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Abstract

Analysts predict impending shortages in the health care workforce, yet wages for health
care workers already account for over half of U.S. health expenditures. It is thus increasingly
important to adequately plan to meet health workforce demand at reasonable cost. Using infinite
linear programming methodology, we propose an infinite-horizon model for health workforce
planning in a large health system for a single worker class, e.g. nurses. We give a series of
common-sense conditions any system of this kind should satisfy, and use them to prove the
optimality of a natural lookahead policy. We then use real-world data to examine how such
policies perform in more complex systems with additional detail.

1 Introduction

Health workforce planning plays a key role in the United States and worldwide. Analysts project
that by 2020 the U.S. will experience a shortage of up to 100,000 physicians, up to one million
nurses and up to 250,000 public health professionals [55]. Adequate staffing of medical units has
been shown to have a direct impact in the quality of patient care [42], and also accounts for a
considerable fraction of health care costs, with wages for health care workers representing 56% of
the $2.6 trillion spent on health care in the United States in 2010 [35].

As the U.S. population continues to age [54] and demand for health care continues to grow,
different sectors of the population will compete for constrained and costly health care resources. It
thus becomes increasingly important to understand how the health care needs of the population are
linked to long-term workforce management plans of doctors, nurses and other medical personnel.
The challenge is to ensure that sufficient resources are available in the future to meet the growing
health care needs of the population, while accounting for the costs associated with meeting these
needs. These workforce levels should meet the demand for resources in the present and be posi-
tioned to meet demand for the foreseeable future [49], an essentially infinite horizon. Furthermore,
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workforce plans should account for lags implied by training new members of the workforce, attrition
stemming from retirements, firings and resignations, and also the adequate supervision of workers
at different levels of the workforce hierarchy by their superiors.

Given the significant costs and the impact on health care outcomes associated with workforce
decisions, an understanding of the role of the planning horizon and the long-term consequences of
health workforce plans becomes essential to stakeholders in large health care systems. We therefore
propose to study the planning of workforce training, promotion and hiring within such systems,
with the main goal of designing a natural policy for decision makers to implement, and concurrently
determining common-sense conditions under which this policy is in fact optimal. Governments, reg-
ulatory bodies, professional associations, representatives from the private sector and senior health
system executives may use the results presented in this paper to gain a deeper understanding on
where incentives should be placed to best meet the health workforce needs of the population.

Our focus is on decisions at a health care policy or public policy level (i.e. not on individual
hiring and firing decisions), and thus our model includes a few stylized simplifications. For instance,
the problem scale we are interested in has workforces numbering in the thousands or the tens of
thousands, e.g. state or provincial health systems, large hospital conglomerates, or the U.S. Veter-
ans Administration. We therefore model the workforce as a continuous flow and allow fractional
quantities in our solutions. Similarly, we assume centralized control of the system, which may only
be realistic in some cases. Nevertheless, even for those systems in which this is not entirely the
case, the conditions we list can help decision makers with limited control in monitoring the system’s
behavior.

1.1 Our Contribution

We consider the following to be our main contributions:

i) We propose a discounted, infinite linear programming model for strategic workforce planning,
which includes training, promotion and hiring decision for a class of health workers within a
hierarchical system. The model takes as input a demand forecast, workforce payroll, training
and hiring costs, workforce hierarchy parameters and a discount factor.

ii) We give a series of common-sense conditions any system of this kind should satisfy under
our assumptions, demonstrate the pathological behavior that can occur when they are not
satisfied and derive useful structural properties of the optimal solutions from the conditions.
Though based on our assumptions, these conditions may help guide decision making in more
complex systems with additional detail.

iii) We prove that a natural lookahead policy is optimal for our model, and use duality theory
to demonstrate how sensitivity analysis can be performed. The optimality result is particu-
larly useful because lookahead policies mimic how more complex models may be managed in
practice.

iv) We provide computational examples, based on real-world nursing workforce data, demonstrat-
ing the efficacy of our proposed policy in more complex models with additional constraints
and practical details.

The remainder of the paper is organized as follows: This section closes with a literature review.
Section 2 formulates our model and states the conditions we assume. Section 3 uses the conditions
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to show some structural properties of optimal solutions, proves the optimality of our proposed
policy and discusses duality and sensitivity. Section 4 discusses experiments that test our policy on
more complex models, and Section 5 concludes outlining future research avenues. The Appendix
contains technical proofs and some additional modeling information.

1.2 Literature Review

Workforce planning models are not new to the operations research and management science litera-
ture, with work stretching back several decades, such as [1, 9, 32, 40, 45, 50]. Workforce management
models have been developed to manage workforce in call centers [26], military personnel [28], med-
ical school budgets [16, 39], as well as to address cross-training and flexibility of the workforce
[43, 56]. [11, 22, 53] provide overviews of workforce/manpower planning models, while [15] dis-
cuss the need of a greater interface between operations and human resource management models
and the complexities associated with those models. Recent work continues to address workforce
issues in operational or tactical time frames, e.g. [10]; this focus on shorter horizons extends also to
health care and emergency workforce planning [14, 21, 25, 60]. The long-term workforce capacity
planning models [6, 27, 52] are related to our work, yet they concentrate only on the recruitment
and retention of personnel without incorporating some of the other decisions required to manage
health care personnel. On the other hand, models such as [8, 59] concentrate on skill acquisition
and on-the job learning, focusing on a shorter time scale. The results in [57, 58] and the recent
survey [53] particularly highlight the need to research long-term health workforce planning, among
other areas.

The work in [36, 37, 38] developed an integrated workforce planning model of the registered
nursing workforce of British Columbia. The model was solved over a 20-year planning horizon,
providing guidance on the number of nurses to train, promote and recruit to achieve specified
workforce levels. However, as the model was solved over a finite horizon, one of the key challenges
was understanding the impact of the length of the planning horizon and terminal conditions on the
resulting solution.

Infinite-horizon optimization has been widely applied to various operational problems; the dy-
namic programming paradigm in particular is extensively used [44, 61]. The last two or three
decades have also seen the direct study of infinite mathematical programming models and specif-
ically infinite linear programs for operations management applications. Some problems studied
in the literature include inventory routing [2, 3], joint replenishment [4, 5], production plan-
ning [19, 47], and equipment replacement [34]. A general reference for infinite linear program-
ming is [7]. Our models operate in countable dimensions; recent results for this topic include
[19, 29, 30, 46, 47, 48, 51]. Workforce management possesses differences with other resource man-
agement problems that deal mostly with products [27]. To our knowledge, although dynamic
programming has been applied to model strategic workforce management, e.g. [27, 45], infinite
linear programming has not yet been considered in the literature to address this topic, and this
methodology allows for additional research insights such as sensitivity analysis, duality and the
modeling of workforce as a network flow.

For a recent overview of optimization in health care, we refer the reader to [12].
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2 Model Formulation and Assumptions

We consider an infinite-horizon, discounted workforce planning model with the following charac-
teristics. There is a deterministic demand forecast given as an infinite sequence; each period, the
population of workers at the lowest level of the system, e.g. junior nurses, must be at least equal
to that period’s demand. The system has a fixed number of levels above this first level; worker
population at each higher level must be at least a fixed fraction of the same period’s population one
level below, to ensure adequate supervision. Between one period and the next, a fixed fraction of
each level’s population leaves the system, accounting for retirements, firings and resignations. New
workers may be added to any level directly via hiring, or indirectly through student admission and
training at the first level, and promotion at higher levels; there is no down-sizing, i.e. mass firing to
reduce workforce levels. Student populations take one period to train before entering at the first
workforce level; similarly, only workers who have been in a level for at least one period may be
promoted. We discuss how to extend our results to models with longer training in the subsequent
sections.

The model is defined by the following parameters.

• n ≥ 2: Number of workforce hierarchy levels.

• hk > 0: Per-period variable payroll costs for level k = 1, . . . , n.

• ck > 0: Variable training (k = 0) or hiring (k ≥ 1) costs for level k = 0, . . . , n.

• ck,k+1 ≥ 0: Variable promotion cost from level k = 1, . . . , n − 1 to k + 1. Workers may only
be promoted once they have worked at a particular level for at least one period.

• γ ∈ (0, 1): Discount factor, adjusted to account for cost increases. That is, if γ̄ is the nominal
discount rate and α > 1 is the cost growth rate, then γ = αγ̄; this is the reciprocal of the
“health care inflation.”

• dt > 0: Forecasted level-1 workforce demand for period t = 1, . . . .

• qk,k+1 ∈ (0, 1): Minimum fraction of level-k workers needed at level k+1, for k = 1, . . . , n−1.

• pk ∈ (0, 1): Per-period retention rate of workers that stay in the system at level k = 0, . . . , n
from one period to the next. The attrition rate 1 − pk is the fraction of workers at level k
expected to leave the system from one period to the next; this includes firing, retirement and
quitting.

• s0
k: Students (k = 0) or workers in level k = 1, . . . , n at the start of the current period, before

attrition.

The model’s decision variables are:

• stk: Students (k = 0) or workers in level k = 1, . . . , n at end of period t = 1, . . . .

• xtk: Students admitted (k = 0) or workers hired at level k = 1, . . . , n in period t = 1, . . . .

• xtk,k+1: Workers promoted from level k = 1, . . . , n− 1 to k + 1.
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Our strategic workforce planning problem then has the following formulation.

inf C(s, x) =
∞∑
t=1

γt−1

( n∑
k=0

ckx
t
k +

n−1∑
k=1

ck,k+1x
t
k,k+1 +

n∑
k=1

hks
t
k

)
(1a)

s.t. st1 ≥ dt, ∀ t = 1, . . . (1b)

stk+1 − qk,k+1s
t
k ≥ 0, ∀ k = 1, . . . , n− 1, ∀ t = 1, . . . (1c)

p1s
t−1
1 − st1 + p0x

t−1
0 − xt12 + xt1 = 0, ∀ t = 1, . . . (1d)

pks
t−1
k − stk + xtk−1,k − xtk,k+1 + xtk = 0, ∀ k = 2, . . . , n− 1, ∀ t = 1, . . . (1e)

pns
t−1
n − stn + xtn−1,n + xtn = 0, ∀ t = 1, . . . (1f)

pks
t−1
k − xtk,k+1 ≥ 0, ∀ k = 1, . . . , n− 1, ∀ t = 1, . . . (1g)

st, xt ≥ 0, ∀ t = 1, . . . , (1h)

where st0 = xt0 for t = 0, . . . . We take the feasible region to be the subset of solutions for which
the objective is well defined and finite [47]. In the model, the objective (1a) minimizes discounted
cost over the infinite horizon. The demand satisfaction constraint (1b) ensures enough level-1
workers are present to satisfy projected demand each period, while (1c) ensures the minimum
required fraction of level-(k+ 1) workers are present to supervise level-k workers. The flow balance
constraints (1d–1f) track workers present at each level from one period to the next, and (1g) limits
the promoted workers from level k to k + 1 to those present in level k for at least one period.
The domain constraints (1h) ensure non-negativity of worker levels, hires, promotions and student
admissions.

We next list several conditions the model should satisfy. These conditions are common in
many real world settings or are reasonable approximations, and are necessary for most of our
subsequent results. Many are also necessary to avoid pathological behavior. We begin with technical
assumptions.

Assumption 2.1 (Technical assumptions).

i) Finite total demand: Total discounted demand converges.

∞∑
t=1

γt−1dt <∞ (2a)

ii) Growing demand: The sequence (dt) is non-decreasing.

dt ≤ dt+1, ∀ t = 1, . . . (2b)

The former assumption is necessary to have a finite objective and thus a feasible problem. The
latter reflects most contemporary health care systems in which demand is expected to grow for the
foreseeable future, and ensures that training and promotion will be perpetually necessary within
the system. In more general cases, even if demand is only expected to be eventually non-decreasing,
our conclusions can be applied starting at the period where non-decreasing growth begins, with a
finite model accounting for the system in preceding periods.

The first non-technical assumption concerns the relative costs of payroll, promotion and hiring.
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Assumption 2.2 (Promotion is preferable). Even when factoring attrition, payroll costs and
discounting, promotion is cheaper than hiring.

c0

γp0
≤ c1,

ck + hk
γpk

+ ck,k+1 ≤ ck+1, ∀ k = 1, . . . , n− 1 (2c)

If this assumption does not hold at some level in the hierarchy, there is no incentive to train
and promote from within beyond that point. This condition should be satisfied by many workforce
systems, both in health care and in other industries.

The next assumption is slightly more specific to the health care industry, but still common in
other industries.

Assumption 2.3 (Non-increasing retention). The hierarchy does not tend to become top-heavy:

pk ≥ pk+1, ∀ k = 1, . . . , n− 1 (2d)

This assumption is natural in health care hierarchies such as nursing, where higher-level workers
are usually older, since older workers tend to retire or leave the system for other reasons at a higher
rate. The assumption is more problematic, for example, in industries where tenure guarantees at
an intermediate level imply an unnaturally high attrition at lower levels.

For some of our results, it is necessary to further strengthen the previous assumption.

Assumption 2.3’ (Equal retention). Retention and attrition are equal at all hierarchy levels:

pk = pk+1, ∀ k = 1, . . . , n− 1 (2d’)

Though it appears restrictive, in many real-world systems the top and bottom retention rates
in fact only differ by a few percentage points [36, 37, 38].

Assumption 2.4 (Non-decreasing payroll). Salaries increase within the hierarchy, even when ac-
counting for attrition:

hk
1− γpk

≤ hk+1

1− γpk+1
, ∀ k = 1, . . . , n− 1 (2e)

As the next example shows, this condition prevents undesirable behavior.

Example 1 (Down-sizing by promotion). Consider a two-level system which is drastically over-
staffed. Let dt = ε for all t, where ε > 0 is a small positive number, and let s0

1 ≫ ε. If (2e) is
not satisfied, it may be optimal because of (2d) to promote all but ε workers to level 2, effectively
down-sizing the workforce by promoting most of it, and achieving lower costs in the process. Such
behavior could lead to detrimental side effects, such as poor morale in the remaining workforce.

Assumption 2.5 (Moderate demand growth). Demand does not grow too quickly:

dt+1

dt
≤ pmin

qmax
, ∀ t = 1, . . . , (2f)

where pmin = mink pk and qmax = maxk qk,k+1.
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Intuitively, the assumption ensures enough worker population at each level to promote to the
next level as demand grows; it is easily satisfied in most systems. For example, if n = 2, p1 =
p2 = 0.8 and q12 = 0.25, (2f) requires the demand growth to be no more than 320% per period,
a condition met in virtually any system. Furthermore, as the next example shows, when this
assumption is not met, the planning horizon necessary to compute an optimal solution may be
arbitrarily long.

Example 2 (Excessive demand growth). We consider a two-level system that experiences excessive
demand growth for a given number of periods, and constant demand thereafter. To simplify the
numbers in the example, we set p1 = p2 = q12 = 1. For a fixed m ≥ 2 let

dm1 = 1, dmt =

{
2t−1 − 1, t = 2, . . . ,m

2m−1 − 1, t = m+ 1, . . .
,

and s0
0 = 0, s0

1 = s0
2 = 1; note that dt+1/dt > p1/q12 = 1 for t = 2, . . . ,m−1. Table 1 details the first

demand values in the sequence, for m = 3, 4, 5. The table also lists a solution that satisfies demand
without any hiring, which can be made optimal by choosing large enough hiring costs. Although
projected demand for the first three periods is identical in all cases, the optimal number of students
admitted in the first period changes with m; for general m, we get x1

0 = (2m−2− 1)/2m−3. In other
words, the current period’s decision may depend on a horizon of arbitrary length m.

t 1 2 3 4 5 · · ·
d3
t 1 1 3 3 3 · · ·
xt0 1 3 0 0 0 · · ·
st1 1 3/2 3 3 3 · · ·
st2 1 3/2 3 3 3 · · ·
d4
t 1 1 3 7 7 · · ·
xt0 3/2 7/2 7 0 0 · · ·
st1 1 3/2 7/2 7 7 · · ·
st2 1 3/2 7/2 7 7 · · ·
d5
t 1 1 3 7 15 · · ·
xt0 7/4 15/4 15/2 15 0 · · ·
st1 1 15/8 15/4 15/2 15 · · ·
st2 1 15/8 15/4 15/2 15 · · ·

Table 1: Sample demand sequences and solutions with no hiring for m = 3, 4, 5 in Example 2.

As Example 2 suggests, the condition (2f) can be relaxed; we include the best possible condition
of this kind we could derive in the Appendix (see the proof of Claim A.3). However, (2f) is much
simpler to state and suffices for any practical situation.

3 Optimal System Behavior

We begin our characterization of optimal solutions of (1) by outlining structural properties satisfied
in models that meet our assumptions. We include only simple proofs here and relegate any complex
proof to the Appendix.
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Lemma 3.1 (No unnecessary hiring). Suppose the model parameters satisfy Assumptions 2.1 and
2.2. There is an optimal solution of (1) in which no hiring takes place when promotion is possible:

xt1 = 0, ∀ t = 2, . . . (3a)

(pks
t−1
k − xtk,k+1)xtk+1 = 0, ∀ k = 1, . . . , n− 1, ∀ t = 1, . . . (3b)

Proof. If a solution does not satisfy either condition, a simple substitution produces another solution
with equal or lesser objective that does satisfy the conditions. �

Lemma 3.2 (No excess training or promotion). Suppose Assumptions 2.1, 2.2, 2.4 and 2.5 hold.
Furthermore, suppose either Assumption 2.3 holds and n = 2, or Assumption 2.3’ holds. Then
there is an optimal solution of (1) in which no excess promotion or student admittance occurs:

(st1 − dt)xt−1
0 = 0, ∀ t = 2, . . . (4a)

(stk+1 − qk,k+1s
t
k)x

t
k,k+1 = 0, ∀ k = 1, . . . , n− 1, ∀ t = 1, . . . (4b)

Like the preceding lemma, Lemma 3.2 follows from applying a substitution or perturbation to
any solution that does not satisfy it. However, unlike in the hiring case, a perturbation in promotion
has ripple effects in higher levels of the hierarchy and in later periods that render it much more
complex.

With these two structural properties in place, we are able to characterize optimal solutions of
(1). Consider the two-period restriction of (1) given by

min
n∑
k=0

ck(x
1
k + γx2

k) +
n−1∑
k=1

ck,k+1(x1
k,k+1 + γx2

k,k+1) +
n∑
k=1

hk(s
1
k + γs2

k) (5a)

s.t. st1 ≥ dt, ∀ t = 1, 2 (5b)

stk+1 − qk,k+1s
t
k ≥ 0, ∀ k = 1, . . . , n− 1, ∀ t = 1, 2 (5c)

p1s
t−1
1 − st1 + p0x

t−1
0 − xt12 + xt1 = 0, ∀ t = 1, 2 (5d)

pks
t−1
k − stk + xtk−1,k − xtk,k+1 + xtk = 0, ∀ k = 2, . . . , n− 1, ∀ t = 1, 2 (5e)

pns
t−1
n − stn + xtn−1,n + xtn = 0, ∀ t = 1, 2 (5f)

pks
t−1
k − xtk,k+1 ≥ 0, ∀ k = 1, . . . , n− 1, ∀ t = 1, 2 (5g)

st, xt ≥ 0, ∀ t = 1, 2, (5h)

A one-period lookahead policy constructs a solution to (1) by iteratively solving (5), fixing the
variables for t = 1, stepping one period forward by relabeling t ← t + 1 for all variables and
parameters, and repeating the process. In practice, this corresponds to a decision maker planning
the current period’s promotion, training and hiring based on current demand and the next period’s
forecasted demand, while ignoring demand for subsequent periods.

Theorem 3.3 (Optimality of one-period lookahead policy). Suppose Assumptions 2.1, 2.2, 2.4
and 2.5 are satisfied. Suppose either Assumption 2.3 holds and n = 2, or Assumption 2.3’ holds.
Then one-period lookahead policies are optimal.

Corollary 3.4 (Increased training time). Suppose students require L ≥ 1 periods to train instead
of one, with all other system characteristics remaining the same. Under the conditions of Theorem
3.3, L-period lookahead policies are optimal, where an L-period lookahead is defined analogously to
a one-period lookahead but with L additional periods instead of one.
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Proof. The proof of Theorem 3.3 still applies; we are simply relabeling level-0 variables. �

These results indicate that good workforce planning decisions can be made using a minimal
amount of forecasted information, which strengthens the robustness of the resulting solution since
forecasts of more distant demand naturally tend to be less reliable. This also places our result within
the context of solution and forecast horizons; see, e.g., [18] for formal definitions and discussion.
Moreover, lookahead policies mimic how such large workforce systems might be managed in practice,
suggesting that these policies could be useful in more complex settings. We explore this idea
experimentally in Section 4, where we study a model with a four-year training program, i.e. L = 4.

Another important question related to (1) is duality. A dual satisfying the typical complemen-
tary relationships can shed additional light on the structure of optimal solutions to (1). Further-
more, optimal dual prices may also be useful as indicators of the model’s sensitivity to parameters
such as demand. However, the infinite horizon implies significant technical complications and gives
rise to pathologies not encountered in the finite case.

Extending the typical LP dual construction to (1) yields

sup D(µ, λ, η) =
∞∑
t=1

dtµ
t
1 − p0s

0
0λ

1
1 −

n−1∑
k=1

pks
0
k(λ

1
k + η1

k,k+1)− pns0
nλ

1
n (6a)

s.t. µtk − qk,k+1µ
t
k+1 − λtk + pkλ

t+1
k + pkη

t+1
k,k+1 ≤ γ

t−1hk, ∀ k = 1, . . . , n− 1, ∀ t = 1, . . . (6b)

µtn − λtn + pnλ
t+1
n ≤ γt−1hn, ∀ t = 1, . . . (6c)

p0λ
t
1 ≤ γt−2c0, ∀ t = 2, . . . (6d)

λtk ≤ γt−1ck, ∀ k = 1, . . . , n, ∀ t = 1, . . . (6e)

− λtk + λtk+1 − ηtk,k+1 ≤ γt−1ck,k+1, ∀ k = 1, . . . , n− 1, ∀ t = 1, . . . (6f)

µt, ηt ≥ 0, λt unrestricted, ∀ t = 1, . . . , (6g)

where we similarly define the feasible region as a subset of the points for which the objective is
well defined and finite. However, this model does not satisfy strong or even weak duality with (1).

Example 3 (No weak duality; adapted from [51]). Suppose s0
n > 0 and let M > 0. Define

λ̂tn = −M/ptn, ∀ t = 1, . . . , and set all other variables to zero. The solution is feasible for (6), and
its objective function value is positive and goes to infinity as M → ∞. However, (1) is clearly
feasible and bounded below by zero.

The following result addresses this problem.

Theorem 3.5. Suppose we can change the equality constraints (1d–1f) to greater-than-or-equal
constraints (and thus impose λt ≥ 0) for all but a finite number of indices t without affecting
optimality in (1). Let (ŝ, x̂) and (µ̂, λ̂, η̂) be feasible for (1) and (6) respectively.

i) Weak duality: D(µ̂, λ̂, η̂) ≤ C(ŝ, x̂).

ii) Strong duality: Both solutions are optimal and D(µ̂, λ̂, η̂) = C(ŝ, x̂) if and only if complemen-
tary slackness holds (in the usual sense) and transversality [47, 48, 51] holds:

lim inf
t→∞

p0λ̂
t+1
1 x̂t0 +

n−1∑
k=1

pk(λ̂
t+1
k + η̂t+1

k )ŝtk + pnλ̂
t+1
n ŝtn = 0. (7)

9



Proof. If all constraints eventually become greater-than-or-equal, then the off-diagonal constraint
matrix of (1) in inequality form is eventually non-negative, implying that [47, Assumption 3.1]
holds, and thus the results follow from [47, Theorems 3.3 and 3.7]. �

Corollary 3.6. The conditions of Theorem 3.5 apply, and therefore weak and strong duality hold,
if demand is eventually non-decreasing.

The results in [47] imply we can use optimal solutions of (6) as shadow prices to perform
sensitivity analysis on (1).

Example 4 (Sensitivity analysis). Consider a two-level system in which the incoming worker
populations in period 1 require some promotion from level 1 to level 2, with enough level-1 workers
remaining after promotion to meet demand in period 1 but not later. Based on these initial
conditions and Assumptions 2.1 through 2.5, Lemmas 3.1 and 3.2 imply the following structure to
the optimal solution:

xt1 = xt2 = 0, xt0, x
t
12 > 0, xt12 < p1s

t−1
1 , st2 = q12s

t
1, ∀ t = 1, . . .

s1
1 > d1; st1 = dt, ∀ t = 2, . . .

The solution for (6) that satisfies complementary slackness and transversality is:

µ1
1 = 0

µt1 =
γt−2c0

p0

(
1− γp1 + q12(1− γp2)

)
+ γt−1q12c12(1− γp2)

+ γt−1(h1 + q12h2), ∀ t = 2, . . .

µ1
2 =

1

1 + q12

(
c0

p0
(p1 − p2) + c12(1− γp2) + (h2 − h1)

)
µt2 = γt−2(1− γp2)

(
c0

p0
+ γc12

)
+ γt−1h2, ∀ t = 2, . . .

λ1
1 =

1

1 + q12

(
c0

p0
(p1 + q12p2)− q12c12(1− γp2)− (h1 + q12h2)

)
λt1 =

γt−2c0

p0
, ∀ t = 2, . . .

λ1
2 =

1

1 + q12

(
c0

p0
(p1 + q12p2) + c12(1 + γq12p2)− (h1 + q12h2)

)
λt2 = γt−2

(
c0

p0
+ γc12

)
, ∀ t = 2, . . .

ηt12 = 0, ∀ t = 1, . . .

It can be verified that this solution is dual feasible provided the assumptions hold. Suppose in
particular that demand grows based on a rate 1 < β < 1/γ, so that dt = βt−1d1. It follows that

∞∑
t=1

dtµ
t
1 = d1

[
c0

γp0

(
1− γp1 + q12(1− γp2)

)
+ q12c12(1− γp2) + h1 + q12h2

]
βγ

1− βγ
.

This expression indicates how the optimal cost would change if either d1 or β vary slightly from
their given values.
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4 Computational Examples

To evaluate the efficacy of our proposed models and policies in a more complex setting, we performed
computational experiments based on the British Columbia nursing workforce described in [36, 37,
38]. Health care human resource data is more readily available from Canadian provinces because
of their centralized control of health care. However, our ongoing research also involves collecting
comparable data from various U.S. health systems.

We extended model 1 to differentiate by worker age (as it affects attrition rates) and set the
length of student training to four periods (years in this case); we include further description of
the model in the Appendix. We began by solving the problem over a 25-year planning horizon (a
full information model) and used the solution to the first 20 years as our benchmark. We then
compared the results to a solution obtained by implementing a four-year lookahead policy.

Figure 1 outlines the structure of the model and its parameters. Students are admitted into the
training program, where they take four years to train before entering the workforce. The probabil-
ities of students continuing their education depend on the school year of the student (with greater
attrition in the first year of the program). After graduation, students enter the first workforce level
as direct care nurses. In level 1, the number of workers has to meet current demand. This demand
is met by workers that have not retired or been promoted, graduates from the training program
and workers hired externally. Level 2 consists of nurse managers, a supervisory position to the first
level; nurse managers are either hired externally or promoted from the first workforce level. Level-1
workers must have worked for at least one year before being promoted into the second workforce
level. In both levels, retention rates depend on the age of the workers. The average retention in
level 2 is slightly higher than the average retention in level 1, which would violate Assumption 2.3
if the the averages applied to all age groups. However, since the parameter is age-dependent in this
model, the actual retention in each level depends on the age distribution of the worker population.
This slight difference did not impact our results, further supporting the robustness of our findings.
We set the discount factor to γ = 0.95.

4.1 Scenarios

We tested the model in nine scenarios. Among the nine scenarios, the baseline scenario represents
the estimated demand in British Columbia, Canada, starting in 2007; we calculated demand by
extrapolating the population growth between 1996 and 2006 [13]. Scenarios 1 through 4 evaluate
the impact of different demand growth rates. Scenario 5 evaluates the impact of limiting the growth
of the training program. Scenarios 6, 7 and 8 evaluate the performance of the lookahead policy in
extreme conditions where demand has a peak, hiring growth is limited, and costs are varied. The
parameter characteristics and descriptions of the scenarios are summarized in the following list.

Baseline Scenario Fixed demand growth rate of 1.25% per year. Projected demand growth in
British Columbia, Canada.

Scenario 1 Fixed demand growth rate of 0.01% per year. Very low demand growth.

Scenario 2 Fixed demand growth rate of 2.5% per year. High demand growth.

Scenario 3 Linearly accelerating demand growth from 0% per year to 2.5% per year over 25 years.

Scenario 4 Linearly decelerating demand growth from 2.5% per year to 0% per year over 25 years.
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Students
4 years in school

Admissions
$57,991/student

Workforce Level 1
Meet growing demand 
Payroll cost $87,600/worker/yr

Entering Probability
91%

Hiring Level 1
$113,880/worker

Workforce Level 2
Supervise Level 1 workers (1 level 2 : 10.5 level 1)
Payroll cost $95,104/worker/yr
Has worked in Level 1 for at least 1 yr

Hiring Level 2
$283,800/worker

Attrition Rate
by School Year
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in year 1, 2, and 3 
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Figure 1: Flow chart of model used in computational examples.

Scenario 5 Fixed demand growth rate of 1.25% per year and student population growth limited
to no more than 1% per year. Major restrictions in training growth.

Scenario 6 Fixed demand growth rate of 1.25% per year in years 1 through 9 and 11 through 25,
demand doubled in year 10. Level-1 hiring growth limited to no more than 50% per year.
This scenario simulated a sudden jump of demand, which might be due to a drastic change in
roles and scope of practice of the workforce. We assumed that drastic changes in the number
of workers hired could not be made without incurring very large recruitment costs.

Scenario 7 Fixed demand growth rate of 1.25% per year in years 1 through 9 and 11 through 25,
demand doubled in year 10. Level-1 hiring growth limited to no more than 50% per year, and
zero student admission cost. In addition to the jump in demand and limited hiring growth,
we eliminated the admission cost to increase the incentive to admit students in advance and
thus potentially undermine the four-year lookahead model.

Scenario 8 Fixed demand growth rate of 1.25% per year in years 1 through 9 and 11 through 25,
demand doubled in year 10. Level-1 hiring growth limited to no more than 50% per year,
and zero level-1 payroll cost. In addition to the jump in demand and limited hiring growth,
we eliminated the level-1 payroll cost to increase the incentive to admit students in advance
and thus potentially undermine the four-year lookahead model.
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Figure 2: Breakdown of the total number of admissions and hirings in baseline scenario and scenarios
1 through 5 over the course of 20 years.

4.2 Results and Discussion

We compared the solutions obtained using the full information model and the lookahead model.
Figure 2 shows results for the baseline scenario and scenarios 1 through 5. In these scenarios, we
obtained the same solutions using the full information and the lookahead models. The lookahead
model was robust in these scenarios, even if Assumption 2.3 was slightly violated by our system’s
parameters. Even in Scenario 5, where education growth was drastically limited, the full information
model did not differ from the lookahead policy because training students a year in advance incurred
extra payroll costs, making early training more expensive than hiring. Though education growth
was limited, hires served as a back-up action in Scenario 5 and made the lookahead and the full
information methods operate identically.

Figure 3 shows results for scenarios 6, 7, and 8; in this case, the lookahead policy resulted in
slightly higher total costs. Compared to the full information solution, the percentage differences
in total cost were only 0.026%, 0.129%, and 0.014% respectively. The lookahead model resulted in
more admissions, more level-2 hirings, and fewer level-1 hirings than the full information model.
Since level-1 hiring was limited, fewer level-1 workers were hired and more students were trained
as an alternative. Level-2 workers were hired when the model reached a point where promotions
could not meet the level-2 workforce demand due to the insufficient number of level-1 workers. The
lookahead model failed to anticipate future changes in demand, not training sufficient students nor
hiring sufficient level-1 workers in advance.

Overall, the lookahead policy demonstrated strong robustness in the nine scenarios modeled.
In the most extreme scenarios, where demand had a sudden jump and hirings or admissions were
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Figure 3: Breakdown of the total number of admissions and hirings in scenarios 6 through 8 over
the course of 20 years.

limited, the lookahead policy and the full information policy still showed very little difference,
particularly in total cost.

5 Conclusions

This paper contributes a new modeling framework for strategic health workforce planning. Through
infinite-horizon optimization, we are able to model the long-term implications of training, hiring
and promotion decisions made within a health care system. Our approach enables us to understand
the planning horizon length necessary to obtain optimal decisions. We derive common-sense sys-
tem conditions that should hold in any situation and also imply the optimality of simple lookahead
workforce management policies. Using real-world data from British Columbia, we further demon-
strate how lookahead policies perform well in a variety of scenarios, even in more complex systems.
These results are particularly useful, as they mirror workforce management policies implemented
in practice.

Given that long-term workforce planning should be an important component of a well-functioning
health care system, this kind of model can be used to obtain qualitative checks on whether a par-
ticular health workforce system is actually behaving optimally, and what conditions it must meet
to do so. Though we have assumed exact knowledge of demand and retention rates throughout this
paper, even within a deterministic model it is possible to explore the consequences of unforeseen
outcomes via sensitivity analysis of the optimal cost.

A next step in our work is to directly model and optimize the system’s uncertainty, specifically
in demand growth and retention rates [41]. It is important to understand whether the conditions
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we develop in this work and their structural consequences (or appropriate modifications) still hold
in more general settings. For example, it is possible that under uncertain demand growth condition
(4a) of Lemma 3.2 does not hold in level 0 – we may need to train in excess of forecasted demand
– but it may be that a similar property holds which accounts for the risks of under-training and
over-training. The more nuanced analysis required in this case may give insight into the impact of
uncertainty on health workforce costs and management decisions; for example, [20, 31] investigate
similar questions for short-term nurse staffing.

Because this work is applied to guide strategic health workforce decisions, we can formulate
more realistic models by incorporating other elements. For instance, (1) could be expanded to
include a variety of health care providers and changes in scopes of practice. As a first step, the
impact of multiple worker types can be modeled indirectly in (1) through scaling or modification
of the demand forecast. This approach has the advantage of allowing for non-linear interactions
between multiple health care providers and demand, if, for example, different worker types cannot
serve patient demand in the same fashion. Assuming that the interaction of all worker types
with demand is linear, multiple worker types can be incorporated in models similar to (1), by
differentiating across both type and level, where each worker type includes its own hierarchy with
its own supervision constraints (1c) and dynamics, but the multiple types serve patient demand
jointly.

Furthermore, clinical inactivity has been a well documented phenomenon among health care
providers [17, 23, 24, 33], and therefore policy makers may be interested in understanding the
role of such inactivity in workforce planning. As before, one possibility is to incorporate expected
inactivity in the demand calculations. A more complex option is to incorporate additional states
representing the number of health care providers that are inactive each period. While this second
option entails an expansion of the model, by following this option it could be possible to study the
impact of adding incentives to bring inactive health care professionals back to the workforce.

By providing an initial understanding of this infinite-horizon model, our goal is to move a step
forward in the field of strategic health workforce planning, and to motivate others to continue doing
research in this important application.
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A Proof of Lemma 3.2

All the arguments below apply to solutions that satisfy Lemma 3.1.

A.1 Proof when n = 2

A.1.1 Proof of (4b)

Assume a feasible solution is given for which (4b) is violated in some period. We start from the
earliest such period, relabeling it as period 1 without loss of generality, and make the following
changes:

∆xt1,2 =


−ε, t = 1
p2+p1q1,2

1+q1,2
ε, t = 2

(p1+p2q1,2)t−3

(1+q1,2)t−1 (p1 − p2)2q1,2ε, t = 3, . . .

,

∆st1 =

{
ε, t = 1
(p1+p2q1,2)t−2

(1+q1,2)t−1 (p1 − p2)ε, t = 2, . . .
,
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∆st2 =

−ε, t = 1
(p1+p2q1,2)t−2

(1+q1,2)t−1 (p1 − p2)q1,2ε, t = 2, . . .
.

The resulting solution is feasible for small positive ε. Furthermore, we achieve an objective
improvement

∆C = c1,2

(
−1 + γ

p2 + p1q1,2

1 + q1,2
+

∞∑
t=3

(p1 + p2q1,2)t−3

(1 + q1,2)t−1
q1,2(p1 − p2)2γt−1

)
ε

+h1

(
1 +

∞∑
t=2

(p1 + p2q1,2)t−2

(1 + q1,2)t−1
(p1 − p2)γt−1

)
ε

+h2

(
−1 + q1,2

∞∑
t=2

(p1 + p2q1,2)t−2

(1 + q1,2)t−1
(p1 − p2)γt−1

)
ε

= c1,2
(1 + q1,2)(1− p1γ)(p2γ − 1)

1 + q1,2 − (p1 + p2q1,2)γ
ε

+
(1 + q1,2) ((1− γp2)h1 − (1− γp1)h2)

1 + q1,2 − (p1 + p2q1,2)γ
ε

< 0,

where the last inequality follows by Assumption 2.4.
The rationale behind the construction is to choose training and promotion perturbations so

that staff at the two levels increase proportionally in later periods, which implies feasibility; on
the other hand, the cost decrease exceeds the increase when discounts and monotonic payrolls are
applied, which leads to the lower objective.

A.1.2 Proof of (4a)

Since (4b) can be achieved without resorting to (4a), we consider the solutions where (4b) is satisfied
while (4a) is not. Again we rename the earliest such period to be period 1. We have x0

0 > 0.

Case 1: x2
1,2 < p1s

1
1.

Construct a new feasible solution with the formulas below:

∆xt0 =


− ε
p0
, t = 0

p1
p0
ε, t = 1

0, t = 2, . . .

,

∆st1 =

{
−ε, t = 1

0, t = 2, . . .
.

The resulting objective improvement is

∆C = c0

(
− 1

p0γ
+
p1

p0

)
ε− h1ε

< 0.
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Case 2: x2
1,2 = p1s

1
1.

We first note that at most one of xt+1
1,2 = p1s

t
1 and st+1

1 = dt+1 can be true provided (4b) for any

t ≥ 1. Assuming both equalities hold for some t, we then have st+1
2 ≥ p2s

t
2+xt+1

1,2 = p2s
t
2+p1s

t
1. Since

xt+1
1,2 > 0 implies st+1

2 = q1,2s
t+1
1 by (4b), we further have dt+1 = st+1

1 ≥ p2st2+p1st1
q1,2

≥ p2q1,2dt+p1dt
q1,2

=(
p2 + p1

q1,2

)
dt, but this contradicts Assumption 2.5.

Let i be the smallest possible period with xi1,2 < p1s
i−1
1 . From the above observation we have

st1 > dt, t ≤ i− 1. Thus we can perturb as follows to obtain a new feasible solution:

∆xt0 =



− ε
p0
, t = 0

−p1(p1+p2q1,2)t−1

p0qt1,2
ε, t = 1, . . . , i− 2

p1(p1+p2q1,2)i−2

p0q
i−2
1,2

ε, t = i− 1

0, t = i, . . .

,

∆xt1,2 =



−p1ε, t = 2

−p21(p1+p2q1,2)t−3

qt−2
1,2

ε, t = 3, . . . , i− 1

p1p2(p1+p2q1,2)i−3

qi−3
1,2

ε, t = i

0, t = i+ 1, . . .

,

∆st1 =


−ε, t = 1

−p1(p1+p2q1,2)t−2

qt−1
1,2

ε, t = 2, . . . , i− 1

0, t = i, . . .

,

∆st2 =

−
p1(p1+p2q1,2)t−2

qt−2
1,2

ε, t = 2, . . . , i− 1

0, t = i, . . .
.

The corresponding objective improvement is

∆C = c0

(
− 1

p0γ
−

i−2∑
t=1

p1(p1 + p2q1,2)t−1γt−1

p0qt1,2
+
p1(p1 + p2q1,2)i−2γi−2

p0q
i−2
1,2

)
ε

+h1

(
−1−

i−1∑
t=2

p1(p1 + p2q1,2)t−2γt−1

qt−1
1,2

)
ε

+h2

(
−

i−1∑
t=2

p1(p1 + p2q1,2)t−2γt−1

qt−2
1,2

)
ε

+c1,2

(
−p1γ −

i−1∑
t=3

p2
1(p1 + p2q1,2)t−3γt−1

qt−2
1,2

+
p1p2(p1 + p2q1,2)i−3γi−1

qi−3
1,2

)
ε

< c0

(
−p1p

i−2
2 γi−2

p0
−

i−2∑
t=1

p2
1(p1 + p2q1,2)t−1pi−2−t

2 γi−2

p0qt1,2
+
p1(p1 + p2q1,2)i−2γi−2

p0q
i−2
1,2

)
ε
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+c1,2

(
−p1p

i−2
2 γi−1 −

i−1∑
t=3

p2
1(p1 + p2q1,2)t−3pi−t2 γi−1

qt−2
1,2

+
p1p2(p1 + p2q1,2)i−3γi−1

qi−3
1,2

)
ε

= 0.

A.2 Problem structure when n ≥ 3

Given a solution that violates Lemma 3.2, our goal is to construct a new solution that is both
feasible and incurs a lower total cost. While the big picture appears similar to the proof when
n = 2, things are much more complicated here: the effect of ∆stk may not end at level k+1; instead
it can force xt+2

k+1,k+2 and thus st+2
k+2 to change, which will propagate to higher levels; even worse,

lower levels may also be influenced since there may be multiple violated levels and the perturbation
may not start from level 1. Therefore, it is unlikely that we can rely on one-time substitutions as
before.

Instead, our strategy is to construct a perturbation period by period. To develop such a dynamic
approach we first introduce three sets of new variables:

• rtk =
stk
pt , ∀ k = 0, . . . , n, ∀ t = 1, . . .,

• ztk =
xtk
pt , ∀ k = 0, . . . , n, ∀ t = 1, . . .,

• ztk,k+1 =
xtk,k+1

pt , ∀ k = 1, . . . , n− 1, ∀ t = 1, . . ..

The original problem can be reformulated as follows.

inf W (r, z) =

∞∑
t=1

γt−1pt
( n∑
k=0

ckz
t
k +

n−1∑
k=1

ck,k+1z
t
k,k+1 +

n∑
k=1

hkr
t
k

)
(8a)

s.t. rt1 ≥ dt/pt ∀ t = 1, . . . (8b)

rtk+1 ≥ qk,k+1r
t
k, ∀ k = 1, . . . , n− 1, ∀ t = 1, . . . (8c)

rt−1
1 − rt1 + zt−1

0 − zt1,2 + zt1 = 0, ∀ t = 1, . . . (8d)

rt−1
k − rtk + ztk−1,k − ztk,k+1 + ztk = 0, ∀ k = 2, . . . , n− 1, ∀ t = 1, . . . (8e)

rt−1
n − rtn + ztn−1,n + ztn = 0, ∀ t = 1, . . . (8f)

ztk,k+1 ≤ rt−1
k , ∀ k = 1, . . . , n− 1, ∀ t = 1, . . . (8g)

rt, zt ≥ 0, ∀ t = 1, ..., (8h)

where rt0 = zt0 for t = 0, . . .. The constraints above can be divided into three sets: demand/ratio
constraints (8b–8c), promotion bounds (8g), and network flow constraints (including flow conser-
vation (8d–8f) and nonnegativity (8h)). Graphically, if we consider the r variables as flows between
successive periods and the z variables as flows between successive levels, a feasible solution can be
represented by an infinite time-space network. The equivalence of the reformulated problem and
the original problem stems from a one-to-one correspondence between their solutions. Therefore,
any result obtained from one version applies to the other as well.
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Next we identify four structural characteristics of our problem(s). Claim A.1 describes the cost
of certain structures and will help justify the superiority of a perturbed solution; Claim A.2 is a
dominance property and will enable us to consider a relatively small set of solutions for perturbation;
Claims A.3 and A.4 analyze necessary conditions for feasibility and will shed light on how to perturb.

Claim A.1. For the reformulated problem, any flow circulating counterclockwise (either in a cycle,
on a doubly-infinite path, or on a one-way infinite path) incurs negative cost.

Proof. zt0, ∀ t = 1, . . . can be reduced to a common super source node representing level 0 in the
network. Define a basic unit in the grid-like network as either case below:

t t+ 1

k

k + 1
t t+ 1

0

1

.

The corresponding total costs per unit counterclockwise flow are

γt−1pt(hk − hk+1) + ptck,k+1(pγt − γt−1) < 0,

−γt−1h1p
t + (−γt−1c0p

t + γtc0p
t+1) < 0,

respectively. We will refer to the two types of basic units as basic square and basic triangle,
respectively. Any cycle can be decomposed into a finite number of basic squares and/or triangles;
any doubly-infinite path can be decomposed into a countable number of basic squares; and any one-
way infinite path can be decomposed into a countable number of basic squares and/or triangles.
Since counterclockwise flows around both basic units incur negative costs, the same is true for
arbitrary cycles/infinite paths. �

Claim A.2. For t ≥ 1, let `t and `t+1 be levels such that st`t+1 > q`t,`t+1s
t
`t
, xt`t,`t+1 > 0, and

st+1
`t+1+1 > q`t+1,`t+1+1s

t+1
`t+1

. Assuming `t and `t+1 exist, for any k with min{`t, `t+1} ≤ k ≤
max{`t, `t+1} there exists some t′ ≤ t such that xt

′
k,k+1 > 0. A solution cannot be optimal if

both st+1
`t+1 = q`t,`t+1s

t+1
`t

and xt+1
k,k+1 = 0 hold for some k with min{`t, `t+1} ≤ k ≤ max{`t, `t+1}.

Proof. Clearly `t 6= `t+1. Consider level i, the largest such k if `t > `t+1, or the smallest such k if
`t < `t+1.

Case 1: i = `t.

Let ∆zt+1
`t,`t+1 = −∆zt`t,`t+1 = ε. Since xt+1

`t,`t+1 = 0, we know xt+1
`t+1,`t+2 < pst`t+1 and thus feasibility

is not violated. By Claim A.1 this corresponds to a counterclockwise flow around a basic square
and incurs less total cost.

Case 2: i 6= `t.

We first have
st+1
i+1 = psti+1 − xt+1

i+1,i+2 ≤ ps
t
i+1,

st+1
i ≥ psti + xt+1

i−1,i ≥ ps
t
i.
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If `t > `t+1, then xt+1
i+1,i+2 > 0 by definition of i, and hence st+1

i+1 < psti+1, which together with

st+1
i+1 ≥ qi,i+1s

t+1
i indicates that sti+1 > qi,i+1s

t
i. Similarly, if `t < `t+1, then xt+1

i−1,i > 0 and again

st+1
i > psti indicates that sti+1 > qi,i+1s

t
i. If xti,i+1 = 0, then sti+1 > qi,i+1s

t
i further indicates that

st−1
i+1 > qi,i+1s

t−1
i . Recursively utilizing this fact for t − 1, t − 2, . . ., finally we can find a period

t0 ≥ t′ (t0 = t if xti,i+1 > 0) where st0i+1 > qi,i+1s
t0
i and xt0i,i+1 > 0. Now construct a new solution by

letting ∆zt+1
i,i+1 = −∆zt0i,i+1 = ε; it is feasible due to slack and zero promotions at level i in periods

t0 + 1, . . . , t, and its lower cost is guaranteed by Claim A.1. �

Claim A.3. For t ≥ 1, For t ≥ 1, let g be a level such that xt+1
g,g+1 = 0, g ≤ n. If st+1

g =

qg−1,gs
t+1
g−1 = . . . = q1,gs

t+1
1 , where qk,` = qk,k+1qk+1,k+2 · · · q`−1,`, then at most one of xt+1

k,k+1 = pstk
and st+1

1 = dt+1 can be true for each k ≤ g − 1.

Proof. Assume both equalities hold. Adding together equations (1e) for levels k+1, . . . , g in period
t+ 1, plugging in xt+1

k,k+1 = pstk and st+1
g = qg−1,gs

t+1
g−1 = . . . = q1,gs

t+1
1 , we have

st+1
1

g∑
i=k+1

q1,i ≥ pst1
g∑
i=k

q1,i. (9)

Note that ∑g
i=k q1,i∑g
i=k+1 q1,i

=
q1,k∑g

i=k+1 q1,i
+ 1

=
1∑g

i=k+1 qk,i
+ 1

≥ 1∑g−k
i=1 q

i
max

+ 1

=
1 +

∑g−k
i=1 q

i
max

qmax(1 +
∑g−k−1

i=1 qimax)
.

Combined with (9), this results in

st+1
1 ≥

1 +
∑g−k

i=1 q
i
max

qmax(1 +
∑g−k−1

i=1 qimax)
pst1 >

p

qmax
st1 ≥

p

qmax
dt ≥ dt+1

by Assumption 2.5. We have arrived at a contradiction. �

Claim A.4. For t ≥ 1, let k be an arbitrary level, and g = min{i : xt+1
i,i+1 = 0, k + 1 ≤ i ≤ n}. If

xt+1
k,k+1 = pstk and st+1

g = qg−1,gs
t+1
g−1 = . . . = q`+1,gs

t+1
`+1, 0 ≤ ` ≤ k − 1, then xt+1

`,`+1 > 0.

Proof. The result follows directly by Lemma 3.1 if xt+1
`+1 > 0. Consider when xt+1

`+1 = 0. ` = k− 1 is

trivial since xt+1
k−1,k = st+1

k > 0. For ` ≤ k − 2, we show that xt+1
`,`+1 > pq`+1,ks

t
`+1 by induction.

Base case: Here ` = k − 2. st+1
k−1 = pstk−1 + xt+1

k−2,k−1 − st+1
k = pstk−1 + xt+1

k−2,k−1 − qk−1,ks
t+1
k−1

implies st+1
k−1 =

pstk−1+xt+1
k−2,k−1

1+qk−1,k
. qk−1,gs

t+1
k−1 = st+1

g = pstg + xt+1
g−1,g > pstg ≥ pqk−1,gs

t
k−1 implies

st+1
k−1 > pstk−1. Therefore,

pstk−1+xt+1
k−2,k−1

1+qk−1,k
> pstk−1, and thus xt+1

k−2,k−1 > pqk−1,ks
t
k−1 > 0.
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Induction: Assume that the claim holds for `, 1 ≤ ` ≤ k − 2, i.e. xt+1
`,`+1 > pq`+1,ks

t
`+1, then

st+1
` = pst` + xt+1

`−1,` − x
t+1
`,`+1

< pst` + xt+1
`−1,` − pq`+1,ks

t
`+1

< pst` + xt+1
`−1,` − pq`,ks

t
`.

On the other hand, q`,gs
t+1
` = st+1

g > pstg ≥ pq`,gs
t
` implies st+1

` > pst`. Therefore, xt+1
`−1,` >

pq`,ks
t
` > 0, i.e. the claim holds for `− 1 as well. �

A.3 A perturbation procedure for n ≥ 3

(4a) is a special case of (4b) if we define st0 = dt, x
t
0,1 = pxt−1

0 , q0,1 = 1; the only difference is that
xt0,1 have no upper bound. Pick the earliest period where (4b) is violated, as before we rewrite it as
period 1 and redefine sucessive periods as 2, 3, . . .. Let m be any violated level in period 1. Below
is the key notation we will use:

• jt: a level that has ever seen staff reduction and has full promotions in period t; mathemati-
cally this means xtjt,jt+1 = pst−1

jt
and ∆st

′
jt
< 0 for some t′ < t.

• `t: a level with ratio slack and for which there is a jt where all levels in between have positive
promotions in period t, i.e. st`t+1 > q`t,`t+1s

t
`t

and xtk,k+1 > 0, ∀ k = `t, . . . , jt.

• ¯̀
t: an `t where the ratio relationship would be violated if not perturbed in period t + 1,

i.e. st+1
¯̀
t+1

+ p∆st¯̀
t+1

< q¯̀
t,¯̀t+1(st+1

¯̀
t

+ p∆st¯̀
t
) and ¯̀

t ∈ Lt. An implicit constraint is st+1
¯̀
t+1

=

q¯̀
t,¯̀t+1s

t+1
¯̀
t

.

• Jt, Lt, L̄t: the set of all jt, the set of all `t, and the set of all ¯̀
t, respectively. L̄t ⊆ Lt.

• max jt: the largest element in Jt, i.e. max{j : j ∈ Jt}, with other maxima and minima defined
analogously.

Suppose we have perturbed periods 1, . . . , t − 1 and the current perturbed solution satisfies
constraints in these periods. Clearly all jt should be perturbed to guarantee feasibility. By Claims
A.3 and A.4 there must exist an `t for each jt, and thus it is a candidate for the perturbation
in period t to stop. The perturbation in period t − 1 also causes infeasibility at ¯̀

t−1 in period t,
which constitutes an additional source for further perturbation. Obviously we can set J1 = L1 =
{m}, L̄0 = ∅. Procedure 1 illustrates how to identify Jt, Lt and L̄t−1 when t ≥ 2.

We are now ready to construct perturbing operations. Since Lemma 3.1 and Claim A.2 have
identified several non-optimal cases, we only consider solutions that satisfy the conditions therein.

Perturbation for period 1 is trivial: ∆r1
m+1 = −∆r1

m = ∆z1
m,m+1 = −ε. For an arbitrary t ≥ 2

before the possible end period, ∆ztk,k+1 consists of two parts: a change due to full promotions

at jt, and a change due to tight ratio relationships at ¯̀
t−1. The calculation of ∆z consequently

depends on the locations of jt, `t and ¯̀
t−1. If there is an ¯̀

t−1 /∈ Lt, then the levels between any
pair of jt and ¯̀

t−1 must have been reached at some point before t, thus by Claim A.2 we know
xtk,k+1 > 0, ∀ k = ¯̀

t−1, . . . , `t,∀ `t ∈ Lt. Otherwise L̄t−1 = ∅. Hence although there may be

multiple jt, `t and ¯̀
t−1, and a large number of possible locations, it suffices to check the following

four cases:
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Procedure 1 Jt, Lt, and L̄t−1 when t ≥ 2

1: Jt = Lt = L̄t−1 = ∅, L′t−1 = {`t−1 : ∆xt−1
`t−1,`t−1+1 < 0}

2: for `t−1 ∈ Lt−1 do
3: if st`t−1+1 + p∆st−1

`t−1+1 < q`t−1,`t−1+1(st`t−1
+ p∆st−1

`t−1
) then

4: L̄t−1 = L̄t−1 ∪ {`t−1}
5: end if
6: end for
7: for k = min{i : i ∈

⋃
t′≤t−1 Jt′ ∪ L

′
t′} to max{i : i ∈

⋃
t′≤t−1 Jt′ ∪ L

′
t′}+ 1 do

8: if xtk,k+1 = pst−1
k and ∆st

′
k < 0 for some t′ < t then

9: Jt = Jt ∪ {k}
10: g = min{i : xt+1

i,i+1 = 0, k + 1 ≤ i ≤ n}
11: for i ≤ g − 1 do
12: if sti+1 > qi,i+1s

t
i and xtk,k+1 > 0, ∀ k = i, . . . , g − 1 then

13: Lt = Lt ∪ {i}
14: end if
15: end for
16: end if
17: end for

`t

¯̀
t−1

jt

jt
¯̀
t−1 + 1

¯̀
t−1 − 1

jt

jt

¯̀
t−1

`t

¯̀
t−1 − 1

jt

¯̀
t−1

`t

jt
¯̀
t−1 + 1

jt

`t
`t

jt
jt

`t

In the above graph, promotions are positive at levels connected by the vertical lines, a gap
between levels indicates zero promotions, and the direction of the arrows is consistent with the
perturbation flows. Claims A.5 through A.8 validate the operations we use in each case.

Claim A.5. Assuming a perturbed solution is feasible for periods 1, . . . , t − 1, if there exists an
`t ∈ Lt with `t ≥ max{max jt,max ¯̀

t−1 + 1} and xtk,k+1 > 0 for k with min{min jt,min ¯̀
t−1 + 1} ≤

k ≤ `t, then a solution also feasible for period t can be obtained by sequentially applying equations

∆ztk,k+1 = min{∆ztk−1,k + ∆rt−1
k −∆rtk−1qk−1,k,∆r

t−1
k }, (10a)

∆rtk = ∆ztk−1,k + ∆rt−1
k −∆ztk,k+1, (10b)

to k = kb, . . . , ke, and finally letting

∆rtke+1 = ∆ztke,ke+1 + ∆rt−1
ke+1, (10c)

where kb = min{min jt,min ¯̀
t−1 + 1}, ke = min{`t : `t ≥ max{max jt,max ¯̀

t−1 + 1}}.
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Proof. We can choose the smallest such `t as a common level for the perturbation driven by all jt
and ¯̀

t−1 to stop in period t. To fix potential infeasibility caused by full promotions or tight ratio
relationships, it is reasonable to decrease the promotions at these levels and update employment
accordingly. The level to start such operations should of course be min{min jt, min ¯̀

t−1 + 1}. The
decreasing effect will finally be conveyed to the `t we choose.

We consider level k to determine ∆ztk,k+1. Since ∆rt−1
k , ∆rtk−1, and ∆ztk−1,k (in particular,

∆ztkb−1,kb
= 0) are all known as we reach node (k, t), we can solve

∆ztk−1,k + ∆rt−1
k = ∆ztk,k+1 + ∆rtk

∆rtk ≥ ∆rtk−1qk−1,k

∆ztk,k+1 ≤ ∆rt−1
k

,

and choose the largest possible ∆ztk,k+1 (so that |∆ztk,k+1| is as small as possible), which yields
(10a). The three constraints above represent flow conservation, ratio relationships, and promotion
bounds respectively. ∆rtk can then be determined via flow conservation, i.e. (10b). (10c) is a result
of stopping perturbation at ke. �

Claim A.6. Assuming a perturbed solution is feasible for periods 1, . . . , t−1, if there exists an `t ∈
Lt with `t ≤ min{min jt,min ¯̀

t−1−1} and xtk,k+1 > 0 for k with `t ≤ k ≤ max{max jt,max ¯̀
t−1−1},

then a solution also feasible for period t can be obtained by sequentially applying equations

∆ztk,k+1 = min{∆ztk+1,k+2 + ∆rtk+2/qk+1,k+2 −∆rt−1
k+1,∆r

t−1
k }, (11a)

∆rtk+1 = ∆ztk,k+1 + ∆rt−1
k+1 −∆ztk+1,k+2, (11b)

to k = kb, . . . , ke, and finally letting

∆rtke = ∆rt−1
ke
−∆ztke,ke+1, (11c)

where kb = max{max jt,max ¯̀
t−1 − 1}, ke = max{`t : `t ≤ min{min jt,min ¯̀

t−1 − 1}}.

Proof. We can choose the largest such `t as a common level for the perturbation driven by all jt
and ¯̀

t−1 to stop in period t. Again we fix potential infeasibility by decreasing promotions. But
unlike the previous claim, we operate in a top-down fashion since the perturbation is expected to
end at the `t ∈ Lt we choose.

We consider level k + 1 to determine ∆ztk,k+1. Since ∆rt−1
k+1, ∆rt−1

k , ∆rtk+2, and ∆ztk+1,k+2 (in

particular, ∆ztkb+1,kb+2 = 0) are all known as we reach node (k + 1, t), we can solve
∆ztk,k+1 + ∆rt−1

k+1 = ∆ztk+1,k+2 + ∆rtk+1

∆rtk+1 ≤ ∆rtk+2/qk+1,k+2

∆ztk,k+1 ≤ ∆rt−1
k

,

and choose the largest possible ∆ztk,k+1, which yields (11a). ∆r can then be determined via flow
conservation, i.e. (11b) and (11c). �

27



Claim A.7. Assuming a perturbed solution is feasible for periods 1, . . . , t − 1, if there exists an
`t ∈ Lt with min{min jt,min ¯̀

t−1 + 1} ≤ `t ≤ max{max jt,max ¯̀
t−1 − 1} and xtk,k+1 > 0 for k with

min{min jt,min ¯̀
t−1 + 1} ≤ k ≤ max{max jt,max ¯̀

t−1 − 1}, then a solution also feasible for period
t can be obtained by sequentially applying equations (10) to levels min{min jt,min ¯̀

t−1 + 1} ≤ k ≤
`t − 1, equations (11) to levels `t + 1 ≤ k ≤ max{max jt,max ¯̀

t−1 − 1}, and finally letting

∆zt`t,`t+1 =

min{∆rt−1
`t

+ ∆zt`t−1,`t −∆rt`t−1q`t−1,`t , ∆zt`t+1,`t+2 + ∆rt`t+2/q`t+1,`t+2 −∆rt−1
`t+1, ∆rt`t}

(12a)

∆rt`t = ∆zt`t−1,`t + ∆rt−1
`t
−∆zt`t,`t+1 (12b)

∆rt`t+1 = ∆zt`t,`t+1 + ∆rt−1
`t+1 −∆zt`t+1,`t+2. (12c)

Proof. This is a hybrid of the previous two claims. By a similar analysis the perturbation should
only cover levels from min{min jt,min ¯̀

t−1 + 1} to max{max jt,max ¯̀
t−1 − 1}. We can treat any

such `t as a breakpoint above which Claim A.6 applies and below which Claim A.5 applies. It
only remains to perturb level `t itself. To guarantee feasibility we can choose the minimum of the
values provided by Claims A.5 and A.6 to determine ∆zt`t,`t+1, and ∆rt`t+1 and ∆rt`t can then be
calculated by flow conservation. This yields (12). �

Claim A.8. Assuming a perturbed solution is feasible for periods 1, . . . , t − 1, if there are zero
promotions between successive levels `t, . . . , jt or jt, . . . , `t, then a solution also feasible for period t
can be obtained by applying (10) to each succession `t, . . . , jt or (11) to each succession jt, . . . , `t,
as long as the jt values partition Jt.

Proof. By Claim A.2 there is no ¯̀
t−1 and so we only consider the impact of full promotions at jt.

The applicability of the claims follows immediately from the fact that each succession here is an
instance of Claim A.5 or A.6.

We need to ensure, though, that each jt is included in exactly one succession. Starting from
max jt, if there exists some `t with `t ≥ max jt and xtk,k+1 > 0 for k with max jt ≤ k ≤ `t, there
may be a lower jt that satisfies this condition as well; hence we can decrease promotions from the
lowest such jt to any such `t, and use the formulas from Claim A.5 to determine ∆ztk,k+1 and ∆rtk.

Otherwise, by Claims A.3 and A.4 there must exist some `t with `t < max jt and xtk,k+1 > 0 for k

with `t ≤ k ≤ max jt, and so we can use the formulas from Claim A.6 to determine ∆ztk,k+1 and

∆rtk+1 until reaching the highest such `t. After either case is done, we can move downwards to the
next jt that has not been visited, and apply the same argument again. This process goes on until
reaching min jt. �

We now state our perturbation procedure as Procedure 2. Note that if in some period we find
xtk+1,k+2 < pst−1

k+1 for each perturbed level k (including when Jt = L̄t−1 = ∅), the procedure can
end in this period, and from then on the perturbed solution will remain the same as the initial
solution; otherwise, the procedure will iterate forward infinitely but converge to a new feasible
solution. Claim A.9 justifies the lower cost of the final perturbed solution.

Claim A.9. Procedure 2 modifies the given solution by adding to it a series of negative cost cycles
or infinite paths in the time-space network.
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Proof. Except for the possible end period, all the perturbations are initiated by decreasing the z
values. Pick any node (k, t) with negative ∆r flows in the perturbation network. Each time we
conduct an operation as in Claims A.5 to A.8, by flow conservation ∆rtk is passed to either ∆rt−1

k

or ∆ztk−1,k, resulting in a left arc and a downward arc, respectively. As this propagates, two cases
may occur.

Case 1: We reach some `t (t ≤ t) where the flow turns right, then follows a right-down-right
pattern, and finally turns upwards at the perturbation’s end period. This constitutes a
counterclockwise cycle as described in Claim A.1.

Case 2: The flow may continue shifting in a right-down-right pattern perpetually, which consti-
tutes a counterclockwise infinite path as described in Claim A.1. �

Procedure 2 Perturbation when n ≥ 3 and pk = pk+1,∀ k = 1, . . . , n− 1

1: ∆r1
m+1 = −∆r1

m = ∆z1
m,m+1 = −ε, J1 = L1 = {m}, L̄0 = ∅, t = 2, ep = 0

2: while ep = 0 do
3: if xtk+1,k+2 < pst−1

k+1 for every perturbed level k then
4: ep = 1
5: else
6: Run Procedure 1 to identify Jt, Lt, and L̄t−1

7: if Claim A.5 is applicable then
8: Perturb according to Claim A.5
9: else if Claim A.6 is applicable then

10: Perturb according to Claim A.6
11: else if Claim A.7 is applicable then
12: Perturb according to Claim A.7
13: else
14: Perturb according to Claim A.8
15: end if
16: Update ∆x,∆s, x, s
17: t = t+ 1
18: end if
19: end while
20: for perturbed levels k in increasing order do
21: ∆ztk,k+1 = ∆rt−1

k + ∆ztk−1,k

22: Update ∆x,∆s, x, s
23: end for

A.4 A technical note on the perturbation amount ε

We have constructed perturbation operations that are feasible for small enough ε. To obtain a valid
perturbed solution, however, we need to guarantee that ε > 0. Because the perturbation may range
over infinitely many periods, it could be that the required ε eventually converges to zero. We next
argue why this is not the case.
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If the perturbation ends in some period, it essentially works in finite dimensions and thus
ε > 0. On the other hand, if the procedure iterates infinitely, ε depends on the x and s values. In
particular, the values of the training variables, promotion variables, and slack between consecutive
levels matter since we are decreasing them. To eliminate the possibility of ε converging to zero, it
suffices to bound those values from below wherever they are perturbed.

When n = 2, the proof of (4b) reduces the promotion in period 1 and increases it in later
periods. The increments depend on the reduction in period 1 and so depend on how much we
can decrease there, which clearly is positive. In the proof of (4a), ε depends on st+1

1 − dt+1 if

xt+1
1,2 = p1s

t
1, and p1s

t
1 − x

t+1
1,2 if st+1

1 = dt+1. In the former case, st+1
1 − dt+1 =

p2st2+p1st1
q1,2

− dt+1 ≥
(pmin + pmin

qmax
)dt − dt+1 ≥ pmindt, which is bounded away from zero since dt ≥ d1 > 0. In the latter

case, the perturbation ends in period t+ 1 so the perturbation is finite.
Now consider when n ≥ 3. Recall that in all the cases considered for perturbation, we perturb

levels between jt and `t, or ¯̀
t−1 and `t, or both. For any level k with `t ≤ k ≤ jt, the proof of

Claim A.4 actually provides a lower bound independent of t, i.e. xt+1
k,k+1 > pqk+1,jts

t
k+1 ≥ pq1,jtd1.

Furthermore, if we redefine g = min {i : xt+1
i,i+1 ≤ C, jt + 1 ≤ i ≤ n}, where C > 0 can be any con-

stant less than mint′=1,...,t{pst
′
i } for each i (such as C = pq1,nd1), the bound still holds, and hence

the x variables at levels k with jt ≤ k ≤ `t are also bounded below by a constant independent of t.
The same trick can be applied to any level k between `t and ¯̀

t−1, i.e. the lower bounds on the x
variables in Claim A.2 can be strengthened from zero to the same constant C above. Finally, Claim
A.3 is still correct for xt+1

g,g+1 ≤ C as long as C < pqn−1
maxd1. This enables us to use a g that still

satisfies the properties in both claims as the level starting from which a search of `t is conducted
in Procedure 1.

Since the proofs of the claims only utilize the linear relationships between s and x, we can
obtain similar bounds for the slack between consecutive s variables. All the lower bounds depend
only on d1 and fixed parameters like n, p and q. It follows that the ε in the infinite case is indeed
positive.

B Proof of Theorem 3.3

We will construct a one-period lookahead policy based on Lemmas 3.1 and 3.2, and then demon-
strate that the resulting solution is unique.

B.1 A one-period lookahead policy

The notation we use is summarized below:

• Bt
i,i+1: upper promotion bound for level i in period t.

• I: a list of levels where promotion bounds would be violated if hiring were not allowed.

Claim B.1. Consider a subsystem consisting of levels from j to k + 1, 0 ≤ j ≤ k ≤ n − 1 in
period t. Assume st−1

i , i = j, . . . , k + 1 and stj are known. If pj+1s
t−1
j+1 < qj,j+1s

t
j and pi+1s

t−1
i+1 ≤

qi,i+1pis
t−1
i , i = j + 1, . . . , k, then the unique solution to the following equations provides a solution
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that satisfies promotion bounds at levels in I:

pj+1s
t−1
j+1 + xtj,j+1 − xtj+1,j+2 + xtj+1 = qj,j+1(stj − xtj,j+1) (13a)

pi+1s
t−1
i+1 + xti,i+1 − xti+1,i+2 + xti+1 = qi,i+1(pis

t−1
i + xti−1,i − xti,i+1 + xti),

i = j + 1, . . . , k − 1
(13b)

pk+1s
t−1
k+1 + xtk,k+1 + xtk+1 = qk,k+1(pks

t−1
k + xtk−1,k − xtk,k+1 + xtk), (13c)

where xti = 0 if i /∈ I and xti,i+1 = Bt
i,i+1 if i ∈ I.

Proof. Clearly any solution to the above linear system satisfies promotion bounds at any i ∈ I.
Nonnegativity of the x variables is guaranteed by the deficiency of staff at level j and the tight
ratio relationships (with respect to retention from period t − 1) at levels j, . . . , k. For a specific
solution x, a policy can be obtained by letting

sti =


sti − xti,i+1, i = j

pis
t−1
i + xti−1,i − xti,i+1 + xti, i = j + 1, . . . , k

pis
t−1
i + xti−1,i + xti, i = k + 1

. (14)

Let the coefficient matrix be such that column ` (` = 1, . . . , k − j + 1) records the coefficients
of xtj+`−1,j+` if j + `− 1 /∈ I and xtj+` otherwise. The elements are

am` =


−qj+`−1,j+`, m = `+ 1

1 if j + `− 1 ∈ I and 1 + qj+`,j+`+1 otherwise, m = `

0 if j + `− 1 ∈ I and − 1 otherwise, m = `− 1

0, otherwise

.

Define Dm (m = 1, . . . , k− j + 1) as the determinant of the submatrix composed of the first m
rows and the first m columns. For m ≥ 2, we have the recursion

Dm =

{
Dm−1, j +m− 1 ∈ I
(1 + qm+j−1,m+j)Dm−1 − qm+j−1,m+jDm−2, otherwise

.

By induction we know Dk−j+1 ≥ Dk−j ≥ . . . ≥ D1 > 0, and hence the solution is unique. �

We now construct a feasible one-period lookahead policy by solving subproblems composed of
levels 1, . . . , k + 1 sequentially until k = n − 1. During each loop, we first check if the resulting
solution is feasible without promotion at level k, if yes then we are done. Otherwise, we try to get a
solution which uses only promotions, i.e. solve (13) with I = ∅. If this happens to be feasible, then
we update the st and xt values and exit; otherwise we calculate a feasible solution by allowing hiring,
i.e. solve (13) with I 6= ∅. For each k, we keep iterating these steps for subproblems composed of
levels j, . . . , k + 1 so that we can stop at the highest j and the lower levels are not affected. When
determining promotion and hiring, we force the ratio constraints to be tight so that we use the
smallest possible xt. In other words, we promote and hire only if necessary. A formal statement is
described in Procedure 3.

We end this section with two comments. First, the procedure is applicable to both n = 2 and
n ≥ 3. Second, once i enters I at some iteration, it will be there forever: The first time i enters I,
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Procedure 3 A one-period lookahead policy

1: sti = dt if i = 0 and pis
t−1
i if i ≥ 1, Bt

0,1 = 0 if t = 1 and ∞ if t ≥ 2, Bt
i,i+1 = pis

t−1
i , i =

1, . . . , n− 1
2: k = 0
3: while k ≤ n− 1 do
4: j = k
5: while j ≥ 0 and stj+1 < qj,j+1s

t
j do

6: I = ∅
7: Bt

j,j+1 = Bt
j,j+1 − xtj,j+1

8: Solve (13)
9: I = {i : xti,i+1 > Bt

i,i+1, j ≤ i ≤ k}
10: if I 6= ∅ then
11: while I is changed do
12: Solve (13)
13: Update I
14: end while
15: end if
16: Update s with (14)
17: j = j − 1
18: end while
19: k = k + 1
20: end while

xti,i+1 must be decreased (from infeasibility) to full promotion and so sti must be increased in the
next iteration (which is true since the only possibility for sti not to be increased is then to decrease
xti or xti−1,i, but this would induce infeasibility between sti and lower levels). To further satisfy the
ratio relationships at levels i to k, st`+1(i ≤ ` ≤ k) cannot be decreased either, which in turn forces
the promotions at these levels to be full if they were. This implies the procedure terminates.

B.2 Optimality of the one-period lookahead policy

Claim B.2. Recursively applying Procedure 3 yields the unique solution that satisfies Lemmas 3.1
and 3.2.

Proof. Clearly the solution satisfies the lemmas. Suppose there are multiple feasible solutions for
which the lemmas hold. We compare an arbitrary one of them, say (u, y), with (s, x) obtained from
Procedure 3. By Lemma 3.1 ytk+1 > 0 only if ytk,k+1 = pku

t−1
k . Start from the earliest period, say

t, where there is a difference between xt and yt. Pick the lowest different level, say i. We have
stk = utk,∀ k ≤ i− 1, and st

′
= ut

′
, ∀ t′ ≤ t− 1.

We first note that yti,i+1 < xti,i+1 or yti < xti cannot be true; otherwise we should be able to
obtain a smaller xt as Procedure 3 finishes since a feasible solution must satisfy the ratio and bound
constraints at every level.

We next show that yti,i+1 > xti,i+1 or yti > xti cannot be true, either. Since (u, y) is feasible, by
(1e) yti,i+1 > xti,i+1 or yti > xti implies utk > stk for some k ≥ i, so there is over promotion/hiring and
the lemmas must be violated somewhere in (u, y). �
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C Extended model used in the computational examples

We modified (1) for our computational examples as follows. Let:

• T ≥ 1: Length of planning horizon.

• L ≥ 1: Length of the training program.

• a: Age of the student or worker, al ≤ a ≤ au.

• p0,i ∈ (0, 1): Per-period rate of continuing education for students in school year i = 1, . . . , L−
1, or per-period rate of graduating and going to the workforce for students in school year i = L.

• pk,a ∈ (0, 1): Per-period retention rate of workers of age a = al, . . . , au that stay in the system
at level k = 0, . . . , n from one period to the next.

• mk,a: The age distribution of students (k = 0) or workers (k = 1, . . . , n) of age a = al, . . . , au.

• st0,i,a: Students of age a = al, . . . , au in school year i = 1, . . . , L at end of period t = 1, . . . , T .

• stk,a: Workers of age a = al, . . . , au in level k = 1, . . . , n at end of period t = 1, . . . , T .

Our modified problem has the following formulation.

min C(s, x) =
T∑
t=1

γt−1

( n∑
k=0

ckx
t
k +

n−1∑
k=1

ck,k+1x
t
k,k+1 +

n∑
k=1

hk

au∑
a=al

stk,a

)

s.t.

au∑
a=al

st1,a ≥ dt, ∀ t = 1, . . . , T

au∑
a=al

stk+1,a − qk,k+1

au∑
a=al

stk,a ≥ 0, ∀ k = 1, . . . , n− 1, ∀ t = 1, . . . , T

st0,1,a −m0,ax
t
0 = 0, ∀ a = al, . . . , au, ∀ t = 1, . . . , T

st0,i,a − p0,i−1s
t−1
0,i−1,a−1 = 0, ∀ i = 2, . . . , L ∀ a = al + 1, . . . , au − 1, ∀ t = 1, . . . , T

st0,i,au − p0,i−1(st−1
0,i−1,au

+ st−1
0,i−1,au−1) = 0, ∀ i = 2, . . . , L, ∀ t = 1, . . . , T

st1,a − p1,a−1s
t−1
1,a−1 −m1,ax

t
1 − p0,Ls

t−1
0,L,a−1 +m2,ax

t
1,2 = 0,

∀ a = al + 1, . . . , au − 1, ∀ t = 1, . . . , T

st1,au − p1,aus
t−1
1,au
− p1,au−1s

t−1
1,au−1 −m1,aux

t
1 − p0,L(st−1

0,L,au
+ st−1

0,L,au−1)

+m2,ax
t
1,2 = 0, ∀ t = 1, . . . , T

pk,a−1s
t−1
k,a−1 − s

t
k,a +mk,ax

t
k−1,k −mk+1,ax

t
k,k+1 +mk,ax

t
k = 0, ∀ k = 2 . . . , n− 1,

∀ a = al + 1, . . . , au − 1, ∀ t = 1, . . . , T

pk,au−1s
t−1
k,au−1 + pk,aus

t−1
k,au
− stk,au +mk,aux

t
k−1,k −mk+1,aux

t
k,k+1 +mk,aux

t
k = 0,

∀ k = 2 . . . , n− 1, ∀ t = 1, . . . , T

pn,a−1s
t−1
n,a−1 +mn,a(x

t
n−1,n + xtn)− stn,a = 0, ∀ a = al + 1, . . . , au − 1,

∀ t = 1, . . . , T
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pn,au−1s
t−1
n,au−1 + pn,aus

t−1
n,au +mn,au(xtn−1,n + xtn)− stn,au = 0, ∀ t = 1, . . . , T

pk,a−1s
t−1
k,a−1 −mk+1,ax

t
k,k+1 ≥ 0, ∀ k = 1, . . . , n− 1,

∀ a = al + 1, . . . , au, ∀ t = 1, . . . , T

st0,i,a = 0, ∀ i = 2, . . . , L ∀ a = al, . . . , al + i− 2, ∀ t = 1, . . . , T

stk,a = 0, ∀ k = 2, . . . , n− 1, ∀ a = al, . . . , al + k + L− 2, ∀ t = 1, . . . , T

xt, st ≥ 0, ∀ t = 1, . . . , T
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