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In recent years, sparse spectral methods for solving partial differential equations have been derived using
hierarchies of classical orthogonal polynomials (OPs) on intervals, disks, disk-slices and triangles. In
this work, we extend the methodology to a hierarchy of non-classical multivariate OPs on spherical
caps. The entries of discretizations of partial differential operators can be effectively computed using
formulae in terms of (non-classical) univariate OPs. We demonstrate the results on partial differential
equations involving the spherical Laplacian and biharmonic operators, showing spectral convergence with
discretizations that can be made well conditioned using a simple preconditioner.

1. Introduction

This paper develops sparse spectral methods for solving linear partial differential equations on certain
subsets of the sphere—specifically spherical caps. More precisely, we consider the solution of partial
differential equations on the spherical cap Ω defined by

Ω := {(x, y, z) ∈ R3 | α < z < β, x2 + y2 + z2 = 1},

where α ∈ (−1, 1) and β := 1.

Remark 1 For simplicity, we focus on the case of a spherical cap, though there is an extension to a
spherical band by taking β ∈ (α, 1). The methods presented here translate to the spherical band case
by including the necessary adjustments to the weights and recurrence relations we present in this paper.
These adjustments make the construction more involved, which is why they are omitted here, but the
approach is essentially the same.

We advocate using a basis that is polynomial in Cartesian coordinates, that is, polynomial in x, y
and z and orthogonal with respect to a prescribed weight; that is, multivariate orthogonal polynomials
(OPs), whose construction was considered in Olver & Xu (2020). Equivalently, we can think of these
as polynomials modulo the vanishing ideal {x2 + y2 + z2 = 1}, or simply as a linear recombination
of spherical harmonics that are orthogonalized on a subset of the sphere. This is in contrast to more
standard approaches based on mapping the geometry to a simpler one (e.g., a rectangle or disk) and
using OPs in the mapped coordinates (e.g., a basis that is polynomial in the spherical coordinates ϕ and
θ ). The benefit of the new approach is that we do not need to resolve Jacobians, and thereby, we can
achieve sparse discretizations for partial differential operators, including those with polynomial variable
coefficients. Further, we avoid the singular nature at the poles or as α approaches 0 that such a projection
may give, since our new approach yields a smooth polynomial basis for all α ∈ [−1, 1).

There are of course other approaches for solving PDEs on surfaces, such as the closest point method
(Macdonald & Ruuth, 2008, 2010). This involves recasting the PDE as one involving a ‘closest point’
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2 B. SNOWBALL AND S. OLVER

operator in a three-dimensional volume that acts as a ‘shell’ for the surface. While such an approach
is useful for other geometries, it is of low order and does not achieve spectral convergence with sparse
discretizations. Further, for our domain of interest, the closest point method does not take advantage of
any rotational symmetry and so is unable to achieve optimal complexity with a direct solver.

On the spherical cap, the family of weights we consider are of the form

W(a)(x, y, z) := (z − α)a, for (x, y, z) ∈ Ω ,

noting that W(a)(x, y, z) = 0 for (x, y, z) ∈ ∂Ω when a > 0. The corresponding OPs denoted
Q(a)

n,k,i(x, y, z), where n denotes the polynomial degree, 0 ≤ k ≤ n and i ∈ {0, min(1, k)}. We define
these to be orthogonalized lexicographically, that is,

Q(a)
n,k,i(x, y, z) = Cn,k,i xk−i yi zn−k + (lower order terms),

where Cn,k,i �= 0 and ‘lower order terms’ includes degree n polynomials of the form xj−i yi zn−j where
j < k. The precise normalization arises from their definition in terms of one-dimensional OPs in
Definition 2.

We consider partial differential operators involving the spherical Laplacian (the Laplace–Beltrami
operator): in spherical coordinates

z = cos ϕ,

x = sin ϕ cos θ = ρ(z) cos θ ,

y = sin ϕ sin θ = ρ(z) sin θ ,

where ρ(z) := √
1 − z2, we have

ΔS = 1

sin ϕ

∂

∂ϕ

(
sin ϕ

∂

∂ϕ

)
+ 1

sin2 ϕ

∂2

∂θ2 = 1

ρ

∂

∂ϕ

(
ρ

∂

∂ϕ

)
+ 1

ρ2

∂2

∂θ2

i.e., ΔSf (x) = Δf ( x
‖x‖ ) for x := (x, y, z) ∈ R3. We do so by considering the component operators

ρ ∂
∂ϕ

and ∂
∂θ

applied to OPs with a specific choices of weight so that their discretization is sparse;
see Theorem 3.1. Sparsity comes from expanding the domain and range of an operator using different
choices of the parameter a, a la the ultraspherical spectral method for intervals (Olver & Townsend,
2013), triangles (Olver et al., 2019) and disk-slices and trapeziums (Snowball & Olver, 2020) and the
related work on sparse discretizations involving Jacobi polynomials on disks (Vasil et al., 2016) and
spheres (Lecoanet et al., 2019; Vasil et al., 2019). As in the disk-slice case in two dimensions (Snowball
& Olver, 2020), we use an integration-by-parts argument to deduce the sparsity structure.

The three-dimensional OPs defined here involve the same non-classical (in fact, semi-classical;
Magnus, 1995, Section 5) one-dimensional OPs as those outlined for the disk-slice, and so methods for
calculating these one-dimensional OP recurrence coefficients and integrals have already been outlined
(Snowball & Olver, 2020). In particular, by exploiting the connection with these one-dimensional OPs,
we can construct discretizations of general partial differential operators of size (p+1)2×(p+1)2 in O(p3)

operations, where p is the total polynomial degree. This clearly compares favourably to proceeding in a
naïve approach where one would require O(p6) operations.
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SPARSE SPECTRAL METHODS FOR PDEs ON SPHERICAL CAPS 3

Note that we consider partial differential operators that are not necessarily rotational invariant:
for example, one can use these techniques for Schrödinger operators ΔS + v(x, y, z) where v is first
approximated by a polynomial. A nice feature is that if the partial differential operator is invariant with
respect to rotation around the z axis (e.g., a Schrödinger operator with potential v(z)) the discretization
decouples and can be reordered as a block-diagonal matrix. This improves the complexity further to an
optimal O(p2), which is demonstrated in Fig. 5 with v(x, y, z) = cos z.

An overview of the paper is as follows.
Section 2: we present our definition of a (one-parameter) family of three-dimensional OPs on the
spherical cap domain Ω , by combining one-dimensional OPs on the interval (α, 1) with Chebyshev
polynomials, to form three-dimensional OPs on the spherical cap surface. We show that these families
will lead to sparse Jacobi operators for multiplication by x, y, z and demonstrate how to obtain the three-
dimensional OPs.
Section 3: we define several partial differential operators such as spherical Laplacians and show that
these will be sparse when applied to a suitable choice of expansions in bases built from OPs on
the spherical cap. We can exactly calculate the non-zero entries of these sparse operators using the
quadrature rule associated with the non-classical one-dimensional OPs.
Section 4: we derive a quadrature rule on the spherical cap that can be used to expand a function in
the OP basis up to a given order N and demonstrate how to evaluate a function using the Clenshaw
algorithm using the coefficients of its expansion.
Section 5: we demonstrate the proposed technique for solving differential equations on the spherical cap
such as the Poisson equation, variable coefficient Helmholtz equation and Biharmonic equation.

The code that allows one to produce the numerical examples in this paper is publicly available
as a Julia package1 to partner the ApproxFun package (Olver, 2019); however, this package is purely
experimental at this stage.

2. OPs on spherical caps

In this section, we outline the construction and some basic properties of Q(a)
n,k,i(x, y, z).

2.1 Explicit construction

We can construct the three-dimensional OPs on Ω from one-dimensional OPs on the interval [α, β] and
from Chebyshev polynomials. We do so in terms of Fourier series, which, following Olver & Xu (2020),
we write here as OPs in x and y.

Definition 1 Define the unit circle ω := {x = (x, y) ∈ R2 | x2 + y2 = 1}, and define the parameter θ

for each (x, y) ∈ ω by x = cos θ , y = sin θ . Define the polynomials {Yk,i} for k = 0, 1, . . . , i = 0, 1 on
(x, y) ∈ ω by

Y0,0(x) ≡ Y0,0(x, y) := Y0 =: Y0,0(θ)

Yk,0(x) ≡ Yk,0(x, y) := Tk(x) = cos kθ =: Yk,0(θ), k = 1, 2, 3, . . .

Yk,1(x) ≡ Yk,1(x, y) := y Uk−1(x) = sin kθ =: Yk,1(θ), k = 1, 2, 3, . . . ,

1 https://github.com/snowball13/OrthogonalPolynomialFamilies.jl
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4 B. SNOWBALL AND S. OLVER

where Y0 :=
√

2
2 and Tk, Uk−1 are the standard Chebyshev polynomials on the interval [−1, 1]. The

{Yk,i} are orthonormal with respect to the inner product

〈p, q〉Y := 1

π

∫ 2π

0
p(x(θ)) q(x(θ)) dθ .

Note that we have defined Y0 so as to ensure orthonormality.

Proposition 1 (Olver & Xu, 2020). Let w : (α, β) → R be a weight function. For n = 0, 1, 2, . . . ,
let {rn,k} be polynomials orthogonal with respect to the weight ρ(x)2kw(x) where 0 ≤ k ≤ n. Then the
three-dimensional polynomials defined on Ω

Qn,k,i(x, y, z) := rn−k,k(z) ρ(z)k Yk,i

(
x

ρ(z)
,

y

ρ(z)

)

for i ∈ 0, 1, 0 ≤ k ≤ n, n = 0, 1, 2, . . . are OPs with respect to the inner product

〈p, q〉 :=
∫

Ω

p(x, y, z) q(x, y, z) w(z) dA

=
∫ cos−1(α)

0

∫ 2π

0
p
(

sin ϕ cos θ , sin ϕ sin θ , cos ϕ
)

q
(

sin ϕ cos θ , sin ϕ sin θ , cos ϕ
) ×

w(cos ϕ) sin ϕ dθ dϕ

=
∫ 1

α

∫ 2π

0
p
(
ρ(z) cos θ , ρ(z) sin θ , z

)
q
(
ρ(z) cos θ , ρ(z) sin θ , z

)
w(z) dθ dz

on Ω , where dA = sin ϕ dθ dϕ is the uniform spherical measure on Ω .

OPs are defined as such by the condition that each polynomial is orthogonal to each other, with
respect to the given inner product. In particular, they are orthogonal with respect to all lower degree
polynomials.

For the spherical cap, we can use Proposition 1 to create our one-parameter family of OPs. We first
introduce notation for our family of non-classical univariate OPs that will be used as the rn polynomials
above.

Definition 2 (Snowball & Olver, 2020). Let w(a,b)
R (x) be a weight function on the interval (α, 1) given

by

w(a,b)
R (x) := (x − α)a ρ(x)b,

and define the associated inner product by

〈p, q〉
w(a,b)

R
:= 1

ω
(a,b)
R

∫ 1

α

p(x) q(x) w(a,b)
R (x) dx, (1)
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SPARSE SPECTRAL METHODS FOR PDEs ON SPHERICAL CAPS 5

where

ω
(a,b)
R :=

∫ 1

α

w(a,b)
R (x) dx (2)

is a normalizing constant. Denote the two-parameter family of orthonormal polynomials on [α, β] by
{R(a,b)

n }, orthonormal with respect to the inner product defined in equation (1). That is,

〈R(a,b)
n , R(a,b)

m 〉
w(a,b)

R
= δn,m. (3)

We can now define the three-dimensional OPs for the spherical cap.

Definition 3 Define the one-parameter three-dimensional OPs via

Q(a)
n,k,i(x, y, z) := R(a,2k)

n−k (z) ρ(z)k Yk,i

( x

ρ(z)
,

y

ρ(z)

)
, (x, y, z) ∈ Ω . (4)

By construction, {Q(a)
n,k,i} are orthogonal with respect to the inner product

〈p, q〉Q(a) :=
∫

Ω

p(x, z) q(x, z) w(a,0)
R (z) dA

=
∫ 1

α

∫ 2π

0
p(ρ(z) cos θ , ρ(z) sin θ , z) q(ρ(z) cos θ , ρ(z) sin θ , z) dθ w(a,0)

R (z) dz,

with

∥∥∥Q(a)
n,k,i

∥∥∥2

Q(a)
:=

〈
Q(a)

n,k,i, Q(a)
n,k,i

〉
Q(a)

= π ω
(a,2k)
R . (5)

We note that the weight w(a,b)
R (z) has been used in the construction of two-dimensional OPs on disk-

slices and trapeziums (Snowball & Olver, 2020), where a method for obtaining recurrence coefficients
and evaluating integrals was established (the weight is in fact semi-classical and is equivalent to a
generalized Jacobi weight; Magnus, 1995, Section 5).

2.2 Jacobi matrices

We can express the three-term recurrences associated with R(a,b)
n as

xR(a,b)
n (x) = β(a,b)

n R(a,b)
n+1 (x) + α(a,b)

n R(a,b)
n (x) + β

(a,b)
n−1 R(a,b)

n−1 (x), (6)

where the coefficients are calculatable (Snowball & Olver, 2020). We can use equation (6) to
determine the three-dimensional recurrences for Q(a)

n,k,i(x, y, z). Importantly, we can deduce sparsity in
the recurrence relationships. We first require the following lemma.
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6 B. SNOWBALL AND S. OLVER

Lemma 1 The following identities hold for k = 2, 3, . . . , j = 0, 1, . . . and i, h ∈ {0, 1}:

1)

∫ 2π

0
Y0 Yj,h(θ) cos θ dθ = Y0 π δ0,h δ1,j

2)

∫ 2π

0
Y0 Yj,h(θ) sin θ dθ = Y0 π δ1,h δ1,j

3)

∫ 2π

0
Y1,i(θ) Yj,h(θ) cos θ dθ = π δi,h (Y0 δ0,j + 1

2
δ2,j)

4)

∫ 2π

0
Y1,i(θ) Yj,h(θ) sin θ dθ = π δ|i−1|,h ((−1)i+1 Y0 δ0,j + (−1)i 1

2
δ2,j)

5)

∫ 2π

0
Yk,i(θ) Yj,h(θ) cos θ dθ = 1

2
π δi,h (δk−1,j + δk+1,j)

6)

∫ 2π

0
Yk,i(θ) Yj,h(θ) sin θ dθ = 1

2
π δ|i−1|,h ((−1)i+1 δk−1,j + (−1)i δk+1,j).

Proof. Each follows from the definitions of Yk,i and Y0, as well as the relationships

2 cos kθ cos θ = cos(k − 1)θ + cos(k + 1)θ

2 sin kθ cos θ = sin(k − 1)θ + sin(k + 1)θ

2 cos kθ sin θ = − sin(k − 1)θ + sin(k + 1)θ

2 sin kθ sin θ = cos(k − 1)θ − cos(k + 1)θ .
�

Lemma 2 Define

ηk :=

⎧⎪⎨
⎪⎩

0 if k < 0

Y0 if k = 0
1
2 otherwise

(7)

Q(a)
n,k,i(x, y, z) satisfy the following recurrences:

x Q(a)
n,k,i(x, y, z) = α

(a)
n,k,1 Q(a)

n−1,k−1,i(x, y, z) + α
(a)
n,k,2 Q(a)

n−1,k+1,i(x, y, z)

+ α
(a)
n,k,3 Q(a)

n,k−1,i(x, y, z) + α
(a)
n,k,4 Q(a)

n,k+1,i(x, y, z)

+ α
(a)
n,k,5 Q(a)

n+1,k−1,i(x, y, z) + α
(a)
n,k,6 Q(a)

n+1,k+1,i(x, y, z),

y Q(a)
n,k,i(x, y, z) = β

(a)
n,k,i,1 Q(a)

n−1,k−1,|i−1|(x, y, z) + β
(a)
n,k,i,2 Q(a)

n−1,k+1,|i−1|(x, y, z)

+ β
(a)
n,k,i,3 Q(a)

n,k−1,|i−1|(x, y, z) + β
(a)
n,k,i,4 Q(a)

n,k+1,|i−1|(x, y, z)

+ β
(a)
n,k,i,5 Q(a)

n+1,k−1,|i−1|(x, y, z) + β
(a)
n,k,i,6 Q(a)

n+1,k+1,|i−1|(x, y, z),

z Q(a)
n,k,i(x, y, z) = γ

(a)
n,k,1 Q(a)

n−1,k,i(x, y, z) + γ
(a)
n,k,2 Q(a)

n,k,i(x, y, z) + γ
(a)
n,k,3 Q(a)

n+1,k,i(x, y, z),
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SPARSE SPECTRAL METHODS FOR PDEs ON SPHERICAL CAPS 7

for (x, y, z) ∈ Ω , where

α
(a)
n,k,1 := ηk−1 〈R(a,2k)

n−k , R(a,2(k−1))
n−k 〉

w(a,2k)
R

,

α
(a)
n,k,2 := ηk 〈R(a,2k)

n−k , R(a,2(k+1))
n−k−2 〉

w(a,2(k+1))
R

,

α
(a)
n,k,3 := ηk−1 〈R(a,2k)

n−k , R(a,2(k−1))
n−k+1 〉

w(a,2k)
R

,

α
(a)
n,k,4 := ηk 〈R(a,2k)

n−k , R(a,2(k+1))
n−k−1 〉

w(a,2(k+1))
R

,

α
(a)
n,k,5 := ηk−1 〈R(a,2k)

n−k , R(a,2(k−1))
n−k+2 〉

w(a,2k)
R

,

α
(a)
n,k,6 := ηk 〈R(a,2k)

n−k , R(a,2(k+1))
n−k 〉

w(a,2(k+1))
R

,

β
(a)
n,k,i,j :=

{
−α

(a)
n,k,j if (i = 0 and j is odd) or (i = 1 and j is even)

α
(a)
n,k,j otherwise

,

γ
(a)
n,k,1 := β

(a,2k)
n−k−1, γ

(a)
n,k,2 := α

(a,2k)
n−k , γ

(a)
n,k,3 := β

(a,2k)
n−k .

Remark 2 For z multiplication, note that different Fourier modes do not interact. This is because
multiplication by z is invariant with respect to rotation around the z-axis.

Proof. The three-term recurrence for multiplication by z follows from equation (6). For the recurrence
for multiplication by x, since {Q(a)

m,j,h} for m = 0, . . . , n + 1, j = 0, . . . , m, h = 0, 1 is an orthogonal basis
for any degree n + 1 polynomial on Ω , we can expand

x Q(a)
n,k,i(x, y, z) =

n+1∑
m=0

m∑
j=0

1∑
h=0

cm,j Q(a)
m,j,h(x, y, z).

These coefficients are given by

cm,j = 〈x Q(a)
n,k,i, Q(a)

m,j,h〉Q(a)

∥∥∥Q(a)
m,j,h

∥∥∥−2

Q(a)
,

where we show the non-zero coefficients that result are the α
(a)
n,k,1, . . . , α(a)

n,k,6 in the lemma. Recall from

equation (5) that
∥∥∥Q(a)

m,j,h

∥∥∥2

Q(a)
= π ω

(a,2j)
R . Then, for m = 0, . . . , n + 1, j = 0, . . . , m, using a change of

variables (cos θ sin ϕ, sin θ sin ϕ, cos ϕ) = (x, y, z):

〈x Q(a)
n,k,i, Q(a)

m,j,h〉Q(a)

=
∫

Ω

Q(a)
n,k,i(x, z) Q(a)

m,j,h(x, z) x w(a,0)
R (z) dA

=
( ∫ 1

α

R(a,2k)
n−k (z) R(a,2j)

m−j (z) ρ(z)k+j+1 w(a,0)
R (z) dz

)
·
( ∫ 2π

0
Yk,i(θ) Yj,h(θ) cos θ dθ

)
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8 B. SNOWBALL AND S. OLVER

=
( ∫ 1

α

R(a,2k)
n−k (z) R(a,2j)

m−j (z) w(a,k+j+1)
R (z) dz

)
·
( ∫ 2π

0
Yk,i(θ) Yj,h(θ) cos θ dθ

)

= 1

2
π δi,h (ηk−1 δk−1,j + ηk δk+1,j)

∫ 1

α

R(a,2k)
n−k (z) R(a,2j)

m−j (z) w(a,k+j+1)
R (z) dz,

where δk,j is the standard Kronecker delta function, using Lemma 1. Similarly, for the recurrence for
multiplication by y, we can expand

y Q(a)
n,k,i(x, y, z) =

n+1∑
m=0

m∑
j=0

1∑
h=0

dm,j Q(a)
m,j,h(x, y, z).

These coefficients are given by

dm,j = 〈y Q(a)
n,k,i, Q(a)

m,j,h〉Q(a)

∥∥∥Q(a)
m,j,h

∥∥∥−2

Q(a)
,

where we show the non-zero coefficients that result are the β
(a)
n,k,1, . . . , β(a)

n,k,6 in the lemma:

〈y Q(a)
n,k,i, Q(a)

m,j,h〉Q(a)

=
∫

Ω

Q(a)
n,k,i(x, z) Q(a)

m,j,h(x, z) y w(a,0)
R (z) dA

=
( ∫ 1

α

R(a,2k)
n−k (z) R(a,2j)

m−j (z) ρ(z)k+j+1 w(a,0)
R (z) dz

)
·
( ∫ 2π

0
Yk,i(θ) Yj,h(θ) sin θ dθ

)

=
( ∫ 1

α

R(a,2k)
n−k (z) R(a,2j)

m−j (z) w(a,k+j+1)
R (z) dz

)
·
( ∫ 2π

0
Yk,i(θ) Yj,h(θ) sin θ dθ

)

= 1

2
π δ|i−1|,h

[
(−1)i+1 ηk−1 δk−1,j + (−1)i ηk δk+1,j

] ∫ 1

α

R(a,2k)
n−k (z) R(a,2j)

m−j (z) w(a,k+j+1)
R (z) dz,

where again δk,j is the standard Kronecker delta function, and we have used Lemma 1. �
The recurrences in Lemma 2 lead to (block) Jacobi matrices that correspond to multiplication by x,

y and z. In later sections, we will use an ordering of the OPs so that they are grouped by Fourier mode
k, which is convenient for the application of differential and other operators to the vector of coefficients
of a given function’s expansion (some operators will exploit this ordering for operators where Fourier
modes do not interact and thus will be block-diagonal). Before that, the ordering we will use in the
remainder of this section is convenient for establishing Jacobi operators for multiplication by x, y and
z, and hence building the OPs and importantly obtaining the associated recurrence coefficient matrices
necessary for efficient function evaluation using the Clenshaw algorithm. In practice, it is simply a
matter of converting coefficients between the two orderings. To this end, we define our OP-building
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SPARSE SPECTRAL METHODS FOR PDEs ON SPHERICAL CAPS 9

ordering as follows. For n = 0, 1, 2, . . . ,

Q(a)
n :=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Q(a)
n,0,0(x, y, z)

Q(a)
n,1,0(x, y, z)

Q(a)
n,1,1(x, y, z)

...
Q(a)

n,n,0(x, y, z)

Q(a)
n,n,1(x, y, z)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

∈ R2n+1, Q(a) :=

⎛
⎜⎜⎜⎜⎝
Q

(a)
0

Q
(a)
1

Q
(a)
2
...

⎞
⎟⎟⎟⎟⎠

and set J(a)
x , J(a)

y , J(a)
z as the Jacobi matrices corresponding to

J(a)
x Q(a)(x, y, z) = x Q(a)(x, y, z),

J(a)
y Q(a)(x, y, z) = y Q(a)(x, y, z), (8)

J(a)
z Q(a)(x, y, z) = z Q(a)(x, y, z),

where

J(a)
x/y/z =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

B(a)
x/y/z,0 A(a)

x/y/z,0

C(a)
x/y/z,1 B(a)

x/y/z,1 A(a)
x/y/z,1

C(a)
x/y/z,2 B(a)

x/y/z,2 A(a)
x/y/z,2

C(a)
x/y/z,3

. . .
. . .

. . .
. . .

. . .

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

While J(a)
x , J(a)

y , J(a)
z are not Jacobi matrices in the classical sense, they are block Jacobi matrices.

However, it is useful to simply label them as such. In fact, note that they are in fact banded-block-
banded matrices.

Definition 4 A block matrix A with blocks Ai,j has block-bandwidths (L, U) if Ai,j = 0 for
−L ≤ j− i ≤ U and sub-block-bandwidths (λ, μ) if all blocks Ai,j are banded with bandwidths (λ, μ). A
matrix where the block-bandwidths and sub-block-bandwidths are small compared with the dimensions
is referred to as a banded-block-banded matrix.

Each of these Jacobi matrices are then block-tridiagonal (block-bandwidths (1, 1)). For J(a)
x , the

sub-blocks have sub-block-bandwidths (2, 2):

A(a)
x,n :=

⎛
⎜⎜⎜⎜⎜⎝

0 A(a)
n,0,6 0

A(a)
n,1,5

. . .
. . .

. . .
. . .

. . .

A(a)
n,n,5 0 A(a)

n,n,6

⎞
⎟⎟⎟⎟⎟⎠ ∈ R(2n+1)×(2n+3), n = 0, 1, 2, . . .
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10 B. SNOWBALL AND S. OLVER

B(a)
x,n :=

⎛
⎜⎜⎜⎜⎜⎝

0 A(a)
n,0,4

A(a)
n,1,3

. . .
. . .

. . .
. . . A(a)

n,n−1,4

A(a)
n,n,3 0

⎞
⎟⎟⎟⎟⎟⎠ ∈ R(2n+1)×(2n+1) n = 0, 1, 2, . . .

C(a)
x,n :=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 A(a)
n,0,2

A(a)
n,1,1

. . .
. . .

. . .
. . . A(a)

n,n−2,2
. . . 0

A(a)
n,n,1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

∈ R(2n+1)×(2n−1), n = 1, 2, . . . ,

where for k = 1, . . . , N, n = k, . . . , N,

A(a)
n,k,j :=

(
α

(a)
n,k,j 0

0 α
(a)
n,k,j

)
∈ R2×2, (k �= 1 for j odd)

A(a)
n,0,j :=

(
α

(a)
n,0,j 0

)
∈ R1×2, j even

A(a)
n,1,j :=

(
α

(a)
n,1,j
0

)
∈ R2×1, j odd.

For J(a)
y , the sub-blocks have sub-block-bandwidths (3, 3):

A(a)
y,n :=

⎛
⎜⎜⎜⎜⎜⎝

0 B(a)
n,0,6 0

B(a)
n,1,5

. . .
. . .

. . .
. . .

. . .

B(a)
n,n,5 0 B(a)

n,n,6

⎞
⎟⎟⎟⎟⎟⎠ ∈ R(2n+1)×(2n+3), n = 0, 1, 2, . . .

B(a)
y,n :=

⎛
⎜⎜⎜⎜⎜⎝

0 B(a)
n,0,4

B(a)
n,1,3

. . .
. . .

. . .
. . . B(a)

n,n−1,4

B(a)
n,n,3 0

⎞
⎟⎟⎟⎟⎟⎠ ∈ R(2n+1)×(2n+1) n = 0, 1, 2, . . .
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SPARSE SPECTRAL METHODS FOR PDEs ON SPHERICAL CAPS 11

C(a)
y,n :=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 B(a)
n,0,2

B(a)
n,1,1

. . .
. . .

. . .
. . . B(a)

n,n−2,2
. . . 0

B(a)
n,n,1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

∈ R(2n+1)×(2n−1), n = 1, 2, . . . ,

where for k = 1, . . . , N, n = k, . . . , N,

B(a)
n,k,j :=

(
0 β

(a)
n,k,0,j

β
(a)
n,k,1,j 0

)
∈ R2×2, (k �= 1 for j odd)

B(a)
n,0,j :=

(
0 β

(a)
n,0,0,j

)
∈ R1×2, j even

B(a)
n,1,j :=

(
0

β
(a)
n,1,1,j

)
∈ R2×1, j odd.

For J(a)
z , the sub-blocks are diagonal, i.e., have sub-block-bandwidths (0, 0):

A(a)
z,n :=

⎛
⎜⎜⎜⎜⎜⎝

Γ
(a)

n,0,3 0

0
. . .

. . .
. . .

. . .
. . .

0 Γ
(a)

n,n,3 0

⎞
⎟⎟⎟⎟⎟⎠ ∈ R(2n+1)×(2n+3), n = 0, 1, 2, . . .

B(a)
z,n :=

⎛
⎜⎜⎜⎜⎜⎝

Γ
(a)

n,0,2
. . .

. . .

Γ
(a)

n,n,2

⎞
⎟⎟⎟⎟⎟⎠ ∈ R(2n+1)×(2n+1) n = 0, 1, 2, . . .

C(a)
z,n :=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

Γ
(a)

n,0,1 0

0
. . .

. . .
. . .

. . . 0

. . . Γ
(a)

n,n−1,1
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

∈ R(2n+1)×(2n−1), n = 1, 2, . . . ,

where for k = 1, . . . , N, n = k, . . . , N,

Γ
(a)

n,k,j :=
(

γn,k,j 0
0 γn,k,j

)
∈ R2×2, (9)

Γ
(a)

n,0,j := γ
(a)
n,0,j. (10)
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12 B. SNOWBALL AND S. OLVER

Note that the sparsity of the Jacobi matrices (in particular the sparsity of the sub-blocks) comes from the
natural sparsity of the three-term recurrences of the one-dimensional OPs and the circular harmonics,
meaning that the sparsity is not limited to the specific spherical cap and would extend to the spherical
band.

2.3 Building the OPs

A multivariate analogue of Clenshaw’s algorithm for recursive evaluation of the OPs has been
established for methods on other domains in two dimensions such as the triangle (Olver et al., 2019)
and the disk-slice (Snowball & Olver, 2020), and we proceed similarly here. Combining each system in
equation (8) into a block-tridiagonal system, for any (x, y, z) ∈ Ω , yields

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1

B0 − G0(x, y, z) A0

C1 B1 − G1(x, y, z) A1

C2 B2 − G2(x, y, z)
. . .

. . .
. . .

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠
Q(a)(x, y, z) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

Q(a)
0

0

0

0
...

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

,

where we note Q(a)
0 := Q(a)

0,0,0(x, y, z) ≡ R(a,0)
0 Y0, and for each n = 0, 1, 2 . . . ,

An :=
⎛
⎜⎝A(a)

x,n

A(a)
y,n

A(a)
z,n

⎞
⎟⎠ ∈ R3(2n+1)×(2n+3), Cn :=

⎛
⎜⎝C(a)

x,n

C(a)
y,n

C(a)
z,n

⎞
⎟⎠ ∈ R3(2n+1)×(2n−1) (n �= 0),

Bn :=
⎛
⎜⎝B(a)

x,n

B(a)
y,n

B(a)
z,n

⎞
⎟⎠ ∈ R3(2n+1)×(2n+1), Gn(x, y, z) :=

⎛
⎝xI2n+1

yI2n+1
zI2n+1

⎞
⎠ ∈ R3(2n+1)×(n+1).

For each n = 0, 1, 2 . . . , let D�
n be any matrix that is a left inverse of An, i.e., such that D�

n An = I2n+3.
Multiplying our system by the preconditioner matrix that is given by the block diagonal matrix of the
D�

n s, we obtain a lower triangular system (Dunkl & Xu, 2014, p. 78), which can be expanded to obtain
the recurrence

⎧⎪⎨
⎪⎩
Q

(a)
−1(x, y, z) := 0

Q
(a)
0 (x, y, z) := Q(a)

0

Q
(a)
n+1(x, y, z) = −D�

n (Bn − Gn(x, y, z))Q(a)
n (x, y, z) − D�

n Cn Q
(a)
n−1(x, y, z), n = 0, 1, 2, . . . .
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SPARSE SPECTRAL METHODS FOR PDEs ON SPHERICAL CAPS 13

Note that we can define an explicit D�
n as follows:

D�
n :=

⎛
⎜⎜⎜⎜⎜⎜⎝

0 0 (Γ
(a)

n,0,3)
−1

. . .
. . .

. . .

0 0 (Γ
(a)

n,n,3)
−1

η�
0

η�
1

⎞
⎟⎟⎟⎟⎟⎟⎠

∈ R(2n+3)×3(2n+1),

for n = 1, 2, . . . where again Γ
(a)

n,k,3 are defined in equations (9, 10) for k = 0, . . . , n, and where

η0, η1 ∈ R3(2n+1) with entries given by

(
η0

)
j =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1
β

(a)
n,n,1,6

j = 2(2n + 1)

− β
(a)
n,n,1,5

β
(a)
n,n,1,6 γ

(a)
n,n−1,3

j = 3(2n + 1) − 3

0 o/w

(
η1

)
j =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1
α

(a)
n,n,6

j = 2n + 1

− α
(a)
n,n,5

α
(a)
n,n,6 γ

(a)
n,n−1,3

j = 3(2n + 1) − 2 and n > 1

0 o/w

.

For n = 0, we can simply take

D�
0 :=

⎛
⎜⎜⎜⎝

0 0 1
γ

(a)
0,0,3

1
α

(a)
0,0,6

0 0

0 1
β

(a)
0,0,6

0

⎞
⎟⎟⎟⎠ ∈ R3×3.

It follows that we can apply D�
n in O(n) complexity and thereby calculate Q

(a)
0 (x, y, z) through

Q
(a)
n (x, y, z) in optimal O(n2) complexity.

Definition 5 The recurrence coefficient matrices associated with the OPs {Q(a)
n,k,i} are given by the

matrices An, Bn, Cn, D�
n for n = 0, 1, 2, . . . defined above.

3. Sparse partial differential operators

In this section, we will derive the entries of spherical partial differential operators applied to our basis,
demonstrating their sparsity in the process. To this end, as alluded to in Section 2.2, we introduce new
notation for a different ordering of the OP vector, in order to exploit the orthogonality the polynomials
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14 B. SNOWBALL AND S. OLVER

Yk,i will bring and thus ensure the operators will be block-diagonal. Let N ∈ N, and define

Q̃
(a)
N,k :=

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

Q(a)
k,k,0(x, y, z)

Q(a)
k,k,1(x, y, z)

...
Q(a)

N,k,0(x, y, z)

Q(a)
N,k,1(x, y, z)

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

∈ R2(N−k+1), k = 1, . . . , N, (11)

Q̃
(a)
N,0 :=

⎛
⎜⎜⎝

Q(a)
0,0,0(x, y, z)

...
Q(a)

N,0,0(x, y, z)

⎞
⎟⎟⎠ ∈ RN+1. (12)

Q̃
(a)
N :=

⎛
⎜⎜⎝
Q̃

(a)
N,0
...

Q̃
(a)
N,N

⎞
⎟⎟⎠ ∈ R(N+1)2

(13)

We further denote the weighted set of OPs on Ω by

W
(a)
N (x, y, z) := w(a,0)

R (z) Q̃(a)
N (x, y, z).

The operator matrices we derive here act on coefficient vectors that represent a function f (x, y, z)
defined on Ω in spectral space—such a function is approximated by its expansion up to degree N:

f (x, y, z) = Q̃
(a)
N (x, y, z)�f =

N∑
n=0

n∑
k=0

1∑
i=0

fn,k,i Q(a)
n,k,i(x, y, z),

where f = (fn,k,i) is the coefficients vector for the function f .

Definition 6 Let a be a nonnegative parameter and ã ≥ 2 be an integer. Define the operator matrices
D(a)

ϕ , W(a)
ϕ , Dθ , L(a)→(a+ã), L(a)→(a−ã)

W , Δ
(1)
W according to

ρ
∂f

∂ϕ
(x, y, z) = Q̃

(a+1)
N (x, y, z)� D(a)

ϕ f,

ρ
∂

∂ϕ
[w(a,0)

R (z) f (x, y, z)] = W
(a−1)
N (x, y)� W(a)

ϕ f,

∂f

∂θ
(x, y, z) = Q̃

(a)
N (x, y, z)� Dθ f,

ΔSf (x, y, z) = Q̃
(a+ã)
N (x, y, z)� L(a)→(a+ã) f,

ΔS

(
w(a,0)

R (z) f (x, y, z)
) = W

(a−ã)
N (x, y, z)� L(a)→(a−ã)

W f, (for a ≥ 2 only)

ΔS

(
w(1,0)

R (z) f (x, y, z)
) = Q̃

(1)
N (x, y, z)� Δ

(1)
W f, (for a = 1 only).
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SPARSE SPECTRAL METHODS FOR PDEs ON SPHERICAL CAPS 15

The incrementing and decrementing of parameters as seen here is analogous to other well-known OP
families’ derivatives, for example the Jacobi polynomials on the interval, as seen in the DLMF (Olver
et al., 2010, (18.9.3)), on the triangle (Olver et al., 2020) and on the disk-slice (Snowball & Olver,
2020). The operators we define here are for partial derivatives with respect to the spherical coordinates
(ϕ, θ), so that we can more easily apply the operators to PDEs on the surface of a sphere (for example,
surface Laplacian operator in the Poisson equation). With the OP ordering by Fourier mode k defined
in equations (11, 12, 13) these rotationally invariant operators are block-diagonal, meaning simple and
parallelizable practical application.

Theorem 3.1 The operator matrices D(a)
ϕ , W(a)

ϕ , Dθ , L(a)→(a+ã), L(a)→(a−ã)
W , Δ

(1)
W from Definition 6

are sparse, with banded-block-banded structure. More specifically,

• D(a)
ϕ is block-diagonal with sub-block-bandwidths (2, 4);

• W(a)
ϕ is block-diagonal with sub-block-bandwidths (4, 2);

• Dθ is block-diagonal with sub-block-bandwidths (1, 1);

• L(a)→(a+ã) is block-diagonal with sub-block-bandwidths (0, 4);

• L(a)→(a−ã)
W is block-diagonal with sub-block-bandwidths (4, 0);

• Δ
(1)
W is block-diagonal with sub-block-bandwidths (2, 2).

In order to show the last part of Theorem 3.1, we require the following short lemma.

Lemma 3 For any general parameter a and any n = 0, 1, . . . , k = 0, . . . , n, we have that

d

dz

[
w(a+1,2(k+1))

R R(a,2k) ′
n−k

]
= w(a+1,2(k+1))

R R(a,2k) ′′
n−k − 2(k + 1)zw(a+1,2k)

R R(a,2k) ′
n−k + (a + 1)w(a,2(k+1))

R R(a,2k) ′
n−k

=
n+1∑

m=n−1

cm,k w(a,2k)
R R(a,2k)

m−k ,

where

cm,k = − 1

ω
(a,2k)
R

∫ 1

α

R(a,2k) ′
n−k R(a,2k) ′

m−k w(a+1,2(k+1))
R dz.

Proof of Lemma 3. Since d
dz [w(a+1,2(k+1))

R R(a,2k) ′
n−k ] = w(a,2k)

R rn−k+1 where rn−k+1 is a degree n − k + 1
polynomial, we have that

d

dz

[
w(a+1,2(k+1))

R R(a,2k) ′
n−k

] =
n−k+1∑

m=0

c̃{n,k},m w(a,2k)
R R(a,2k)

m
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16 B. SNOWBALL AND S. OLVER

for some coefficients c̃{n,k},m. These coefficients are given by

c̃{n,k},m = 1

ω
(a,2k)
R

〈
d

dz

[
w(a+1,2(k+1))

R R(a,2k) ′
n−k

]
, R(a,2k)

m

〉
w(0,0)

R

= − 1

ω
(a,2k)
R

∫ 1

α

R(a,2k) ′
n−k R(a,2k) ′

m w(a+1,2(k+1))
R dz.

We show that these are zero for m < n − k − 1 by integrating twice by parts:

〈
d

dz
[w(a+1,2(k+1))

R R(a,2k) ′
n−k ], R(a,2k)

m

〉
w(0,0)

R

= −
∫ 1

α

R(a,2k) ′
n−k R(a,2k) ′

m−k w(a+1,2(k+1))
R dz

=
∫ 1

α

R(a,2k) ′
n−k [(a + 1)R(a,2k) ′

m w(0,2)
R

− 2(k + 1)zR(a,2k) ′
m w(1,0)

R + R(a,2k) ′′
m w(1,2)

R ] w(a,2k)
R dz,

which is indeed zero for m < n − k − 1 by orthogonality. �
Proof of Theorem 3.1. For the operator Dθ for partial differentiation by θ , we simply have that

∂

∂θ
Q(a)

n,k,i(x, y, z) = R(a,2k)
n−k (z) ρ(z)k d

dθ
Yk,i(θ)

=
{

(−1)i+1 k Q(a)
n,k,|i−1|(x, y, z) k > 0

0 k = 0
.

We now proceed with the case for the operator D(a)
ϕ for partial differentiation by ϕ. The entries of

the operator are given by the coefficients in the expansion

ρ
∂

∂ϕ
Q(a)

n,k,i =
n+1∑
m=0

m∑
j=0

1∑
h=0

cm,j,h Q(a+1)
m,j,h ,

where the coefficients are

cm,j,h =
∥∥∥Q(a+1)

m,j,h

∥∥∥−2

Q(a+1)
〈ρ ∂

∂ϕ
Q(a)

n,k,i, Q(a+1)
m,j,h 〉Q(a+1) .
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SPARSE SPECTRAL METHODS FOR PDEs ON SPHERICAL CAPS 17

Now, note that

w(a,b) ′
R (z) = a w(a−1,b)

R (z) + c ρ(z) ρ′(z) w(a,b−2)
R (z),

ρ(z) ρ′(z) = −z,

∂

∂ϕ
Q(a)

n,k,i(x, y, z) = −ρ(z)
d

dz

[
ρ(z)k R(a,2k)

n−k (z)
]
Yk,i(θ),

∂

∂ϕ

[
w(a,0)

R (z) Q(a)
n,k,i(x, y, z)

]
= −ρ(z)

d

dz

[
w(a,k)

R (z) R(a,2k)
n−k (z)

]
Yk,i(θ).

Then,

〈ρ ∂

∂ϕ
Q(a)

n,k,i, Q(a+1)
m,j,h 〉Q(a+1)

= −
∫ 1

α

( ∫ 2π

0
ρ(z)2 d

dz
[R(a,2k)

n−k (z) ρ(z)k] R(a+1,2j)
m−j (z) ρ(z)j Yk,i(θ) Yj,h(θ) dθ

)
w(a+1,0)

R dz

=
( ∫ 2π

0
Yk,i(θ) Yj,h(θ) dθ

) ( ∫ 1

α

R(a+1,2j)
m−j [kzR(a,2k)

n−k − ρ2R(a,2k) ′
n−k ] w(a+1,k+j)

R dz
)

= π δk,j δi,h

∫ 1

α

R(a+1,2k)
m−k [kzR(a,2k)

n−k − ρ2R(a,2k) ′
n−k ] w(a+1,2k)

R dz

= π δk,j δi,h

∫ 1

α

R(a,2k)
n−k

{
kz R(a+1,2k)

m−k w(1,0)
R + R(a+1,2k) ′

m−k w(1,2)
R

+ a ρ2 R(a+1,2k)
m−k − (2k + 2)z R(a+1,2k)

m−k w(1,0)
R

}
w(a,2k)

R dz,

which is zero for j �= k, h �= i, and m < n − 2 by orthogonality.
Similarly, for the operator W(a)

ϕ for partial differentiation by ϕ on the weighted space, the

entries of the operator are given by the coefficients in the expansion ρ ∂
∂ϕ

(w(a,0)
R Q(a)

n,k,i) =∑n+2
m=0

∑m
j=0

∑1
h=0 cm,j,h w(a−1,0)

R Q(a−1)
m,j,h , where the coefficients are

cm,j,h =
∥∥∥Q(a−1)

m,j,h

∥∥∥−2

Q(a−1)

〈
ρ

∂

∂ϕ

(
w(a,0)

R Q(a)
n,k,i

)
, Q(a−1)

m,j,h

〉
Q(0)

.

Now,

〈ρ ∂

∂ϕ
(w(a,0)

R Q(a)
n,k,i), Q(a−1)

m,j,h 〉Q(0)

= −
∫ 1

α

( ∫ 2π

0
ρ(z)2 d

dz
[R(a,2k)

n−k (z) w(a,k)
R (z)] R(a−1,2j)

m−j (z) ρ(z)j Yk,i(θ) Yj,h(θ) dθ
)

dz

=
( ∫ 2π

0
Yk,i(θ) Yj,h(θ) dθ

)

·
( ∫ 1

α

R(a−1,2j)
m−j [kzR(a,2k)

n−k w(1,0)
R − R(a,2k) ′

n−k w(1,2)
R − a R(a,2k)

n−k ρ2] w(a−1,k+j)
R dz

)
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18 B. SNOWBALL AND S. OLVER

= π δk,j δi,h

∫ 1

α

R(a−1,2k)
m−k [kzR(a,2k)

n−k w(1,0)
R − R(a,2k) ′

n−k w(1,2)
R − a R(a,2k)

n−k ρ2] w(a−1,2k)
R dz

= π δk,j δi,h

∫ 1

α

R(a,2k)
n−k

{
kz R(a−1,2k)

m−k w(1,0)
R − a ρ2 R(a−1,2k)

m−k + R(a−1,2k) ′
m−k w(1,2)

R

+ a ρ2 R(a−1,2k)
m−k − (2k + 2)z R(a−1,2k)

m−k w(1,0)
R

}
w(a−1,2k)

R dz

= π δk,j δi,h

∫ 1

α

R(a,2k)
n−k

{
kz R(a−1,2k)

m−k + R(a−1,2k) ′
m−k ρ2 − (2k + 2)z R(a−1,2k)

m−k

}
w(a,2k)

R dz,

which is zero for j �= k, h �= i, and m < n − 1 by orthogonality.
We move on to the spherical Laplacian operators. Note that the Laplacian acting on the weighted

and non-weighted spherical cap OP Q(a)
n,k,i yield

ΔS Q(a)
n,k,i = 1

ρ

∂

∂ϕ

(
ρ

∂

∂ϕ
[R(a,2k)

n−k (cos ϕ) sink ϕ]
)

Yk,i(θ)

+ R(a,2k)
n−k (cos ϕ) sink−2 ϕ

∂2

∂θ2 Yk,i(θ)

= Yk,i(θ)ρ(z)k
{

− k(k + 1)R(a,2k)
n−k (z) − 2(k + 1)z R(a,2k) ′

n−k (z)

+ ρ(z)2R(a,2k) ′′
n−k (z)

}
, (14)

ΔS

(
w(a,0)

R Q(a)
n,k,i

) = 1

ρ

∂

∂ϕ

(
ρ

∂

∂ϕ
[w(a,0)

R (cos ϕ) R(a,2k)
n−k (cos ϕ) sink ϕ]

)
Yk,i(θ)

+ w(a,0)
R (cos ϕ) R(a,2k)

n−k (cos ϕ) sink−2 ϕ
∂2

∂θ2 Yk,i(θ)

= Yk,i(θ)
{

R(a,2k)
n−k (z)

[ − k(k + 1)w(a,k)
R (z) − 2a(k + 1)z w(a−1,k)

R (z)
]

+ a(a − 1)R(a,2k)
n−k (z) w(a−2,k+1)

R (z)

+ R(a,2k) ′
n−k (z)

[ − 2(k + 1)z w(a,k)
R (z) + 2a w(a−1,k+2)

R (z)
]

+ R(a,2k) ′′
n−k (z) w(a,k+2)

R (z)
}

. (15)

For the operator L(a)→(a+ã) for the surface Laplacian on a non-weighted space, the entries of the
operator are given by the coefficients in the expansion

ΔSQ(a)
n,k,i =

n∑
m=0

m∑
j=0

1∑
h=0

cm,j,h Q(a+ã)
m,j,h ,
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SPARSE SPECTRAL METHODS FOR PDEs ON SPHERICAL CAPS 19

where the coefficients are

cm,j,h =
∥∥∥Q(a+ã)

m,j,h

∥∥∥−2

Q(a+ã)
〈ΔSQ(a)

n,k,i, Q(a+ã)
m,j,h 〉Q(a+ã) .

Using equation (14), and integrating by parts twice, we then have that

〈ΔSQ(a)
n,k,i, Q(a+ã)

m,j,h 〉Q(a+ã)

=
( ∫ 2π

0
Yk,i(θ) Yj,h(θ) dθ

)

·
( ∫ 1

α

R(a+ã,2j)
m−j w(a+ã),k+j)

R

{
− k(k + 1)R(a,2k)

n−k − 2(k + 1)z R(a,2k) ′
n−k

+ ρ(z)2R(a,2k) ′′
n−k

}
dz
)

= π δk,j δi,h

∫ 1

α

R(a+ã,2k)
m−k w(a+ã,0)

R

(
− k(k + 1)R(a,2k)

n−k ρ2k + d

dz
[R(a,2k) ′

n−k ρ2(k+1)]
)

dz

= π δk,j δi,h

∫ 1

α

{
− k(k + 1)R(a+ã,2k)

m−k R(a,2k)
n−k w(a+ã,2k)

R

− R(a,2k) ′
n−k w(a+ã−1,2k)

R [R(a+ã,2k) ′
m−k w(1,0)

R + (a + ã)R(a+ã,2k)
m−k ]

}
dz

= π δk,j δi,h

∫ 1

α

R(a,2k)
n−k w(a,2k)

R rm−k+ã dz,

where rm−k+ã is a degree m−k+ ã polynomial in z, and so the above is zero for n−k > m−k+ ã ⇐⇒
m < n − ã.

For the operator L(a)→(a−ã)
W for the surface Laplacian on a weighted space, the entries of the operator

are given by the coefficients in the expansion

ΔS

(
w(a,0)

R Q(a)
n,k,i

) =
n∑

m=0

m∑
j=0

1∑
h=0

cm,j,h w(a−ã,0)
R Q(a−ã)

m,j,h ,

where the coefficients are

cm,j,h =
∥∥∥Q(a−ã)

m,j,h

∥∥∥−2

Q(a−ã)
〈ΔS

(
w(a,0)

R Q(a)
n,k,i

)
, Q(a−ã)

m,j,h 〉Q(0) .
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20 B. SNOWBALL AND S. OLVER

Using equation (15), and integrating by parts thrice, we then have that

〈ΔS

(
w(a,0)

R Q(a)
n,k,i

)
, Q(a−ã)

m,j,h 〉Q(0)

=
( ∫ 2π

0
Yk,i(θ) Yj,h(θ) dθ

)

·
( ∫ 1

α

R(a−ã,2j)
m−j w(a−2,k+j)

R

{
R(a,2k)

n−k [−k(k + 1)w(2,0)
R − 2a(k + 1)z w(1,0)

R + a(a − 1)ρ2]

+ R(a,2k) ′
n−k [−2(k + 1)z w(2,0)

R + 2aw(1,2)
R ]

+ R(a,2k) ′′
n−k w(2,2)

R

}
dz
)

= π δk,j δi,h

∫ 1

α

{
R(a−ã,2k)

m−k R(a,2k)
n−k w(a−2,2k)

R [−k(k + 1)w(2,0)
R − 2a(k + 1)z w(1,0)

R + a(a − 1)ρ2]

+ a R(a,2k) ′
n−k R(a−ã,2k)

m−k w(a−1,2k+2)
R

+ R(a−ã,2k)
m−k

d

dz
[R(a,2k) ′

n−k w(a,2k+2)
R ]

}
dz

= π δk,j δi,h

∫ 1

α

{
R(a−ã,2k)

m−k R(a,2k)
n−k w(a−2,2k)

R [−k(k + 1)w(2,0)
R − 2a(k + 1)z w(1,0)

R + a(a − 1)ρ2]

+ a R(a,2k) ′
n−k R(a−ã,2k)

m−k w(a−1,2k+2)
R

+ R(a,2k)
n−k w(a−1,2k)

R [R(a−ã,2k) ′′
m−k w(1,2)

R + aR(a−ã,2k) ′
m−k ρ2 − 2(k + 1)z R(a−ã,2k)

m−k w(1,0)
R ]

}
dz

= π δk,j δi,h

∫ 1

α

{
R(a−ã,2k)

m−k R(a,2k)
n−k w(a−2,2k)

R [−k(k + 1)w(2,0)
R − 2a(k + 1)z w(1,0)

R + a(a − 1)ρ2]

+ R(a,2k)
n−k w(a−1,2k+2)

R [R(a−ã,2k) ′′
m−k ρ2 − 2(k + 1)z R(a−ã,2k) ′

m−k ]

+ a[R(a,2k)
n−k R(a−ã,2k) ′

m−k + R(a−ã,2k)
m−k R(a,2k) ′

n−k ] w(a−1,2k+2)
R

}
dz

= π δk,j δi,h

∫ 1

α

{
R(a−ã,2k)

m−k R(a,2k)
n−k w(a−2,2k)

R [−k(k + 1)w(2,0)
R − 2a(k + 1)z w(1,0)

R + a(a − 1)ρ2]

+ R(a,2k)
n−k w(a−1,2k+2)

R [R(a−ã,2k) ′′
m−k ρ2 − 2(k + 1)z R(a−ã,2k) ′

m−k ]

− aR(a,2k)
n−k R(a−ã,2k)

m−k w(a−2,2k)
R [(a − 1)ρ2 − 2(k + 1)z w(1,0)

R ]
}

dz

= π δk,j δi,h

∫ 1

α

R(a,2k)
n−k w(a,2k)

R rm−k dz,

where rm−k is a degree m − k polynomial in z, and so the above is zero for n − k > m − k ⇐⇒ m < n.

Finally, fix a = 1. For the operator Δ
(1)
W for the Laplacian on the weighted space, the

entries of the operator are given by the coefficients in the expansion ΔS

(
w(1,0)

R Q(1)
n,k,i

) =

D
ow

nloaded from
 https://academ

ic.oup.com
/im

atrm
/article/5/1/tnab001/6432392 by Im

perial C
ollege London Library user on 27 July 2022



SPARSE SPECTRAL METHODS FOR PDEs ON SPHERICAL CAPS 21

∑n+2
m=0

∑m
j=0

∑1
h=0 cm,j,h Q(1)

m,j,h, where the coefficients are given by

cm,j,h =
∥∥∥Q(1)

m,j,h

∥∥∥−2

Q(1)
〈ΔS

(
w(1,0)

R Q(1)
n,k,i

)
, Q(1)

m,j,h〉Q(1) .

Using equation (15) with a = 1, and Lemma 3, we then have that

〈ΔS

(
w(1,0)

R Q(1)
n,k,i

)
, Q(1)

m,j,h〉Q(1)

=
( ∫ 2π

0
Yk,i(θ) Yj,h(θ) dθ

)

·
( ∫ 1

α

R(1,2j)
m−j

{
R(1,2k)

n−k [−k2w(1,k)
R − w(1,k)

R − 2(k + 1)zw(0,k)
R ]

+ R(1,2k) ′
n−k [2w(0,k+2)

R − 2(k + 1)zw(1,k)
R ]

+ R(1,2k) ′′
n−k w(1,k+2)

R

}
w(1,j)

R dz
)

= π δk,j δi,h

∫ 1

α

R(1,2k)
m−k

{
R(1,2k)

n−k [−k(k + 1)w(1,0)
R − 2(k + 1)z + cn,k]

+ cn−1,kR(1,2k)
n−k−1 + cn+1,kR(1,2k)

n−k+1

}
w(1,2k)

R dz

= −π δk,j δi,h(δm,n−1 + δm,n + δm,n+1)

∫ 1

α

{
R(1,2k)

n−k R(1,2k)
m−k (k(k + 1)w(1,0)

R + 2(k + 1)z)

+ R(1,2k) ′
n−k R(1,2k) ′

m−k w(2,2(k+1))
R

}
dz,

where the cn−1,k, cn,k, cn+1,k are those derived in Lemma 3. �
By applying these differential operators, we are (in some cases) incrementing or decrementing the

parameter value a. It is therefore necessary to also be able to raise or lower the parameter by way of an
independent operator. There exist conversion operators that do exactly this, transforming the OPs from
one (weighted or non-weighted) parameter space to another.

Definition 7 Define the operator matrices T(a)→(a+ã), T(a)→(a−ã)
W for conversion between non-

weighted spaces and weighted spaces, respectively, according to

Q̃
(a)
N (x, y, z) =

(
T(a)→(a+ã)

)�
Q̃

(a+ã)
N (x, y, z)

W
(a)
N (x, y, z) =

(
T(a)→(a−ã)

W

)�
W

(a−ã)
N (x, y, z).

Lemma 4 The operator matrices in Definition 7 are sparse, with banded-block-banded structure. More
specifically,

• T(a)→(a+ã) is block-diagonal with sub-block bandwidths (0, 2ã);

• T(a)→(a−ã)
W is block-diagonal with sub-block bandwidths (2ã, 0).
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22 B. SNOWBALL AND S. OLVER

Proof. We proceed with the case for the non-weighted operators T(a)→(a+ã). Since {Q(a+ã)
m,j,h } for

m = 0, . . . , n, j = 0, . . . , m, h = 0, 1 is an orthogonal basis for any degree n polynomial, we can
expand Q(a)

n,k,i = ∑n
m=0

∑m
j=0 tm,j Q(a+ã)

m,j,h . The coefficients of the expansion are then the entries of the
operator matrix. We will show that the only non-zero coefficients are for k = j, i = h and m ≥ n − ã.
Note that

tm,j =
∥∥∥Q(a+ã)

m,j,h

∥∥∥−2

Q(a+ã)

〈
Q(a)

n,k,i, Q(a+ã)
m,j,h

〉
Q(a+ã)

,

where

〈
Q(a)

n,k,i, Q(a+ã)
m,j,h

〉
Q(a+ã)

=
( ∫ 2π

0
Yk,i(θ) Yj,h(θ) dθ

)
·
( ∫ 1

α

R(a,2k)
n−k R(a+ã,2j)

m−j ρk+j w(a+ã,0)
R dz

)

= π δk,j δi,h

∫ 1

α

R(a,2k)
n−k R(a+ã,2k)

m−k w(a+ã,2k)
R dz,

which is zero for n > m + ã ⇐⇒ m < n − ã. The sparsity argument for the weighted parameter
transformation operator follows similarly. �

3.1 Further partial differential operators

General linear partial differential operators with polynomial variable coefficients can be constructed
by composing the sparse representations for partial derivatives, conversion between bases and Jacobi
operators. As a canonical example, we can obtain the matrix operator for the ρ2-factored spher-
ical Laplacian ρ(z)2 ΔS that will take us from coefficients for expansion in the weighted space

W
(1)
N (x, y, z) = w(1,0)

R (z) Q̃(1)
N (x, y, z) to coefficients in the non-weighted space Q̃

(1)
N (x, y, z). Note that

this construction will ensure the imposition of the Dirichlet zero boundary conditions on Ω , similar to
how the Dirichlet zero boundary conditions would be imposed for the operator Δ

(1)
W in Definition 6. The

matrix operator for this ρ2-factored spherical Laplacian acting on the coefficients vector is then given
by

D(0)
ϕ W(1)

ϕ + T(0)→(1) T(1)→(0)
W (Dθ )

2.

Importantly, this operator will have banded-block-banded structure, and hence will be sparse, as seen in
Fig. 1.

Another desirable operator is the Biharmonic operator Δ2
S, for which we assume zero Dirichlet and

Neumann conditions. That is,

u(x, y, z) = 0,
∂u

∂n
(x, y, z) = ∇Su(x, y, z) · n̂(x, y, z) = 0 for (x, y, z) ∈ ∂Ω ,

where ∂Ω is the z = α boundary and n̂(x, y, z) is the outward unit normal vector at the point (x, y, z) on
the boundary, i.e., n̂(x, y, z) = n̂(x) := x

‖x‖ = x. The matrix operator for the Biharmonic operator will

take us from coefficients in the space W(2)(x, y, z) to coefficients in the space Q̃
(2)
N (x, y, z). To construct
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SPARSE SPECTRAL METHODS FOR PDEs ON SPHERICAL CAPS 23

Fig. 1. ‘Spy’ plots of (differential) operator matrices, showing their sparsity. For (c), the weighted variable coefficient Helmholtz

operator is Δ
(1)
W + k2 T(0)→(1) V(J(0)

x
�

, J(0)
y

�
, J(0)

z
�

) T(1)→(0)
W for v(x, y, z) = 1 − (3(x − x0)2 + 5(y − y0)2 + 2(z − z0)2) where

(x0, z0) := (0.7, 0.2), y0 :=
√

1 − x2
0 − z2

0 and k = 200.

this, we can simply multiply together two of the spherical Laplacian operators defined in Definition 6,
namely L(0)→(2) and L(2)→(0)

W :

B(2)
W := L(0)→(2) L(2)→(0)

W .

Since the operator L(2)→(0)
W acts on coefficients in the W(2)(x, y, z) space, we ensure that we satisfy

the zero Dirichlet and Neumann boundary conditions—such a function could be written u(x, y, z) =
w(2,0)

R (z) ũ(x, y, z) and thus its spherical gradient would be zero on the boundary z = α. This allows us to
apply the L(0)→(2) operator after, safe in the knowledge that boundary conditions have been accounted
for. The sparsity and structure of this biharmonic operator are seen in Fig. 1.
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24 B. SNOWBALL AND S. OLVER

3.2 Stability of the Laplacian operator

Denote the condition number of the matrix A:

κ(A) := ‖A‖2

∥∥∥A−1
∥∥∥

2
,

which encodes how accurate the solution to Ax = b is under perturbation. Since the Laplacian operator
is block-diagonal one can determine the condition number from the condition numbers of each block
on the diagonal, and hence deduce the accuracy in solving the Poisson equation, where graphical
representations are seen in Fig. 2 for the Δ

(1)
W operator matrix. As the degree N increases, the condition

numbers of these blocks becomes grows algebraically fast (at least, the condition number for the first
block where m = 0 does, which will be the largest for each N). Fortunately, however, by applying
a trivial diagonal preconditioning matrix similar to that seen for the ultraspherical method (Olver &
Townsend, 2013), we can significantly bound this growth of the condition numbers—this is also seen in
Fig. 2. The preconditioning matrix chosen is P−1, where P is the matrix of the diagonal of Δ

(1)
W .

4. Computational aspects

In this section, we discuss how to expand and evaluate functions in our proposed basis and take advan-
tage of the sparsity structure in partial differential operators in practical computational applications.

4.1 Constructing R(a,b)
n (x)

It is possible to recursively obtain the recurrence coefficients for the {R(a,b)
n } OPs in (6), see Snowball &

Olver (2020), by careful application of the Christoffel–Darboux formula (Olver et al., 2010, 18.2.12).

4.2 Quadrature rule on the spherical cap

In this section, we construct a quadrature rule that is exact for polynomials on the spherical cap Ω that
can be used to expand functions in the OPs Q(a)

n,k,i(x, y, z) for a given parameter a.

Theorem 4.1 Let M1, M2 ∈ N, and denote the M1 Gauss quadrature nodes and weights on [α, 1] with

weight (t − α)a as (tj, w(t)
j ). Further, denote the M2 Gauss quadrature nodes and weights [−1, 1] with

weight (1 − x2)− 1
2 as (sj, w(s)

j ). Define for j = 1, . . . , M1, l = 1, . . . , M2,

xl+(j−1)M2
:= ρ(tj) sl,

yl+(j−1)M2
:= ρ(tj)

√
1 − s2

l ,

zl+(j−1)M2
:= tj,

wl+(j−1)M2
:= w(t)

j w(s)
l .
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SPARSE SPECTRAL METHODS FOR PDEs ON SPHERICAL CAPS 25

Fig. 2. Plots of the condition number for the Laplacian operator matrix Δ
(1)
W and the preconditioned matrix P−1Δ

(1)
W where P

is the matrix of the diagonal of Δ
(1)
W . Top: the condition numbers of each diagonal block of Δ

(1)
W for N = 200, as well as those

for P−1Δ
(1)
W . Bottom: the maximum condition number of all diagonal blocks of the Laplacian and the preconditioned Laplacian

operators, as the degree N increases.

Let f (x, y, z) be a function on Ω , and N ∈ N. The quadrature rule is then

∫
Ω

f (x, y, z) w(a,0)
R (z) dA ≈

M∑
j=1

wj

[
f (xj, yj, zj) + f (−xj, −yj, zj)

]
,

where M = M1 M2 and the quadrature rule is exact if f (x, y, z) is a polynomial of degree ≤ N with
M1 ≥ 1

2 (N + 1), M2 ≥ N + 1.

Remark 3 Note that the Gauss quadrature nodes and weights (tj, w(t)
j ) will have to be calculated;

however, the Gauss quadrature nodes and weights (sj, w(s)
j ) are simply the Chebyshev–Gauss quadrature

nodes and weights given explicitly (Olver et al., 2010, 3.5.23) as sj := cos( 2j−1
2M2

π), w(s)
j := π

M2
.
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26 B. SNOWBALL AND S. OLVER

Proof. Let f : Ω → R. Define the functions fe, fo : Ω → R by

fe(x, y, z) := 1

2

(
f (x, y, z) + f (−x, −y, z)

)
, ∀(x, y, z) ∈ Ω

fo(x, y, z) := 1

2

(
f (x, y, z) − f (−x, −y, z)

)
, ∀(x, y, z) ∈ Ω

so that x �→ fe(x, z) for fixed z is an even function, and x �→ fo(x, z) for fixed z is an odd function. Note
that if f is a polynomial, then fe(ρ(t)x, ρ(t)y, t) is a polynomial in t ∈ [α, 1] for fixed (x, y) ∈ R2.

Firstly, we note that

∫ 2π

0
g
(

cos θ , sin θ
)

dθ =
∫ 1

−1

[
g
(
x,
√

1 − x2
) + g

(
x, −

√
1 − x2

)] dx√
1 − x2

=
∫ 1

−1

[
g
(
x,
√

1 − x2
) + g

( − x, −
√

1 − x2
)] dx√

1 − x2

for any function g, using a change of variables x → −x for the second term in the integral. Then,
integrating the even function fe, we have

∫
Ω

fe(x, y, z) w(a,0)
R (z) dA

=
∫ 1

α

w(a,0)
R (z)

( ∫ 2π

0
fe
(
ρ(z) cos θ , ρ(z) sin θ , z

)
dθ
)

dz

=
∫ 1

α

w(a,0)
R (z)

( ∫ 1

−1

[
fe
(
ρ(z)x, ρ(z)

√
1 − x2, z

)

+ fe
( − ρ(z)x, −ρ(z)

√
1 − x2, z

)] dx√
1 − x2

)
dz

= 2
∫ 1

α

w(a,0)
R (z)

( ∫ 1

−1
fe
(
ρ(z)x, ρ(z)

√
1 − x2, z

) dx√
1 − x2

)
dz

≈
∫ 1

α

w(a,0)
R (z)

( M2∑
l=1

w(s)
l fe

(
ρ(z)sl, ρ(z)

√
1 − s2

l , z
))

dz (�)

≈
M1∑
j=1

w(t)
j

M2∑
l=1

w(s)
l fe

(
ρ(tj)sl, ρ(tj)

√
1 − s2

l , tj
)

(��)

=
M1M2∑
k=1

wj fe(xj, yj, zj).
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SPARSE SPECTRAL METHODS FOR PDEs ON SPHERICAL CAPS 27

Suppose f is a polynomial in x, y, z of degree N and hence that fe is a degree ≤ N polynomial. It follows
that s �→ fe

(
ρ(z)s, ρ(z)

√
1 − s2, z

)
for fixed z is then a polynomial of degree ≤ N. We therefore achieve

equality at (�) if 2M2 − 1 ≥ N and we achieve equality at (��) if also 2M1 − 1 ≥ N.
Integrating the odd function fo results in

∫
Ω

fo(x, y, z) w(a,0)
R (z) dA

=
∫ 1

α

w(a,0)
R (z)

( ∫ 2π

0
fo
(
ρ(z) cos θ , ρ(z) sin θ , z)

)
dθ
)

dz

=
∫ 1

α

w(a,0)
R (z)

( ∫ 1

−1

[
fo
(
ρ(z)x, ρ(z)

√
1 − x2, z

)

+ fo
( − ρ(z)x, −ρ(z)

√
1 − x2, z

)] dx√
1 − x2

)
dz

= 0.

since fo(x, y, z) = −fo(−x, −y, z). Hence, for a polynomial f in x, y, z of degree N,

∫
Ω

f (x, y, z) w(a,0)
R (z) dA =

∫
Ω

(
fe(x, y, z) + fo(x, y, z)

)
w(a,0)

R (z) dA

=
∫

Ω

fe(x, y, z) w(a,0)
R (z) dA

=
M∑

j=1

wj fe(xj, yj, zj),

where M = M1M2 and 2M1 − 1 ≥ N, 2M2 − 1 ≥ N. �

4.3 Obtaining the coefficients for expansion of a function on the spherical cap

Fix a ∈ R. Then, for any function f : Ω → R, we can express f by

f (x, y, z) ≈
N∑

k=0

Q̃
(a)
N,k(x, y, z)� f k = Q̃

(a)
N (x, y, z)� f
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28 B. SNOWBALL AND S. OLVER

for N sufficiently large, where Q̃
(a)
N,k, Q̃(a)

N is defined in equations (11, 12, 13) and where

f k :=

⎛
⎜⎜⎜⎜⎜⎝

fk,k,0
fk,k,1

...
fN,k,0
fN,k,1

⎞
⎟⎟⎟⎟⎟⎠ ∈ R2(N−k+1) for n = 1, 2, . . . , N, f 0 :=

⎛
⎜⎝

f0,0,0
...

fN,0,0

⎞
⎟⎠ ∈ RN+1,

f :=
⎛
⎜⎝

f 0
...

f N

⎞
⎟⎠ ∈ R2(N+1)2

, fn,k,i := 〈f , Q(a)
n,k,i〉Q(a)

∥∥∥Q(a)
n,k,i

∥∥∥−2

Q(a)
.

Recall from equation (5) that
∥∥∥Q(a)

n,k,i

∥∥∥2

Q(a)
= ω

(a,2k)
R π . Using the quadrature rule detailed in Section 4.2

for the inner product, we can calculate the coefficients fn,k,i for each n = 0, . . . , N, k = 0, . . . , n, i = 0, 1:

fn,k,i = 1

2 ω
(a,2k)
R π

M∑
j=1

wj

[
f (xj, yj, zj)Q

(a)
n,k,i(xj, yj, zj) + f (−xj, −yj, zj)Q

(a)
n,k,i(−xj, −yj, zj)

]

= 1

M2 ω
(a,2k)
R

M∑
j=1

[
f (xj, yj, zj)Q

(a)
n,k,i(xj, yj, zj) + f (−xj, −yj, zj)Q

(a)
n,k,i(−xj, −yj, zj)

]
,

where the quadrature nodes and weights are those from Theorem 4.1, and M = M1M2 with 2M1 − 1 ≥
N, M2 − 1 ≥ N (i.e., we can choose M2 := N + 1 and M1 :=

⌈
N+1

2

⌉
).

Remark 4 While it may be possible to leverage fast transforms, as in Slevinsky (2018, 2019), to speed
up the calculation of the coefficients, this remains an open question.

4.4 Function evaluation

For a function f , with coefficients vector f for expansion in the {Qn,k,i} basis as determined via the
method in Section 4.3 up to order N, we can use the Clenshaw algorithm to evaluate the function at
a point (x, y, z) ∈ Ω as follows. Let An, Bn, D�

n , Cn be the Clenshaw matrices from Definition 5, and
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SPARSE SPECTRAL METHODS FOR PDEs ON SPHERICAL CAPS 29

define the rearranged coefficients vector f̃ via

f n :=

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

fn,0,0
fn,1,0
fn,1,1

...
fn,n,0
fn,n,1

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

∈ R2(N+1) for n = 1, 2, . . . , N, f 0 = f0,0,0 ∈ R,

f :=
⎛
⎜⎝

f 0
...

f N

⎞
⎟⎠ ∈ R(N+1)2

.

The trivariate Clenshaw algorithm works similar to the bivariate Clenshaw algorithm introduced in Olver
et al. (2019) for expansions in the triangle:

(1) set ξN+2 = 0, ξN+2 = 0;

(2) for n = N : −1 : 0

set ξT
n = f n

T − ξT
n+1DT

n (Bn − Gn(x, y, z)) − ξT
n+2DT

n+1Cn+1;

(3) output: f (x, y, z) ≈ ξ0 Q
(a)
0 = ξ0 Q(a)

0 .

4.5 Calculating non-zero entries of the operator matrices

The proofs of Theorem 3.1 and Lemma 4 provide a way to calculate the non-zero entries of the operator
matrices given in Definitions 6 and 7. We can simply use quadrature to calculate the one-dimensional
inner products, which has a complexity of O(N2). This proves much cheaper computationally than using
the three-dimensional quadrature rule to calculate the surface inner products, which has a complexity of
O(N3).

4.6 Obtaining operator matrices for variable coefficients

The Clenshaw algorithm outlined in Section 4.4 can also be used with Jacobi matrices J(a)
x , J(a)

y , J(a)
z

replacing the point (x, y, z). Let v : Ω → R be the function that we wish to obtain an operator matrix V
for v, so that

v(x, y, z) f (x, y, z) = v(x, y, z) f Q(a)(x, y, z) = (Vf )� Q(a)(x, y, z),

i.e., Vf is the coefficients vector for the function v(x, y, z) f (x, y, z).
To this end, let ṽ be the coefficients for expansion up to order N in the {Qn,k,i} basis of v (rearranged

as in Section 4.4 so that v(x, y, z) = v� Q(a)(x, y, z)). Denote X := (J(a)
x )�, Y := (J(a)

y )�, Z := (J(a)
z )�.
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30 B. SNOWBALL AND S. OLVER

The operator V is then the result of the following:

(1) set ξN+2 = 0, ξN+2 = 0;

(2) for n = N : −1 : 0

set ξT
n = ṽT

n − ξT
n+1DT

n

(
Bn − Gn(X, Y , Z)

) − ξT
n+2DT

n+1Cn+1;

(3) output: V = v(X, Y , Z) ≈ ξ0 Q
(a)
0 = ξ0 Q(a)

0 ,

where at each iteration, ξn is a vector of matrices.

5. Examples on spherical caps with zero Dirichlet conditions

We now demonstrate how the sparse linear systems constructed as above can be used to efficiently
solve PDEs with zero Dirichlet conditions on the spherical cap defined by Ω . We consider Poisson,
inhomogeneous variable coefficient Helmholtz equation and the Biharmonic equation, as well as a time
dependent heat equation, demonstrating the versatility of the approach.

5.1 Poisson

The Poisson equation is the classic problem of finding u(x, y, z) given a function f (x, y, z) such that

{
ΔSu(x, y, z) = f (x, y, z) in Ω

u(x, y, z) = 0 on ∂Ω
(16)

noting the imposition of zero Dirichlet boundary conditions on u.
We can tackle the problem as follows. Choose an N ∈ N large enough for the problem, and denote

the coefficient vector for expansion of u in the W
(1)
N OP basis up to degree N by u, and the coefficient

vector for expansion of f in the Q̃
(1)
N OP basis up to degree N by f. Since f is known, we can obtain f

using the quadrature rule in Section 4.3. In matrix-vector notation, our system hence becomes

Δ
(1)
W u = f,

which can be solved to find u. In Fig. 3, we see the solution to the Poisson equation with zero boundary
conditions given in equation (16) in the disk-slice Ω . In Fig. 3, we also show the norms of each block
of calculated coefficients of the approximation for four right-hand sides of the Poisson equation with
N = 200, that is, (N + 1)2 = 40, 401 unknowns. The right-hand sides we choose here are given by

f (x, y, z) =
∥∥∥∥(x − (ε + 1/

√
3), y − (ε + 1/

√
3), z − (ε + 1/

√
3)
)�∥∥∥∥

for differing choices of ε—this parameter serves to alter the distance from which we would have a
singularity. In the plot, a ‘block’ is simply the group of coefficients corresponding to OPs of the same
degree, and so the plot shows how the norms of these blocks decay as the degree of the expansion
increases. Thus, the rate of decay in the coefficients is a proxy for the rate of convergence of the
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SPARSE SPECTRAL METHODS FOR PDEs ON SPHERICAL CAPS 31

Fig. 3. Top: the computed solution to Δu = f with zero boundary conditions with f (x, y, z) = −2exyz(2 + x) + w(1,0)
R (z)ex(y3 +

z2y − 4xy − 2y). Bottom: the norms of each block of the computed solution of the Poisson equation with right-hand side function

f (x, y, z) =
∥∥∥x − (ε + 1/

√
3) (1, 1, 1)�

∥∥∥ for different ε values. This indicates spectral convergence.

computed solution: as typical of spectral methods, we expect the numerical scheme to converge at the
same rate as the coefficients decay. We see that we achieve spectral convergence for these examples.

5.2 Inhomogeneous variable-coefficient Helmholtz

Find u(x, y) given functions v, f : Ω → R such that{
ΔSu(x, y, z) + k2 v(x, y, z) u(x, y, z) = f (x, y, z) in Ω

u(x, y, z) = 0 on ∂Ω ,
(17)

where k ∈ R, noting the imposition of zero Dirichlet boundary conditions on u.
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32 B. SNOWBALL AND S. OLVER

Fig. 4. Top: the computed solution to Δu + k2 v u = f with zero boundary conditions with f (x, y, z) = yex(z − α), v(x, y, z) =
1 − (3(x − x0)2 + 5(y − y0)2 + 2(z − z0)2) where (x0, z0) := (0.7, 0.2), y0 :=

√
1 − x2

0 − z2
0 and k = 100. Bottom: the norms

of each block of the computed solution of the Helmholtz equation with the right-hand side function f (x, y, z) = 1 and the same
function v(x, y, z), for various k values. This indicates spectral convergence.

We can tackle the problem as follows. Denote the coefficient vector for expansion of u in the W
(1)
N

OP basis up to degree N by u, and the coefficient vector for expansion of f in the Q̃
(1)
N OP basis up to

degree N by f. Since f is known, we can obtain the coefficients f using the quadrature rule in Section 4.3.
Define X := (J(0)

x )�, Y := (J(0)
y )�, Z := (J(0)

z )�. We can obtain the matrix operator for the variable-
coefficient function v(x, y, z) by using the Clenshaw algorithm with matrix inputs as the Jacobi matrices
X, Y , Z, yielding an operator matrix of the same dimension as the input Jacobi matrices a la the procedure
introduced in Olver et al. (2019). We can denote the resulting operator acting on coefficients in the Q̃(0)

N
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SPARSE SPECTRAL METHODS FOR PDEs ON SPHERICAL CAPS 33

Fig. 5. Time in seconds to build and solve the system
[
ΔS + v(x, y, z)

]
u(x, y, z) = f (x, y, z), for a rotationally invariant

v(x, y, z) = v(z). This demonstrates that the approach is roughly of order O(N2), where N is the degree to which we approximate
the solution (the number of unknowns is then (N + 1)2). Here, we used f = −2exyz(2 + x) + (z − α)ex(y3 + z2y − 4xy − 2y) and
v(x, y, z) = v(z) = cos(z).

space by v(X, Y , Z). In matrix-vector notation, our system hence becomes

(Δ
(1)
W + k2 T(0)→(1) V T(1)→(0)

W ) u = f,

which can be solved to find u. We can see the sparsity and structure of this matrix system in Fig. 1
with v(x, y, z) = zxy2 as an example. In Fig. 4, we see the solution to the inhomogeneous variable-
coefficient Helmholtz equation with zero boundary conditions given in equation (17) in the spherical
cap Ω , with f (x, y, z) = yexw(1,0)

R (z), v(x, y, z) = 1 − (3(x − x0)
2 + 5(y − y0)

2 + 2(z − z0)
2) where

(x0, z0) := (0.7, 0.2), y0 :=
√

1 − x2
0 − z2

0 and k = 100. In Fig. 4, we also show the norms of each
block of calculated coefficients for the approximation of the solution to the inhomogeneous variable-
coefficient Helmholtz equation with various k values. Here, we use N = 200, that is, (N +1)2 = 40, 401
unknowns. Once again, the rate of decay in the coefficients is a proxy for the rate of convergence of the
computed solution, and we see that we achieve spectral convergence.

In Fig. 5, we plot the time taken2 to construct the operator for ΔS + v(x, y, z), with a rotationally
invariant v(x, y, z) = v(z) = cos z and solve a zero boundary condition Helmholtz problem. The plot
demonstrates that as we increase the degree of approximation N, we achieve a complexity of an optimal
O(N2).

What about other boundary conditions? One simple extension is the case where the value on the
boundary takes that of a function depending only on x and y, i.e., c = c(x, y). In this case, the problem

{
ΔSu(x, y, z) + k2 v(x, y, z) u(x, y, z) = f (x, y, z) in Ω

u(x, y, z) = c(x, y) on ∂Ω

2 measured using the ‘@belapsed’ macro from the BenchmarkTools.jl package (Chen & Revels, 2016) in Julia.

D
ow

nloaded from
 https://academ

ic.oup.com
/im

atrm
/article/5/1/tnab001/6432392 by Im

perial C
ollege London Library user on 27 July 2022



34 B. SNOWBALL AND S. OLVER

is equivalent to letting u(x, y, z) = ũ(x, y, z) + c(x, y) and solving

{
ΔSũ(x, y, z) + k2 v(x, y, z) ũ(x, y, z) = f (x, y, z) − k2 v(x, y, z) c(x, y) − ΔS c(x, y) in Ω

ũ(x, y, z) = 0 on ∂Ω

for ũ. This new problem is then a zero boundary condition Helmholtz problem with right-hand side

g(x, y, z) := f (x, y, z) − k2 v(x, y, z) c(x, y) − ΔS c(x, y)

for (x, y, z) ∈ Ω . Notice that the spherical Laplacian applied to c(x, y), expanded in the Q̃
(1)
N basis with

coefficients vector c = (cn,k,i), is just

ΔS c(x, y) = 1

ρ(z)2

N∑
n=0

1∑
i=0

cn,n,i
∂2

∂θ2
Yn,i(θ) = − 1

ρ(z)2

N∑
n=0

1∑
i=0

n2 cn,n,i Yn,i(θ)

since the coefficients {cn,k,i} for such a function are zero for k < n due to the dependence on x and y
only, which are precisely the Fourier coefficients of c(cos θ , sin θ). Thus, since the function c(x, y) is

known, it is simple to evaluate ∂2

∂θ2 c(x, y) and hence one can obtain the coefficients for the expansion of

g(x, y, z) in the Q̃
(1)
N basis in the usual manner.

5.3 Biharmonic equation

Our last example is the biharmonic equation: find u(x, y, z) given a function f (x, y, z) such that

{
Δ2

Su(x, y, z) = f (x, y, z) in Ω

u(x, y, z) = 0, ∂u
∂n (x, y, z) = ∇S u(x, y, z) · n̂(x, y, z) = 0 on ∂Ω ,

(18)

where Δ2
S is the Biharmonic operator, noting the imposition of zero Dirichlet and Neumann boundary

conditions on u. For clarity, we reiterate that the unit normal vector in this sense is simply n̂(x, y, z) =
n̂(x) := x

‖x‖ = x (see Section 3.1). In Fig. 6, we see the solution to the Biharmonic equation (18) in
the spherical cap Ω . In Fig. 6, we also show the norms of each block of calculated coefficients of the
approximation for four more complex right-hand sides of the biharmonic equation with N = 200, that
is, (N +1)2 = 40, 401 unknowns. Once again, the rate of decay in the coefficients is a proxy for the rate
of convergence of the computed solution, and we see that we achieve exponential convergence for these
more complex functions.

5.4 Other boundary conditions

Other boundary conditions beyond those already presented here are beyond the scope of this paper.
However, the approach established for the case of a triangle domain in two dimensions shows how
Neumann conditions can be considered as a system of equations in partial derivatives involving Dirchlet
conditions (Olver et al., 2019). This approach may also work here for the spherical cap. Ideally, one
would properly tackle the tangent space (which again is beyond the scope of this paper), which would
lower the degrees of freedom.
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Fig. 6. Left: the computed solution to Δ2u = f with zero Dirichlet and Neumann boundary conditions with f (x, y, z) = (1 +
erf(5(1−10((x−0.5)2+y2))))ρ(z)2. Right: the norms of each block of the computed solution of the biharmonic equation with the

right-hand side function f (x, y, z) = exp(−ε((x− x0)2 + (y− y0)2 + (z− z0)2)) where (x0, z0) := (0.7, 0.2), y0 :=
√

1 − x2
0 − z2

0,
for various ε values. This demonstrates algebraic convergence.

6. Conclusions

We have shown that trivariate OPs can lead to sparse discretizations of general linear PDEs on spherical
cap domains, with Dirichlet boundary conditions on the z = α ∈ (0, 1) boundary. We have provided
a detailed practical framework for the application of the methods described for quadratic surfaces of
revolution (Olver & Xu, 2020), by utilizing the non-classical one-dimensional OPs on the interval
[α, 1] with the weight (z − α)a (1 − z2)b/2 defined for the disk-slice case (Snowball & Olver, 2020).
Generalization to spherical bands (α ≤ z ≤ β) is straightforward. This work thus forms a building
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block in developing an hp-finite element method to solve PDEs on the sphere by using spherical band
and spherical cap shaped elements.

This work also serves as a stepping stone to constructing similar methods to solve partial differential
equations on other three-dimensional sub-domains of the sphere such as spherical triangles. It is clear
from the construction in this paper that discretizations of spherical gradients and Laplacian’s are sparse
on other suitable sub-components of the sphere. The resulting sparsity in high-polynomial degree
discretizations presents an attractive alternative to methods based on bijective mappings (e.g., Bonev
et al., 2018; Boyd, 2005; Shipton et al., 2018). Constructing these sparse spectral methods for surface
PDEs on spherical triangles is future work and has applications in weather prediction (Staniforth &
Thuburn, 2012), though it is not yet clear how to directly construct, or perhaps compute, the necessary
OPs.

The next stage is to develop an orthogonal basis for the tangent space of the spherical cap (or band)
and obtain sparse differential operators for gradient, divergence, etc. On the complete sphere, the vector
spherical harmonics that form the orthogonal basis are simply the gradients and perpendicular gradients
of the scalar spherical harmonics (Barrera et al., 1985), which has been used effectively for solving
PDEs on the sphere (Lecoanet et al., 2019; Vasil et al., 2019); however, we do not have that luxury for
the spherical cap or band, and hence the construction of a basis will not be as straightforward.
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