mere transport of bits to
serving tasks such as estimation, reconstruction, data dissemination and storage to name a
few.
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