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COMPUTATIONAL NANOFLUIDICS:
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The paper gives a review of recent advances in theory and simulation of nonlocal transport
in nanoflows. The aim is to show how to computationally model and simulate the nonlocal
viscous transport in atomic and molecular fluids. The ultimate goal is to provide nanofluidics
and other disciplines with methodologies capable to give exact descriptions of flow at the
nanoscale by using nonlocal constitutive relations which involve nonlocal transport kernels.

Nanomaterials have properties that can be substantially different from those of the corre-
sponding bulk phases. In particular, fluid flows in pores or channels of nanoscale dimension
can deviate strongly from macroscopic expectations. When such structures approach the size
regime corresponding to molecular scaling lengths, new physical constraints are placed on
the behavior of the fluid. These physical constraints induce regions of the fluid to exhibit new
properties (e.g. vastly increased viscosity near the pore wall) and they may affect changes in
thermodynamic properties and may also alter the chemical reactivity of species at the fluid-
solid interface. Consequently, many classical theories break down and are no longer valid at
such small length and time scales.

The development of models that go beyond classical (Navier-Stokes-Fourier) hydrodynamics
would be very helpful for the prediction and understanding of flows in highly confined ge-
ometries (typically 1-100 nm). While such nanoscale systems can be very difficult to probe
experimentally, they can be easily approached in a very strict manner by molecular mod-
elling, providing theory and simulation an opportunity for the discovery of new phenomena.
We therefore review in this article the advances within the framework of generalized hy-
drodynamics and present the latest theoretical developments and modelling results that can
ultimately lead to suitable predictive tools capable of accurate prediction of the key physical
properties of fluids under nano-confined geometries.
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We start with an overview on the nonlocal constitutive relation and the microscopic definitions
of the key properties such as momentum density autocorrelation function, stress autocorrela-
tion function and the wavevector dependent viscosity. Then we demonstrate how the nonlocal
viscosity kernel can be computed via equilibrium molecular dynamics. Firstly, we showcase
the spatially nonlocal viscosity kernel for simple monatomic and diatomic fluids over a wide
range of wavevectors, state points and potential energy functions. Further we consider more
complex fluids; in particular, we report results for alkanes and polymer melts. Secondly, we
study glass-forming liquids and therefore extend the temperature range and report the non-
local viscosities of polymer melts cooled towards their glassy state. The results reveal the
nonlocal nature of the viscous transport and we give evidence that the slow dynamics in su-
percooled liquids is governed by a dynamic critical point at which time and length scales
diverge and link it to the dynamic heterogeneity. It follows that the response of polymer melts
to a velocity gradient near the glass transition temperature is highly nonlocal.

In systems where the strain rate varies significantly over the width of the real space kernels, the
generalized nonlocal viscosity must be used in order to correctly compute the velocity profile
of molecular fluids via use of generalized hydrodynamics and thus the nonlocal behaviour
of the transport must be integrated into methodologies developed to describe the multi-scale
physics of nanoflows.
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Notation

ABBREVIATIONS

ACF(s) Autocorrelation function(s)
CF(s) Correlation function(s)
EOM Equations of motion
EQ Equilibrium
FENE Finitely Extensible Nonlinear Elastic potential
FENE-LJ Finitely Extensible Nonlinear Elastic model with Lennard-Jones potential
FJC Freely jointed chain model
FJC-LJ Freely jointed chain model with Lennard-Jones potential
FJC-WCA Freely jointed chain model with Weeks-Chandler-Andersen potential
GT Glass transition
k-space Reciprocal or wave-vector space
LJ Lennard-Jones potential
MCT Mode-coupling theory
MD Molecular dynamics
MIC Minimum image convention
NEMD Nonequilibrium molecular dynamics
NEq Nonequilibrium
pbc Periodic boundary conditions
PDF Pair distribution function
RDF Radial distribution function
r-space Euclidian (real) space
VACF(s) Velocity autocorrelation function(s)
VK Viscosity kernel
WCA Weeks-Chandler-Andersen interatomic potential
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LATIN ALPHABET

C(k, t) Momentum density correlation function
C̃(k, ω) Laplace transform of the momentum density correlation function
C⊥(k, t) Transverse momentum density correlation function
C̃⊥(k, ω) Laplace transform of the transverse momentum density correlation function

ciα Peculiar velocity of site α of molecule i

Ciα Peculiar velocity of site α of molecule i relative to the center of mass of molecule i

d Dimensionality of the system
Fi Force acting on particle i

Finter
ij Intermolecular force acting on molecule i due to molecule j

FC
iα Bond constraint force on site α of molecule i

FD
i Dihedral force acting on site α of molecule i

FFENE
iα Force acting on site α of molecule i due to the FENE potential

FLJ
iα Force acting on site α of molecule i due to the Lennard-Jones potential

g(ik · r) Fourier transforms of the Irving-Kirkwood operator
g(r) Radial distribution function

J(r, t) Instantaneous momentum density
J̃A(k, t) Fourier transform of the atomic momentum density
J̃M (k, t) Fourier transform of the molecular momentum density

k Wavevector
k Force constant for the FENE potential

ky The component of the wave-vector in y direction
kB Boltzmann’s constant
L Side length of a cubic simulation cell

IC⊥(k, t) Integral of the transverse momentum density correlation function
IN (k, t) Integral of the stress correlation function

mi Mass of particle i
miα Mass of site α on molecule i
M Molecular weight
Mi Mass of molecule i
Nc Number of degrees of freedom lost through constraint
N Number of particles

Na Number of atoms
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Nm Number of molecules
Ns Number of sites in a molecule

N(k, t) Stress correlation function
Ñ(k, ω) Laplace transform of the stress correlation function

pi Peculiar momentum of atom i for monatomic systems or centre of mass
momentum of molecule i for molecular systems

piα Momentum of site α on molecule i

P Pressure tensor

P̃
A

Atomic pressure tensor

P̃
AChlorine

Atomic pressure tensor for model Chlorine

P̃
AButane

Atomic pressure tensor for model Butane

P̃
AF ENE

Atomic pressure tensor for model FENE

P̃
AF JC

Atomic pressure tensor for model FJC

P̃
M

Molecular pressure tensor
Pxy xy element of the pressure tensor

r Position vector
ri Position of atom i for monatomic systems or centre of mass position

of molecule i for molecular systems
riα Position of site α on molecule i

riαjβ Vector from site α of molecule i to site β of molecule j

rij Distance between atoms i and j

R0 Maximum extension of the FENE potential
Riα Position of site α of molecule i relative to the center of mass of molecule i

sr Residual standard deviation
s, t, t′ Time

T Temperature
TA Atomic temperature
Tg Glass transition temperature

TM Molecular temperature
u(r, t) Streaming velocity of a fluid

∇u(r, t) Velocity gradient tensor
V Volume
vi Velocity of atom i for monatomic systems or centre of mass velocity

of molecule i for molecular systems
viα Velocity of site α on molecule i
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GREEK ALPHABET

δt Integration timestep
δ(t) Dirac delta function (of time)

δ(r− ri) Kirkwood delta function
γ̇ Strain-rate

γ̇(r, t) Strain-rate tensor
˜̇γ(k, t) Fourier transform of the strain-rate

ε Lennard-Jones energy parameter
η Shear viscosity

η(k, w) Wavevector and frequency dependent viscosity
ρ(r, t) Density of a fluid
ρ̃(k, t) Fourier transform of the density

ρa Atomic number density
ρ̃a Fourier transform of the atomic number density
ρm Molecular number density
ρ̃m Fourier transform of the molecular number density

σ(r, t) Stress-tensor
σLJ Effective diameter of the Lennard-Jones potential

w Frequency
Φij Interatomic potential

Φiαjβ Potential of site α on molecule i due to site β on molecule j

Φc Shift constant in the Weeks-Chandler-Andersen potential
ΦFENE

ij The FENE potential between atoms i and j

ΦLJ
ij Lennard-Jones potential between atoms i and j

ΦWCA
ij Weeks-Chandler-Anderson potential between atoms i and j

ζA Atomic thermostat multiplier
ζM Molecular thermostat multiplier
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Introduction

Nanofluidics constitutes undoubtedly an emerging theme in modern science. New nanoscale de-
vices are proliferating leading to exceptional progress in nanotechnology [Abgrall 2009]. Com-
putational nanosciences, including theory, design, modelling and simulation are increasingly
playing a key role in advancing nanotechnology. One of the directions in nanoscience which has
already born some exciting results is nanofluidics.

In general, nanofluidics can be defined as ”the study and application of fluid flow in and
around nanosized objects” [Eijkel 2005, Bruus 2008, Tabeling 2005]. Though a rapid develop-
ment of new applications using liquids containing suspended nanometer-size solid particles is
extremely exciting on its own [Wang 2008a, Wang 2008b, Goff 208, Keblinski 2005], we only
devote our study to ”purely” fluidic systems that are confined to structures of nanometer length
scales.

A key branch of nanoscience is computational nanofluidics. Computational nanofluidics is
crucial for the fundamental understanding and design of nanofluidic flows. While the great minds
of the nineteenth and twentieth centuries understood the phenomena they were investigating be-
fore they cast them into models, today we do the opposite; many modern theories do not provide
intuitive insights into the phenomena they are describing. By using advanced computational
techniques we can increase the level of understanding phenomena which are difficult to imag-
ine and comprehend; we can make these phenomena as meaningful as classical theories were to
those who developed them.

For instance, nanofluidics is a field that has developed, in a broad sense, not as an extension
and improvement of microfluidic systems, but rather as a way of exploiting certain unusual phys-
ical phenomena that simply do not exist at larger length scales [Edel 2009]. In this nanofluidic
regime the characteristic physical scaling lengths of the fluid, (e.g. Debye length, hydrodynamic
radius) very closely coincide with the dimensions of the nanostructure itself. When structures
approach the size regime corresponding to molecular scaling lengths, new physical constraints
are placed on the behavior of the fluid. For example, these physical constraints induce regions of
the fluid to exhibit new properties not observed in bulk, (e.g. vastly increased viscosity near the
pore wall); they may affect changes in thermodynamic properties and may also alter the chemi-
cal reactivity of species at the fluid-solid interface. Consequently, many classical theories break
down and are no longer valid at such small length and time scales.

Classical Navier-Stokes-Fourier hydrodynamics, for instance, is limited to wide channels
and small fields, therefore the development of models that go beyond classical hydrodynam-
ics would be very helpful for the prediction and understanding of flows in highly confined
geometries (typically 1-100 nm). There are many aspects that make classical treatment even
more difficult, e.g. strong density inhomogeneities [Bitsanis 1988, Bitsanis 1990], fluid slip at
solid surfaces [Thompson 1997, Cieplak 2001, Zhu 2003, Petravic 2007, Sokhan 2008, Bha-
tia 2008, Hansen 2010] etc.

We decided to tackle one of the problems in nanofluidics, namely spatial nonlocality. In
the same way that every fluid must be regarded as viscoelastic, leading to a stress response that
is nonlocal in time, the stress response of all fluids must also be regarded as being spatially
nonlocal. Evidence for such viscoelastic behaviour has been seen in the velocity autocorrelation
function [Alder 1967], in the neutron-scattering function [Alley 1983b] and in the transverse
current autocorrelation function [Alley 1983b, Levesque 1973, Levesque 1987]. More recently,
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Todd et al. have shown that in all but the simplest flows (e.g. planar Couette and Poiseuille
flows) and for velocity fields with high gradients in the strain rate over the width of the real space
viscosity kernel, nonlocality can play a significant role [Todd 2008b, Todd 2008a]. Because
such systems no longer respond pointwise and instantaneously to fluctuations but nonlocally
in time and space, the nonlocal viscosity kernel (or memory kernel) η(r − r′, t − t′) relating
stress to the strain rate is introduced. For a homogeneous fluid the nonlocal constitutive relation
reads [Alley 1983a, Evans 1990]

Pxy(r, t) = −
t∫

0

∞∫
−∞

η(r− r′, t− t′)γ̇(r′, t′)dr′dt′, (1)

where Pxy(r, t) represents the (x, y) off-diagonal component of the pressure tensor and
γ̇(r, t) is the shear strain rate at position r and time t. In the situation where the strain rate
is constant in time and only varies with respect to the spatial coordinate y, Eq. (1) is written as

Pxy(y) = −
∞∫

−∞

η(y − y′)γ̇(y′)dy′. (2)

It was found by Todd et al. that for a quadratic velocity profile, the non-local constitutive equa-
tion reduces to a simple local expression due to the symmetry of the non-local viscosity ker-
nel [Todd 2008a].

Generally, the viscosity kernel for a Newtonian fluid reduces to a Dirac delta function. In
reciprocal space Eq. (2), can be expressed as

P̃xy(ky) = −η̃(ky)˜̇γ(ky), (3)

where ky is the y component of the wavevector. Such a constitutive equation is expected to be
necessary for the description of flows in highly confined systems, due to the large change in the
strain rate with position in the vicinity of the wall [Travis 1997].

The memory function η(r−r′, t−t′) is merely the Fourier-transformed generalized transport
coefficient to real space r and time t [Boon 1980, Evans 1990]. The best available theoretical pre-
dictions of the wavevector dependent viscosity are based on mode-coupling theory and general-
ized Enskog theory [Leutheusser 1982a, Leutheusser 1982b, Yip 1982]. However, these theories
do not quantitatively agree with data obtained via computer simulations [Alley 1983a]. The the-
oretical predictions focus on the transverse momentum density autocorrelation function, which
is found by an iterative numerical solution of a system of nonlinear equations. Consequently,
the theories do not result in analytical expressions for the correlation functions or the wavevector
dependent transport coefficients, which are the focus of the present study. More recently, a mod-
ified collective mode approach has been successfully applied by Omelyan et al. [Omelyan 2005]
to the TIP4 model of water. Unlike other semi-phenomenological approaches used to describe
the wavevector dependence of the viscosity for TIP4P and SPC/E models of water by Bertolini et
al. [Bertolini 1995] and Palmer [Palmer 1994], Omelyan et al. reproduced the reciprocal space
kernel using a relatively small number of modes.
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Despite the fact that Alley and Alder [Alley 1983a] computed the generalized transport co-
efficients for hard spheres back in the early 1980s, the first serious attempt to study the nonlocal
viscosity of confined fluids was made by Zhang et al. [Zhang 2004, Zhang 2005] and Cadusch et
al. [Cadusch 2008] only two decades later. Zhang et al. model the (Couette and Poiseuille) flow
by a nonlocal constitutive equation assuming that the viscosity kernel is independent of position
i.e. η(y, y − y′) = η(y − y′). This assumption of a homogeneous effective kernel is reasonable
for relatively wide pores and low density fluids but it is limited in accuracy for the case of high
densities and narrow confinement [Cadusch 2008]. Furthermore, since their analysis involves
discrete Fourier transforms of the simulated data for the shear stress and strain rate, the domain
restriction and the circular convolution inherent in the discrete Fourier transform methodology
leads to singularities in the estimated kernel and a non-zero tail in the reciprocal space kernel
for large wavevectors. In addition, the efforts to perform direct inversion to extract the kernel by
discretizing the constitutive equation (assuming the viscosity kernel as a homogeneous function
of relative separation) and selecting only those values that contribute to the shape of the kernel
without attempting to Fourier transform the data led to a distortion of the shape of the true kernel.

An alternative to direct inversion of stress-strain rate data would be to determine the viscosity
kernel independently for an unconfined, homogeneous fluid over an appropriate range of state
points and then use the constitutive equation with appropriate boundary conditions to predict
the flows for confined fluids. Following this idea, Hansen et al. [Hansen 2007] computed the
nonlocal viscosity kernel for a simple monatomic system. Their preliminary results suggested
that this work needs to be extended to cover a larger set of state points, potential energy functions
and to extend the methodology to molecular fluids. We aimed this study to pursue this idea and
to extend the work done by Hansen et al. [Hansen 2007] and understand fundamentally the
spatially dependent transport properties for homogeneous molecular fluids.

We further expect that nonlocal transport phenomena would be relevant in shock waves [Al-
ley 1983a, Holian 1980, Holian 1998, Reed 2006, Reed 2003], shear banding [Dhont 1999], flows
of micellar solutions [Masselon 2008], suspensions of rigid fibers [Schiek 1995] and jammed or
glassy systems [Goyon 2008] etc. Therefore such a work should be useful for a variety of appli-
cations in soft condensed matter.

Recently there has been a surge of interest in polymeric systems [Binder 1995, Kremer 2003].
Specifically, two large classes of materials such as polymeric chains, which are fundamental to
both biology [Tegenfeldt 2004] and materials engineering, and hydrocarbons relevant to a wide
range of chemical applications, are of special interest and therefore will be targeted in this work.
We focus our attention on two relatively simple subclasses: on alkanes, in particular butane, and
linear polymeric chains (similar to polyethylene). Our efforts will be focused on understanding
how these chain systems behave in situations that commonly arise in nanofluidics.

In addition, polymeric materials are one of the most representative compounds that can exist
in a glassy state and have attracted significant interest over the last decade. These model polymer
melts are convenient systems for computer simulations of materials in metastable equilibrium
near the glass transition temperature. Though the dynamics of such melts are generally explained
by various theories such as mode coupling theory [Götze 1992], entropy theory [Gibbs 1955],
free volume approach [Grest 1981] or the spin model [Binder 1986] the nature of the glass
transition is still unclear.

In studies of a facilitated kinetic Ising model, Harrowell [Harrowell 1993] concluded that the
glassy dynamics was the result of an increasing inhomogeneity in the spatial distribution of relax-
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ation kinetics. This insight has proved a valuable approach to the analysis of structural relaxation
in simple liquids [Hurley 1995, Hurley 1996] and it also provided a general framework with
which to relate the range of glass behaviour [Perera 1996]. More recently, Widmer-Cooper et al.
have shown that the localized low-frequency normal modes of a configuration in a supercooled
liquid are causally correlated to the irreversible structural reorganization of the particles within
this configuration [Widmer-Cooper 2009]. They also demonstrated that the spatial distribution of
these soft local modes can persist in spite of significant particle reorganization. The consequence
of these two results is that it is now feasible to construct a theory of relaxation length scales in
glass-forming liquids without recourse to dynamics and to explicitly relate molecular properties
to their collective relaxation [Widmer-Cooper 2008].

A body of literature exists on the viscoelastic properties and behaviour of the viscosity near
the glass transition [Varnik 2002, Yamamoto 2002, Binder 2003, Wallace 2004]. There is much
less information about the spatial dependence of viscosity for such systems [Furukawa 2009,
Isobe 2009, Kim 2005, Mountain 1994]. Furukawa and Tanaka [Furukawa 2009], for instance,
studied a different glass-forming liquid (a mixture of two atomic species) system and they did
clearly confirmed the nonlocal nature of the viscous transport and linked it to the dynamic het-
erogeneity. There are, however, a few key differences between our results and Furukawa and
Tanaka’s work. For example, we use more robust empirical functions, a more extended set of
stress and momentum density correlation function results and questioned in our analysis both the
reciprocal and the real space viscosity kernels. Also, Kim and Keyes evaluated the wavevector
dependent shear viscosity for a range of temperatures in a binary Lennard-Jones liquid sys-
tem and observed a growing correlation length associated with a dynamically homogeneous do-
main [Kim 2005] . Isobe and Alder characterized the molasses tail (long time tail of the stress
autocorrelation function) for a systems of elastic 2D hard discs and argued that the enhanced
viscosity near solidification is due to a transitory existence of solid nuclei [Isobe 2009]. The
transient existence of slow simultaneous unlocking mechanisms were considered as the origin of
the molasses tail. In our study we address these questions by computing the viscosity kernel of a
polymer melt as it is cooled down towards its glass transition temperature.
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1 Theory and Methods

1.1 Microscopic mass and momentum density

A central problem in the study of fluids at molecular length and time scales is the computation
of meaningful transport properties. While the macroscopic equations of motion for the densi-
ties of conserved quantities are well described by the classical Navier-Stokes-Fourier hydrody-
namic theory [Evans 1990], we are mainly interested in the microscopic description of mass
and momentum transfer. Therefore, in what follows, we will briefly introduce the microscopic
expressions for the continuity equations.

In general, molecular hydrodynamic theories may be framed in atomic or molecular terms
[Olmsted 1976a, Edberg 1987b, Allen 1984, Evans 1976]. Thus, it is important to understand
the significant differences between two such formulations. Irving and Kirkwood [Irving 1950]
derived in 1950 the microscopic expressions for the thermodynamic forces and fluxes in terms
of ensemble averages. In fact the Irving-Kirkwood expression for the pressure tensor is the
same expression as that derived using Gibbs’ ensemble theory for a uniform fluid at equilibrium
[Evans 1990]. The instantaneous expressions for the fluxes are usually preferred over ensemble
based Irving-Kirkwood expressions. The reason is that the fluxes are based upon conservation
laws and these laws are valid instantaneously for every member of the ensemble. They do not
require ensemble averaging to be true. As ensemble averaging is very expensive in computer
simulation time therefore it is rarely used in the calculation of system properties. As long as a
system is ergodic, an ensemble average can always be replaced by a time average over a single
phase-space trajectory.

We start with the macroscopic mass continuity equation governing the conservation of mass,
which is

∂ρ(r, t)
∂t

= −∇ ·
[
ρ(r, t)u(r, t)

]
, (1.1)

where ρ(r, t) is the mass density and u(r, t) is the fluid streaming velocity at position r and
time t. If we define the macroscopic momentum density as ρ(r, t)u(r, t) then, in the absence of
external forces, we can write the macroscopic momentum continuity equation as

∂J(r, t)
∂t

=
∂[ρ(r, t)u(r, t)]

∂t
= −∇ ·

[
ρ(r, t)u(r, t)u(r, t) + P

]
, (1.2)

where P is the pressure tensor.
In order to introduce the microscopic expressions for the continuity equations we need to

define the microscopic mass and momentum density. The mass density can be defined either in
the Schroedinger or Heisenberg representation. In the Schroedinger representation

ρ(r, t) = −
∫

dΓf(Γ, t)
N∑

i=1

miδ(r− ri), (1.3)

where mi is the mass of the individual particle in the single component (e.g. monatomic) system,
Γ is the phase space vector and f(Γ, t) is the N -particle distribution function in the phase space.
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Alternatively, we can calculate the value at time t by following the mass
∑N

i=1 miδ(r − ri),
as it changes along a single trajectory in phase space. The mass density can then be calculated
by summing the values of mass

∑N
i miδ[r− ri(t)], with a weighting factor determined by the

probability of starting from each initial phase Γ. These probabilities are chosen from an initial
distribution function f(Γ, 0). This is the so called the Heisenberg representation of mass density
written as

ρ(r, t) =
∫

dΓf(Γ, 0)
N∑
i

miδ[r− ri(t)] =
〈 N∑

i

mi|ri(t) = r
〉
. (1.4)

The microscopic momentum density, ρ(r, t)u(r, t) is defined similarly as

ρ(r, t)u(r, t) =
∫

dΓf(Γ, 0)
N∑
i

miviδ[r− ri(t)] =
〈 N∑

i

pi(t)|ri(t) = r
〉
, (1.5)

where vi is the velocity and pi is the momentum of particle i. For a molecular fluid the atomic
representation of the momentum density can be written as

JA(r, t) = ρa(r, t)v(r, t) =
Nm∑
i=1

Ns∑
α=1

miαviα(t)δ(r− riα), (1.6)

where the atomic mass density is defined as

ρa(r, t) =
Nm∑
i=1

Ns∑
α=1

miαδ(r− riα). (1.7)

The inner summation extends over the Ns mass points in a molecule and the outer summation
extends over the number of molecules Nm in the system. If all the particles have the same mass
then the atomic number density is equal to the atomic mass density in reduced units.

If we define the Fourier transform of a function f(r) as

F [f(r)] = f̃(k) =
∫ ∞

−∞
eikrf(r)dr, (1.8)

then we can write the reciprocal space instantaneous mass density of a single component system
as

ρ̃(k, t) =
∫ ∞

−∞

N∑
i=1

miδ[r− ri(t)]eik·rdr =
N∑

i=1

mie
ik·ri(t) (1.9)

and instantaneous momentum density in reciprocal space as

J̃(k, t) =
∫ ∞

−∞

N∑
i=1

miviδ[r− ri(t)]eik·rdr =
N∑

i=1

mivie
ik·ri(t). (1.10)
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For a molecular system, the Fourier transform of the momentum density in the atomic repre-
sentation can now be rewritten as

J̃A(k, t) =
Nm∑
i=1

Ns∑
α=1

miαviα(t)eik·riα , (1.11)

and the the transformed atomic mass density can be rewritten as

ρ̃a(k, t) =
Nm∑
i=1

Ns∑
α=1

miαeik·riα . (1.12)

For molecules composed of Ns atoms we can define the mass of molecule i,

Mi =
Ns∑

α=1

miα, (1.13)

the position of the molecular center of mass as

ri =
Ns∑

α=1

miαriα/Mi, (1.14)

the position of site α of molecule i relative to the center of mass of molecule i as

Riα = riα − ri, (1.15)

and the center of mass momentum of the molecule as

pi =
Ns∑

α=1

piα. (1.16)

This means that the atomic mass density can be written in reciprocal space as

ρ̃a(k, t) =
Nm∑
i=1

Ns∑
α=1

miαeik·(ri+Riα). (1.17)

The molecular mass density is then

ρ̃m(k, t) =
Nm∑
i=1

Mie
ik·ri (1.18)

in reciprocal space and

ρm(r, t) =
Nm∑
i=1

Miδ(r− ri) (1.19)
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in real space, respectively.
We can expand the atomic momentum density about the molecular momentum density:

J̃A(k, t) =
Nm∑
i=1

Ns∑
α=1

miαviα(1 + ik ·Riα + . . . )eik·riα . (1.20)

The Fourier transform of the momentum density in the molecular representation can then be
written as

J̃M (k, t) =
Nm∑
i=1

Mivi(t)eik·ri . (1.21)

1.2 Wavevector dependent atomic and molecular pressure tensor

The pressure in a molecular liquid can be calculated using either of two expressions: the molecu-
lar or atomic pressure [Olmsted 1976a, Olmsted 1976b, Allen 1984, Edberg 1987b, Brown 1995,
Travis 1995b]. The molecular pressure is the pressure calculated using the intermolecular forces
and the molecular center of mass momenta. The atomic pressure on the other hand includes all
intramolecular forces and constraint forces.

In order to derive the wavevector dependent molecular pressure tensor, we start with the
Fourier transform of the momentum continuity equation excluding external body forces intro-
duced previously in Eq. (1.2):

∂

∂t

[
ρ̃v(k, t)

]
= ik · P(k, t) + ik ·

[
ρ̃vv(k, t)

]
. (1.22)

If we recall that the microscopic expression of the real space momentum density for a molec-
ular system was given in Eq. (1.6), the time derivative of its Fourier transform can be written
as

∂

∂t

[
ρv(k, t)

]
=

∂

∂t

Nm∑
i=1

Ns∑
α=1

miαviαeik·riα

=
Nm∑
i=1

Ns∑
α=1

miα(v̇iα + ik · viαviα)eik·riα

=
Nm∑
i=1

Ns∑
α=1

miαv̇iαeik·riα + ik ·
Nm∑
i=1

Ns∑
α=1

miαviαviαeik·riα . (1.23)

Let us assume that Newton’s equations of motion for a system of molecules is written as

miαv̇iα = Fiα = Fφ
iα + FC

iα + FD
iα, (1.24)

with Fφ
iα being the contribution due to the atomic pair potential energy and FC

iα and FD
iα be-

ing the contribution of the internal molecular forces, such as the constraint and dihedral forces,
respectively. Now, consider the first term involving the force due to the atomic pair potential
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energy in Eq. (1.24)

Nm∑
i=1

Ns∑
α=1

Fφ
iαeik·riα =

Nm∑
i=1

Ns∑
α=1

Fφ
iαeik·(ri+Riα) =

Nm∑
i=1

Ns∑
α=1

Fφ
iαeik·Riαeik·ri

=
Nm∑
i=1

Ns∑
α=1

Fφ
iα

(
1 + ik ·Riα +

1
2
[ik ·Riα]2 + . . .

)
eik·ri

=
Nm∑
i=1

Ns∑
α=1

Fφ
iαeik·ri + ik ·

Nm∑
i=1

Ns∑
α=1

RiαFφ
iαeik·ri + . . . (1.25)

Note that ri and Riα are defined by Eqs. (1.15) and (1.14), respectively. The first term in
Eq. (1.25) can be written as

Nm∑
i=1

Ns∑
α=1

Fφ
iαeik·riα =

Nm∑
i=1

Ns∑
α=1

Nm∑
j=1

Ns∑
β=1

Fφ
iαjβeik·ri

=
Nm∑
j=1

Ns∑
β=1

Nm∑
i=1

Ns∑
α=1

Fφ
jβiαeik·rj

= −
Nm∑
i=1

Ns∑
α=1

Nm∑
j=1

Ns∑
β=1

Fφ
iαjβeik·rj . (1.26)

This allows us to express the configurational part of the wavevector dependent pressure tensor
as:

Nm∑
i=1

Ns∑
α=1

Fφ
iαeik·riα =

1
2

Nm∑
i=1

Ns∑
α=1

Nm∑
j=1

Ns∑
β=1

Fφ
iαjβ

(
eik·ri − eik·rj

)

= −1
2

Nm∑
i=1

Ns∑
α=1

Nm∑
j=1

Ns∑
β=1

Fφ
iαjβ

(
eik·rij − 1

)
eik·ri

= −1
2
ik ·

Nm∑
i=1

Ns∑
α=1

Nm∑
j=1

Ns∑
β=1

rijF
φ
iαjβ

(
eik·rij − 1

)
ik · rij

eik·ri . (1.27)

We note that in some models, the pair force is set to zero for some sites; for example those that
are joined to each other with a bond length or bond angle constraint or those sites which interact
with each other via a dihedral interaction.

The contribution of the internal molecular forces, such as the constraint FC
iα and dihedral FD

iα
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forces, to the molecular pressure tensor is zero. This is proven by the following argument.

Nm∑
i=1

Ns∑
α=1

FD
iαeik·riα =

Nm∑
i=1

Ns∑
α=1

FD
iαeik·(ri+Riα) =

Nm∑
i=1

Ns∑
α=1

FD
iαeik·Riαeik·ri

=
Nm∑
i=1

Ns∑
α=1

FD
iα(1 + ik ·Riα +

1
2
[ik ·Riα]2 + . . . )eik·ri

=
Nm∑
i=1

Ns∑
α=1

FD
iαeik·ri + ik ·

Nm∑
i=1

Ns∑
α=1

RiαFD
iαeik·ri + . . . (1.28)

The first term in Eq. (1.28) can be reduced further:

Nm∑
i=1

Ns∑
α=1

FD
iαeik·ri =

Nm∑
i=1

( Ns∑
α=1

FD
iα

)
eik·ri = 0 (1.29)

because the sum of an internal force over all sites within a molecule is always zero. This also
applies to the constraint forces.

Now consider the kinetic term of the derivative of the momentum density:

Nm∑
i=1

Ns∑
α=1

miαviαviαeik·riα =
Nm∑
i=1

Ns∑
α=1

miα

[
v(riα) + ciα

][
v(riα) + ciα

]
eik·riα

=
Nm∑
i=1

Ns∑
α=1

miα

[
v(riα)v(riα) + v(riα)ciα

+ciαv(riα) + ciαciα

]
eik·riα . (1.30)

where v(riα) and ciα is the streaming and thermal velocity, respectively.

The convective term of the momentum density equation shows that

J̃(k, t) = F
{

(ρv)v
}

= F

{[ Nm∑
i=1

Ns∑
α=1

miαviαδ(r− riα)

]
v(r, t)

}

=
Nm∑
i=1

Ns∑
α=1

miαviαv(riα, t)eik·riα

=
Nm∑
i=1

mi

[
ciα + v(riα, t)

]
v(riα, t)eik·riα

=
Nm∑
i=1

Ns∑
α=1

miα

[
ciαv(riα, t) + v(riα, t)v(riα, t)

]
eik·riα . (1.31)
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But we also have

ρ̃vv(k, t) = F
{
v(ρv)

}
=

Nm∑
i=1

Ns∑
α=1

miα

[
v(riα, t)ciα + v(riα, t)v(riα, t)

]
eik·riα (1.32)

and

ρ̃vv(k, t) = F
{

ρ(vv)
}

=
Nm∑
i=1

Ns∑
α=1

miαv(riα, t)v(riα, t)eik·riα (1.33)

giving

Nm∑
i=1

Ns∑
α=1

miαv(riα, t)ciαeik·riα =
Nm∑
i=1

Ns∑
α=1

miαciαv(riα, t)eik·riα = 0. (1.34)

Combining the kinetic part of the momentum density derivative and the convective term in
the momentum equation, we find:

Nm∑
i=1

Ns∑
α=1

miα

[
viαviα

]
eik·riα − ρvv(k, t)

=
Nm∑
i=1

Ns∑
α=1

miα[v(riα)v(riα) + v(riα)ciα + ciαv(riα) + ciαciα]eik·riα

−
Nm∑
i=1

Ns∑
α=1

miαv(riα, t)v(riα, t)eik·riα

=
Nm∑
i=1

Ns∑
α=1

miαciαciαeik·riα . (1.35)

(1.36)

To get this into the form required for the molecular pressure tensor, we must again separate
the center of mass coordinates ri from the coordinates relative to the centers of mass Riα:

Nm∑
i=1

Ns∑
α=1

miαciαciαeik·riα =
Nm∑
i=1

Ns∑
α=1

miαciαciα

(
1 + ik ·Riα +

1
2
[ik ·Riα]2 + . . .

)
eik·ri

=
Nm∑
i=1

Ns∑
α=1

miαciαciαeik·ri

+ ik ·
Nm∑
i=1

Ns∑
α=1

miαRiαciαciαeik·ri + . . . (1.37)

The first term contains the usual kinetic contribution to the molecular pressure tensor, plus an-
other term representing the contribution of the relative peculiar velocity to the kinetic part of the
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pressure tensor

Nm∑
i=1

Ns∑
α=1

miαciαciαeik·ri =
Nm∑
i=1

Ns∑
α=1

miα(ci + Ciα)(ci + Ciα)eik·ri

=
Nm∑
i=1

miαcicie
ik·ri +

Nm∑
i=1

Ns∑
α=1

miαCiαCiαeik·ri , (1.38)

where Ciα is the peculiar velocity relative to the center of mass. We have used the fact that

Nm∑
i=1

Ns∑
α=1

miαciCiαeik·ri =
Nm∑
i=1

Ns∑
α=1

cimiαCiαeik·ri = 0 (1.39)

because

Ns∑
α=1

miαCiα =
Ns∑

α=1

miα(ciα − ci) =
Ns∑

α=1

miαciα −mici = 0. (1.40)

Combining all of these results, i.e. Eqs. (1.23), (1.25), (1.27) and (1.37), we find that

ik · P̃(k, t) =
∂

∂t

[
ρ̃v(k, t)

]
− ik ·

[
ρ̃vv(k, t)

]
= ik ·

Nm∑
i=1

micicie
ik·ri − 1

2
ik ·

Nm∑
i=1

Ns∑
α=1

Nm∑
j=1

Ns∑
β=1

rijF
φ
iαjβ

(
eik·rij − 1

)
ik · rij

eik·ri

+ ik ·
Nm∑
i=1

Ns∑
α=1

RiαFφ
iαeik·ri + ik ·

Nm∑
i=1

Ns∑
α=1

RiαFD
iαeik·ri

+ ik ·
Nm∑
i=1

Ns∑
α=1

mCiαCiαeik·ri + O(k2). (1.41)

To within an arbitrary divergenceless quantity which we set to zero, this gives the wavevector
dependent atomic pressure tensor as:

P̃(k, t) =
Nm∑
i=1

micicie
ik·ri − 1

2

Nm∑
i=1

Ns∑
α=1

Nm∑
j=1

Ns∑
β=1

rijF
φ
iαjβg(k · rij)eik·ri

+
Nm∑
i=1

Ns∑
α=1

RiαFφ
iαeik·ri +

Nm∑
i=1

Ns∑
α=1

RiαFD
iαeik·ri

+
Nm∑
i=1

Ns∑
α=1

mCiαCiαeik·ri + O(k2), (1.42)
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where g(k · rij) is the Fourier transform of the Irving-Kirkwood Oij operator [Irving 1950]

g(k · rij) =
(eik·rij − 1)

ik · rij
=

∞∑
n=0

1
(n + 1)!

(ik · rij)n. (1.43)

The first line in Eq. (1.42) is the wavevector dependent molecular pressure tensor and the
other terms can be rearranged into the second derivative of the mass dispersion tensor (the com-
pletely symmetric part) and the antisymmetric part of the molecular pressure tensor.

For a constrained diatomic fluid the wavevector dependent pressure tensor can be written in
atomic representation as

P̃
ADiatomic

(k, t) =
Nm∑
i=1

2∑
α=1

piαpiα

miα
eik·riα

− 1
2

Nm∑
i=1

2∑
α=1

Nm∑
j 6=i

2∑
β=1

riαjβFiαjβg(k · riαjβ)eik·riαjβ

+
Nm∑
i=1

2∑
α=1

riαFC
iαg(k · riα)eik·riα (1.44)

where Fiαjβ is the LJ force acting on site α of molecule i due to site β of molecule j, and FC
iα

is the bond constraint force on site α of molecule i. riαjβ = rjβ − riα is the minimum image
separation of site α of molecule i from site β of molecule j. g(k · riαjβ) = (eik·riαjβ − 1)/ik ·
riαjβ and g(k · riα) = (eik·riα − 1)/ik · riα.

The wavevector dependent atomic pressure tensor for a polymer system composed of Nm

molecules and Ns sites per molecule is defined as

P̃
AF JC/F ENE

(k, t) =
Nm∑
i=1

Ns∑
α=1

piαpiα

miα
eik·riα

− 1
2

Nm∑
i=1

Ns∑
α=1

Nm∑
j 6=i

Ns∑
β=1

riαjβFiαjβg(ik · riαjβ)eik·riαjβ

−
Nm∑
i=1

Ns−2∑
α=1

Ns∑
β=α+2

riαiβFiαiβg(ik · riαiβ)eik·riαiβ

+
Nm∑
i=1

Ns∑
α=1

riαFC/FENE
iα g(ik · riα)eik·riα . (1.45)

Fiαjβ is the LJ force acting on site α of molecule i due to site β of molecule j and FC/FENE
iα

is either the constraint force for freely jointed chains (FJC) or the bond force for finite extensible
nonlinear elastic chains (FENE) on site α of molecule i. riαjβ = (rjβ−riα)min is the minimum
image separation of site α of molecule i from site β of molecule j. g(x) = (ex − 1)/x =∑∞

n=0(x)n/(n + 1)!, with x = ik · riαjβ , x = ik · riαiβ and x = ik · riα, respectively.
For model butane, a torsional or dihedral force component FD should be also included in the



Theory and Methods 411

pressure tensor, so that

P̃
AButane

(k, t) =
Nm∑
i=1

Ns∑
α=1

piαpiα

miα
eik·riα

− 1
2

Nm∑
i=1

Ns∑
α=1

Nm∑
j 6=i

Ns∑
β=1

riαjβFiαjβg(ik · riαjβ)eik·riαjβ

+
Nm∑
i=1

Ns∑
α=1

riαFD
iαg(k · riα)eik·riα

+
Nm∑
i=1

Ns∑
α=1

riαFC
iαg(k · riα)eik·riα , (1.46)

where FC
iα is the intramolecular constraint forces.

The pressure tensor in the molecular representation is defined for all the systems as

P̃
M

(k, t) =
Nm∑
i=1

pipi

Mi
eik·ri

− 1
2

Nm∑
i=1

Nm∑
j 6=i

rijFinter
ij g(ik · rij)eik·rij (1.47)

where, Finter
ij represents the intermolecular force. rij = rj − ri is the minimum image separa-

tion of the center of mass of molecule i from the center of mass of molecule j. The momenta
appearing in these equations, piα, pi, are the momenta appearing in the respective atomic and
molecular equations of motion which are introduced in Section 2.

1.3 Wavevector and frequency dependent viscosity

In what follows we present expressions for the wave-vector and frequency dependent viscosities
derived only for the atomic representation. Because the molecular stress tensor is not symmetric
instantaneously the formulation of correlation function expressions is much more complex and
will not be considered in this review.

The complex wavevector and frequency dependent viscosity, η(k, ω), can be evaluated by
using three different expressions in terms of (a) the Fourier-Laplace transform of the transverse
momentum density ACF, C⊥(k, t), (b) the Fourier-Laplace transform of the symmetric traceless
stress tensor ACF, N(k, t), and (c) the Fourier-Laplace transform of a generalized mean square
displacement of the transverse momentum density. The Green-Kubo and Einstein relations can
be derived as limiting cases of these expressions. The methodology for the derivation of these
expressions has been previously described by [Evans 1990, Daivis 2004].

Here we give an overview of the first two [(a) and (b)] expressions of the wavevector and
frequency dependent viscosity. The third expression in terms of the Fourier-Laplace transform of
a generalized mean square displacement of the transverse momentum density (c) is not discussed
as it is not useful in computer simulations of periodic systems, because it cannot be written in a
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convenient, directly calculable form for zero wavevector [Daivis 2004].
The wavevector and frequency dependent viscosity in terms of the transverse momentum

density ACF and the stress ACF are very similar to the corresponding expressions for the self-
diffusion coefficient [Evans 1990, Evans 1983, Evans 1981a, Evans 1981b, Evans 1980], and
the derivations of these types of expression proceed in a similar sequence of steps for all of the
transport coefficients [Hansen 1986].

For an aperiodic fluidic system with zero average streaming velocity, the Fourier transform
of the continuity equation for the momentum density , Eq. (1.22), reduces to

∂

∂t
J̃(k, t) = ik · P̃(k, t). (1.48)

The pressure tensor in Eq. (1.48) can be decomposed into its isotropic, traceless symmetric
and antisymmetric parts. For an atomic fluid with central forces, the antisymmetric part is zero
[Evans 1990].

If we set the wavevector (0, ky, 0) in reciprocal space and let Jx be the component of the
momentum density in the x direction, and use the fact that

γ̇(ky, t) = −ikyũx(ky, t) = − iky

ρ
J̃x(ky, t), (1.49)

by inserting the generalized constitutive relation for the shear viscosity Eq. (3), we find

∂

∂t
J̃x(ky, t) = −iky

∞∫
0

η̃(ky, t− t′)˜̇γ(ky, t′)dt′. (1.50)

We can rewrite Eq. (1.50) as

∂

∂t
J̃x(ky, t) = −

k2
y

ρ

∞∫
0

η̃(ky, t− t′)J̃x(ky, t′)dt′. (1.51)

By Fourier-Laplace transformation of both sides of Eq. (1.51) in time and using Onsager’s re-
gression hypothesis [Onsager 1931a, Onsager 1931b], multiply both sides by J̃x(ky, 0) and take
the ensemble average, we can obtain the transverse momentum density ACF

C̃⊥(ky, ω) =
C⊥(ky, 0)

−iω + k2
y η̃(ky, ω)/ρ

, (1.52)

where ρ is the atomic mass density of the fluid and C⊥(ky, t) is the equilibrium transverse current
ACF defined as

C̃⊥(ky, ω) =
〈
Jx(ky, t)Jx(−ky, 0)

〉
. (1.53)

For the sake of simplicity of notation and consistency with the notation used in previous
publications, we dropped the tilde sign over the correlation functions and kept the tilde notation
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over the Fourier-Laplace transformed correlation functions only.
The integral of the transverse momentum density ACF is given as:

IC⊥(ky, t) =
∫ t

0

C⊥(ky, t′)dt′. (1.54)

The zero time value of C⊥(ky, t = 0) for an atomic fluid in the thermodynamic limit is

C⊥(ky, 0) = ρkBT. (1.55)

Note that J(r, t) = ρu(r, t), with ρ being the average equilibrium density, is only valid in linear
order fluctuations at equilibrium. Also, we must note that the theoretical value of C⊥(ky, t =
0) = ρkBT for an atomic fluid obtained from a Canonical ensemble average in the thermody-
namic limit differs slightly from the theoretical value in the simulated isokinetic ensemble given
for a molecular system by C⊥(ky, t = 0) = ρkBT (1 − 4NsNm/3), because the total peculiar
(i.e. thermal) kinetic energy and three components of the momenta are constants of the motion
in our simulations. For a molecular fluid with constrained bonds, we must also account for the
internal bond constraints in deriving a relationship between the zero time value of the atomic mo-
mentum density ACF and the temperature. This point is discussed further in the results sections.
To ensure numerical consistency of our results, we use the simulated value of C⊥(ky, t = 0)
rather than Eq. (1.55) in all our calculations of the wavevector dependent viscosity.

Eq. (1.52) can be rewritten so that we obtain the expression for the wavevector and frequency
dependent viscosity

η̃(ky, ω) =
ρ

k2
y

C⊥(ky, 0)− iωC̃⊥(ky, ω)
C̃⊥(ky, ω)

. (1.56)

If we express the transverse momentum density ACF in terms of the stress ACF we obtain the
viscosity in terms of a flux correlation function

N(ky, t) =
1

V kBT

〈
Pxy(ky, t)Pxy(ky, 0)

〉
, (1.57)

and its Laplace transform

Ñ(ky, ω) = L
[
N(ky, t)

]
, (1.58)

respectively, where the Fourier-Laplace transform (one-sided Fourier transform) is defined as

L[f(t)] = f̃(ω) =

∞∫
0

f(t)e−iωtdt. (1.59)

The integral of the shear stress ACF can be written as

IN (ky, t) =
∫ t

0

N(ky, t′)dt′ (1.60)
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which converges to the Green-Kubo viscosity for zero wavevector and to zero at non-zero wave-
vector.

Since [Evans 1990]

∂2

∂t2
〈Jx(ky, t)Jx(−ky, 0)〉 = 〈 ∂

∂t
Jx(ky, t)

∂

∂t
Jx(−ky, 0)〉 = −k2〈Pxy(ky, t)Pxy(−ky, 0)〉,

(1.61)

it follows that

(iω)2C⊥(ky, 0)− iωC⊥(ky, 0) = −k2V kBTÑ(ky, ω). (1.62)

Substituting Eq. (1.62) into Eq. (1.56) gives us the generalized shear viscosity in terms of the
flux (shear stress) autocorrelation function

η̃(ky, ω) =
Ñ(ky, ω)

C⊥(ky, t = 0)/ρkBT − k2Ñ(ky, ω)/iωρ
. (1.63)

In the zero wavevector limit, a generalization of the Green-Kubo expression for the shear
viscosity for an isotropic fluid allows the transverse momentum flux to be in an arbitrary di-
rection rather than along a coordinate axis and can be written in terms of the stress tensor
as [Hansen 1986, Daivis 1994]:

η =
V

10kBT

∫ ∞

0

〈
Pos(t) : Pos(0)

〉
dt (1.64)

where the os superscript denotes the traceless symmetric part of the stress tensor Pos(t) =
1
2 [P(t) + PT (t)] − 1

3 tr[P(t)]1 and V is the simulation volume. Eq. (1.64) is valid for both
atomic and molecular representations.

In the case ω → 0 and ky → 0, relation (1.63) reduces to the Green-Kubo formula
[Hansen 1986]. All the non-zero wavevector integrals of the stress correlation functions,
Eq. (1.57), converge to zero [Evans 1990]. By computing the integrals of the stress CFs one can
computationally verify the zero values of the zero-frequency limit of the function Ñ(k, ω) and
thus demonstrate why neither substitution of ω = 0 into Eq.(1.63) nor evaluation of Eq. (1.57)
at non-zero wavevector yields the zero-frequency wavevector dependent viscosity. Therefore the
relation in Eq. (1.56) must be used when non-zero wavevector viscosities are calculated. In order
to obtain intensive correlation functions the expressions for N and C⊥ must be normalized by
the volume of the simulated system. We must also note that the number of degrees of freedom
has not been taken explicitly into consideration in these equations. The correction terms for each
simulated system are introduced in the next section.
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2 Models and Simulations

2.1 Molecular dynamics

Molecular dynamics (MD) is a computational tool [Allen 1989, Rapaport 1995] that has con-
tributed significantly to the fundamental understanding of fluid dynamics at atomic and molec-
ular scales by providing information about processes not directly accessible by experimental
studies. MD simulations model ensembles of interacting particles under specific internal and ex-
ternal forces. Given the initial coordinates and velocities of an ensemble of particles that interact
under certain conditions, this method integrates the equations of motion numerically, providing
new sets of coordinates and velocities at each integration time step. From the obtained particle
trajectories one can calculate various global system properties as statistical averages.

Generally, MD simulation is a powerful tool allowing to solve the classical equations of
motion of systems with many millions of atoms interacting with each other. It is particularly
suited to study polymer-like systems due to the strict control of the internal motion. However,
a fundamental approximation made in classical molecular dynamics is that one ignores explicit
quantum effects and chooses an intermolecular potential which gives a sufficiently good ap-
proximation to these effects. If this approximation could not be made and significant quantum
effects existed in the system then a quantum molecular dynamics scheme would perhaps be nec-
essary [Car 1985, Cramer 2002, Jensen 2007].

In this work we simulate simple monatomic systems as well as more complex molecular
systems such as alkanes and polymer melts. For this purpose we have used the FORTRAN90
modular molecular dynamics code developed by Peter Daivis at RMIT University. Some addi-
tional features were added due to the specificity of the simulated systems. The code also requires
some ”tricks” of packing and pre-equilibration specific to dense systems of molecules. For com-
putational efficiency we use an improved construction algorithm [Matin 2003] to build the cell
neighbour list. Simulations have been carried out on the Swinburne University of Technology’s
Supercomputer and the Australian National Computational Infrastructure’s supercomputer with
an aggregated time of over 30 CPU years (equivalent to approximately 16 million CPUs running
for 1 minute).

2.2 Monatomic systems

For the atomic fluids studied in this work, the atoms interact via a Lennard-Jones (LJ) or Weeks-
Chandler-Andersen (WCA) potential energy function [Weeks 1971]. The LJ atoms have an inter-
action potential truncated at rc = 2.5σ and WCA atoms have an interaction potential truncated
at rc = 21/6σ [Weeks 1971]. In general:

Φij(rij) =

4ε

[(
σ
rij

)12

−
(

σ
rij

)6
]
− Φc, rij < rc

0, rij ≥ rc

(2.1)

where rij is the interatomic separation, ε is the potential well depth, and σ is the value of rij at
which the unshifted potential is zero. The shift Φc is the value of the unshifted potential at the
cutoff rij = rc, and is introduced to eliminate the discontinuity in the potential energy. At dis-
tances greater than the cutoff distance rc, the potential is zero. The WCA potential is convenient
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in computations because it is short-ranged and therefore computationally undemanding, but still
retains the essential physics, i.e. the repulsive interaction which dominates the transport phe-
nomena we intend to study. The phase diagrams of Lennard-Jones fluids including the effect of
truncation and shifting on the phase diagram can be found in the reference by Smit [Smit 1992].

2.3 Molecular systems

In molecular systems the distinction can be made between the intramolecular interactions, i.e.
interactions between different sites of the same molecule, and intermolecular ones, i.e. those
between all other atoms, which are irrespective of the topological constraints. The intramolecular
potential energy comprises contributions from bond interactions, bond angle interactions and
torsional interactions. The intermolecular potential can be divided into two-, three-, or other
many-body interactions. In this study only pairwise interactions are taken into consideration.

The total potential energy in a system of molecules at position ri can be calculated as the
sum of intra- and intermolecular interactions:

U = Uintra + Uinter. (2.2)

The total internal energy takes the form:

Φ =
Nm∑
i=1

Ns∑
α

p2
iα

2miα
+

Nm∑
i=1

Ns−2∑
α=1

Ns∑
β=α+2

Uiαjβ +
Nm−1∑

i=1

Ns∑
α

Nm∑
j=i+1

Ns∑
β=1

Uiαjβ (2.3)

where the total energy is separated into its kinetic, intramolecular and intermolecular compo-
nents. Uiαjβ is the potential energy between atom α on molecule i and atom β on molecule j.
The site indexing scheme used in the expression for the intramolecular potential energy given
here is only valid for linear molecules [Matin 2000].

I. Diatomic model (liquid chlorine)
Our diatomic model of liquid chlorine is similar the the one used by Edberg et al. [Ed-

berg 1987a], Hounkonnou et al. [Hounkonnou 1992], Travis et al. [Travis 1995b, Travis 1995a]
and more recently by Matin et al. [Matin 2000, Matin 2001] to allow a direct comparison of
our results with previous work. This model represents chlorine as a diatomic LJ molecule with
rc = 2.5σ and a fixed bond length of 0.63σ. For an adequate representation of the properties of
chlorine the LJ parameters are: σ = 3.332 Å and ε/kB = 178.3 K.

II. Model Butane
To simulate our butane molecules we have used the united atom model developed by

Ryckaert and Bellemans [Ryckaert 1975, Ryckaert 1978] and then more extensively studied
by [Rigby 1987, Takeuchi 1991, Roe 1994, Daivis 1994]. In this model each molecule is
composed of Ns = 4 sites of mass 2.411 × 10−23 g which represent methyl groups. The
distance between neighbouring sites is fixed to 1.53 Å and bond angles are fixed to 109.47◦ by
a next-nearest-neighbour constraint. A dihedral potential that depends on the dihedral angle φ
acts between each pair of methyl groups. We use a simple truncated cosine power series for
the dihedral potential. We note here that while the semiflexible Ryckaert and Bellemans model
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reproduces the equilibrium properties of n-alkanes satisfactorily, it does not correctly generate all
the transport coefficients [Edberg 1987b]. As we are interested in transport processes where the
significant time scales are vastly longer than those for molecular vibrations, we are not consider-
ing the fully vibrational model with quadratic or Morse-type potentials for chemical bonds and
bond angles. More sophisticated models have to be employed in order to get a better agreement
with experiment [Toxvaerd 1990, Luo 1992b, Luo 1992a, Chynoweth 1991, Luo 1991, Mar-
tin 1998].

III. Polymer models
The molecular model that we have chosen to represent polymer molecules

[Doi 1986, Doi 1996] is the freely jointed Lennard-Jones tangent chain (FJC) and bead-
spring model also known as the finite extensible nonlinear elastic model (FENE).

III.A. Model FJC
An ideal chain (or freely-jointed chain) (FJC) is the simplest model to describe a polymer

[Rapaport 1979, Smith 1996]. It only assumes a polymer as a random walk and neglects any
kind of interactions among monomers. Although it is simple, its generality gives us some insights
about the physics of polymers. In this ideal model, monomers are rigid rods of a fixed length,
and their orientation is completely independent of the orientations and positions of neighbouring
monomers, to the extent that two monomers can co-exist at the same place. In this very simple
approach where no interactions between monomers are considered, the energy of the polymer is
taken to be independent of its shape, which means that at thermodynamic equilibrium, all of its
shape configurations are equally likely to occur as the polymer fluctuates in time, according to
the Maxwell-Boltzmann distribution.

In our model (usually reffered as to freely-jointed tangent chain model [Johnson 1994]) each
molecule consists of Ns sites of equal mass miα which interact via a truncated (rc = 21/6) and
shifted Lennard-Jones (LJ) interaction, Eq. (2.1), joined by rigidly constrained bonds of length
l = σ. LJ interactions in this model can occur between any two different sites except those
connected by a bond. In our simulations, for linear molecules with constrained bond length, we
have used the Gaussian constraint method to calculate the constraint force [Morriss 1991, Ed-
berg 1986, Edberg 1987b, Daivis 2007, Daivis 2003].

III.A. Model FENE
The FENE molecules that we simulate in this work consist of a linear chain of Ns beads

interacting via pair potentials. Adjacent beads along the chain interact via a combined FENE
spring potential, Eq. (2.4), and LJ potential Eq. (2.1). Beads which are not on the same molecule
and beads which are on the same molecule but not adjacent interact just by the LJ potential.
This model has been initially introduced by Bishop et al. [Bishop 1979] but gained in popularity
only after the polymer simulations of Kremer and Grest [Kremer 1990]. In this model, the finite
extensible nonlinear elastic potential is given as

ΦFENE
ij (rij) =

−
1
2kR2

0 ln
[
1−

(
rij

R0

)2]
, rij ≤ R0

+∞, rij ≥ R0,

(2.4)
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where k = 30ε is the spring constant for the FENE bond, R0 = 1.5σ is the limit of the bond
extension, and rij is the distance between particles i and j. The LJ potential cutoff distance was
rc = 2.5σ. The minimum of the bond potential along the chain occurs at a position lmin ≈ 0.97σ
which is different from the minimum position rmin ≈ 1.13σ of the LJ potential. Also, the
superposition of these two length scales prevents crystallization very efficiently, and the resulting
structure of the melt and the corresponding glass resembles corresponding experimental data
[Binder 1999, Kenna 1986].

The importance of the FENE potential over a Hookean potential is that a FENE bond cannot
be extended beyond the fixed length R0. The choice of coefficients k and R0 are the values
that have been used in a number of previous investigations using this potential [Bosko 2004a,
Bosko 2004b, Bosko 2005, Kröger 2000, Kröger 1997, Kröger 1993]. It has been reported by
the authors in these works that the molecules did not cross each other. Thus a key property
of the polymers was correctly modelled. More recently, additional features in this model were
introduced such as chain stiffness (besides the intrinsic stiffness induced by the excluded volume)
[Faller 2001, Bulacu 2005].

2.4 Equations of motion

The equations of motion (EOM) can be written for a monatomic fluid in the isokinetic ensemble
(at equilibrium) as [Evans 1990]:

ṙi =
pi

mi
, ṗi = Fi − ζApi (2.5)

where i denotes atom i. ri is the position, pi is the momentum and mi is the mass of the
designated atom. Fi is the force on atom i due to other atoms and ζA is the atomic thermostat
multiplier. The thermostat multiplier is chosen so as to fix the kinetic temperature. As mentioned
previously, we use the value of ζA that results from the application of Gauss’ principle of least
constraint to the imposition of constant kinetic temperature:

ζA =
∑N

i=1 Fi · pi∑N
i=1 p2

i

. (2.6)

The atomic temperature TA for a system of Na atoms is defined as

TA =
1

(dNa −Nc)kB

〈 Na∑
i=1

p2
i

mi

〉
, (2.7)

where d is the dimensionality of the atomic system and Nc is the number of constraints on the
system (including constraints for conserved quantities).

The equations of motion for a molecular fluid can be given in either the atomic or molecular
formalism. In fact, the molecular version of the homogeneous isothermal EOM with a molecular
thermostat at equilibrium is similar to the atomic EOM with a molecular thermostat, provided
that all of the relevant forces are included [Todd 2007].
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The thermostatted molecular EOM for polymer melts are given by [Todd 2007]

ṙiα =
piα

miα
, ṗiα = FLJ

iα + FC/FENE
iα − ζM

miα

Mi
pi. (2.8)

The force on a site is separated into three terms; FLJ
iα is the contribution due to the Lennard-

Jones type interactions on site α of molecule i and FC/FENE
iα is either the constraint force or the

bonding force. ζM is the molecular thermostat multiplier

ζM =
∑Nm

i=1 Fi · pi/Mi∑NM

i=1 p2
i /Mi

(2.9)

and is derived from Gauss’ principle of least constraint and acts to keep the molecular center of
mass kinetic temperature TM constant. The molecular temperature TM is defined by

TM =
1

(dNm −Nc)kB

Nm∑
i=1

p2
i

mi
(2.10)

A sparse matrix linear equation solver is also used for the FJC system [Golub 1996].
For butane the EOM are

ṙiα =
piα

miα
, ṗiα = FT

iα + FC
iα − ζM

miα

Mi
pi (2.11)

where FT
iα represents the total force due to potential interactions and dihedral forces, and FC

iα

represents the intramolecular constraint forces.
Following the equipartition principle, we will not distinguish between molecular and atomic

temperature, but simply use T to indicate the temperature.

2.5 Integration of equations of motion

The time evolution of a set of N interacting particles is followed by integrating their EOM which
are described by a set of N second-order differential equations in the Lagrangian representation
or 2N first-order differential equations in the Hamiltonian approach. Time integration algorithm
is based on finite difference methods, in which the time is discretized on a finite grid, the time
step δt being the distance between consecutive points on the grid. A comparative description of
various integration schemes such as Euler, Verlet, Leap-frog, Velocity Verlet, predictor-corrector,
etc. can be found in [Cicotti 1986]. In this work the fifth-order Gear predictor-corrector algorithm
is employed to integrate the EOM [Allen 1989, Gear 1971, Gear 1966, Rahman 1964] as it is
efficient and accurate and relatively fast.

The main ingredient of the predictor-corrector algorithm is the corrector step, which accounts
for a feedback mechanism. The feedback can damp the instabilities that might be introduced by
the predictor step. This method provides both the positions and velocities of the atoms at the
same time and it can be used to calculate forces, which depend explicitly on the velocity. This
is in turn usually needed in algorithms which control temperature and pressure. It worth to
mention, that interactions are evaluated using the results of the predictor step, but they are not
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re-evaluated again following the corrector step. The mean error, induced by the absence of force
re-evaluation, is insignificant. Gear algorithms have very small energy fluctuations, but they are
not reversible. Hence, there is always an energy drift [Haile 1983]. For large δt, if one needs
stability in the total energy of the system, Velocity Verlet or operator-splitting integrators similar
to those developed by Zhang [Zhang 1997] could be a better choice.

The predictor-corrector method consists of three steps:
1. Predictor stage: If the classical trajectory is continuous, then an estimate of the positions,
velocities, momentum, accelerations etc. may be obtained by a Taylor series expansion about
time t. We use

rn
i =

1
n!

(δt)n
(dnri

dtn

)
(2.12)

to represent the nth order derivative term in the Taylor expansion of the position vector of particle
i and

pn
i =

1
n!

(δt)n
(dnpi

dtn

)
(2.13)

to represent the nth order derivative term in the Taylor expansion of the momentum vector of
particle i. The predicted position vector, momentum vector and their scaled time derivatives at
time t + δt are as follows,

rp
0(t + δt)

rp
1(t + δt)

rp
2(t + δt)

rp
3(t + δt)

rp
4(t + δt)

rp
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 (2.14)
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 (2.15)

2. Force and acceleration: The forces and accelerations are calculated from the predicted
positions and then a correction term is calculated.

ac
i (t + δt) =

1
m

Fc
i (2.16)

The force is computed taking the gradient of the potential at the predicted positions. The resulting
acceleration ac

i (t+δt) will be different from the predicted acceleration ap
i (t+δt). The difference

between the two constitutes an error signal which is then used to calculate the corrected positions
and their time derivatives.
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δai(t + δt) = ac
i (t + δt)− ap

i (t + δt) (2.17)

3. Corrector stage: The error signal is used to correct positions and their derivatives.

rc
i (t + δt) = rp

i (t + δt) + αδai(t + δt) (2.18)

α being the corrector coefficients which depend upon the order of the differential equation
[Gear 1971, Gear 1966]:

α =


3/16

251/360
1

11/18
1/6
1/60

 (2.19)

The corrector stage is
rc
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 δai(t + δt) (2.20)

A more detailed information on time integration algorithms can be found in [Allen 1989,
Sadus 1999].

2.6 Lennard-Jones reduced units

In MD simulations the physical quantities are usually not expressed directly in international
system of units because the numerical values would be either very small or very large and thus
can lead to underflow or overflow as a result of floating-point operations, i.e. the values are not
within a numerically manageable range [Allen 1989]. Therefore all quantities reported in this
paper are reported in terms of reduced units and the simulations are themselves performed in
these units. The reduced units are relative to the Lennard-Jones parameters. When using the
Lennard-Jones potential, its parameters σ = ε = 1.0 are the most appropriate units of length
and energy. These, together with the mass m = 1.0 forms the MD units, while the rest of the
physical quantities are expressed in reduced units. The conversion from real units to reduced
units gives the reduced: length r∗ = r/σ, velocity v∗ = v

√
ε/m, force f∗ = fε/σ, density

ρ∗ = ρ/σ3, temperature T = kBT/ε, time t∗ = t/(σ
√

m/ε), pressure P∗ = P(σ3/ε), strain-
rate γ̇∗ = γ̇

√
(mσ2)/ε and viscosity η∗ = η

√
σ4/(mε).

For the remainder of the paper the asterisk is dropped. In the case when simulations need to
be compared with experiments, the LJ coefficients must be chosen to experimentally observed
properties of the liquid.
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3 Simple Fluids: Monatomics and Diatomics

3.1 Introduction

In this section2 we focus on computing the spatially nonlocal viscosity kernel for monatomic
and diatomic fluids over a wide range of wavevectors, state points and potential energy functions
and thus extend the work done by Hansen et al. [Hansen 2007]. We are specifically interested in
identifying functional forms that fit the reciprocal space kernel data. On the basis of these results,
we are be able to assess the length scale (i.e. the width of the real space kernel) over which the
governing generalized constitutive relation Eq. (2) must be used in these systems.

We will use the Edberg, Evans, and Morriss algorithm [Edberg 1986, Edberg 1987b,
Daivis 1992] with an improved cell neighbour list construction algorithm [Matin 2003] to per-
form equilibrium simulations in the isokinetic molecular dynamics ensemble. The model used
for the monatomic and diatomic systems has been given in Sections 2.2 and 2.3 and we summa-
rize the most important parameters used in our simulations in Table 3.1.

Our simulations were carried out in a cubic box with periodic boundary conditions. The
fifth-order Gear predictor corrector algorithm [Gear 1966, Gear 1971] with time step δt = 0.001
was employed to solve the equations of motion. The equations of motion and their integration
method has also been given in Section 2.4 and Section 2.5.

All the systems were equilibrated for at least 106 time steps. The results from production
runs were ensemble averaged over 14 runs, each of length 106 steps (i.e. a total of 1.4×107 time
steps). The transverse momentum density ACFs were computed over at least 20 reduced time
units and the stress ACFs were computed over at least 40 reduced time units. Both the transverse
momentum density and stress ACFs were computed at wavevectors kyn = 2πn/Ly where mode
number n is from 0 to 40 with increment 2 and Ly = (Na/ρ)1/3. Ly is the length of the
simulation box. For the remainder of this section we drop the n index in kyn for simplicity. The
ACFs were Laplace transformed with respect to time using Filon’s rule [Allen 1989]. We do not
report the frequency dependent viscosities in this work. The wavevector dependent viscosities at
zero frequency were calculated using Eqs. (1.56) and (1.63). Eq. (1.56) was used to obtain the
non-zero wavevector and frequency dependent viscosities and Eq. (1.63) was used to obtain the
zero wavevector viscosity.

The autocorrelation functions were evaluated for both 108 and 864 molecule systems in order
to determine whether the results were system size dependent. There were no observed differences

2This section contains material reprinted with permission from R. M. Puscasu et al., J. Phys.: Condens. Matter 22
(2010) 195105. Copyright 2010, Institute of Physics.

Tab. 3.1. Simulation details

WCA LJ Chlorine

Site number density,ρa 0.375, 0.480, 0.840 0.840 1.088
Temperature, T 0.765, 1.0 0.765, 1.0 0.97
Number of atoms, Na 108, 2048, 6912 108, 2048, 6912 216, 1728
Number of sites, Ns 1 1 2
Bond length, l - - 0.63

LJ cutoff, rc 21/6 2.5 2.5
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within the statistical errors in both monatomic and diatomic systems. We also note that in or-
der to limit the enormous number of figures in this review, we do not display the results for
the transverse momentum density and stress autocorrelation functions for monatomic systems.
Nevertheless, the most relevant results for the transverse momentum density and stress autocor-
relation functions are given for more complex systems in the following sections. However, we
must mention that for monatomic systems both quantities (i.e. the transverse momentum den-
sity and stress ACFs) were in good agreement with those previously observed for Lennard-Jones
monatomic liquids [Palmer 1994, Hansen 2007] and their running integrals have fully converged
which suggests that the correlation functions have decayed to zero.

3.2 Reciprocal space viscosity kernel

The reciprocal space kernels for monatomic and diatomic fluids are plotted in Figs. (3.1) and
(3.2). The error bars are smaller than the symbol sizes and therefore omitted. Generally the
statistical reliability of reciprocal space kernel data increases as ky increases.

Our zero wavevector, zero frequency viscosities for monatomic fluids agree well with those
available in the literature. For the WCA system at the state point (ρa = 0.375, T = 0.765)
we found η0 = 0.27±0.01 which agrees with the results of Hansen et al. 0.273 [Hansen 2007,
Alley 1983a], while at the state point (ρa = 0.840, T = 1.0) we found η0 = 2.29±0.07, in
agreement with the results of Matin et al. (2.1 ± 0.2) [Matin 2000]. For chlorine we found
η0 = 6.89±0.32, which agrees with the limiting values (6.7±0.4) of the shear and elongational
viscosities at zero strain rate [Matin 2000].

It has been shown previously that numerous one parameter functions failed to capture the
behaviour of the reciprocal space kernel data [Hansen 2007]. We therefore present the best fits
with two or more fitting parameters. We have identified two functional forms that fit the data
well: an NG term Gaussian function

η̃G(ky) = η0

NG∑
j

Aj exp(−k2
y/2σ2

j ) Aj , σj ∈ R+ (3.1)

and a Lorentzian type function

η̃L(ky) =
η0

1 + α |ky|β
α, β ∈ R+, (3.2)

We present the best fits of the data to (i) a two-term Gaussian function with freely estimated
amplitudes (i.e. unconstrained fitting) termed as η̃G2 ; (ii) to a two-term Gaussian function
with interdependent amplitudes (i.e. constrained fitting

∑NG

j Aj = 1) given by Hansen et
al. [Hansen 2007] and termed as η̃G2H

; (iii) to a four-term Gaussian function with freely es-
timated amplitudes, termed as η̃G4 and (iv) to the Lorentzian type function, Eq. (3.2), termed as
η̃L.

In order to measure the magnitude of the residuals we use the residual standard deviation
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defined as

sr =

√√√√ ns∑
n=1

r2/(ns − np) (3.3)

where ns is the number of data points, np is the number of fitting parameters, and r is the
residual [Peck 2008]. After an iterative curve fitting procedure the accurate estimation of η0 was
kept fixed allowing all other parameters in Eqs. (3.1) and (3.2) to be used as fitting parameters.
In Table 3.2 we have listed the fitting parameters for monatomic and diatomic molecular fluids
and compared to the previous results where possible.

A useful check of the fitting can be performed by calculating the total Gaussian amplitudes
which should converge to the value of 1, Table 3.3.

The reciprocal space results presented in Fig. 3.1 for LJ and chlorine systems demonstrate
that the four-term Gaussian function fits the data much better than the other two forms with a
difference between the data and the fit of less than 0.5%, see Fig. 3.1(c). The two-term Gaussian
η̃G2H

fits the kernel data better than the Lorentzian-type function in the low-ky region, Fig. 3.1(a),
which suggests a more Gaussian-like behaviour in the low-ky region, a fact previously observed
by Hansen et. al [Hansen 2007] for atomic fluids modeled with WCA potentials. Nevertheless
the difference between the two-term Gaussian fit and the data is less than 2% which still makes

Tab. 3.2. Zero frequency, zero wavevector shear viscosity and fitted parameter values for monatomic and
diatomic systems

WCA WCA WCA LJ LJ Chlorine
State Point ρa 0.375 0.480 0.840 0.840 0.840 1.088

T 0.765 0.765 1.000 0.765 1.0 0.97
System size Na 2048 1728

η0 0.265(0.273 [Hansen 2007]) 0.392 2.290 2.810 2.650 6.889

2-term Gaussian, A 0.189(0.440 [Hansen 2007]) 0.309 0.155 0.093 0.107 0.407
A2 = 1− A1 Eq. (3.1) σ1 12.48(4.750 [Hansen 2007]) 6.916 8.122 10.04 9.088 5.377

σ2 2.116(1.376 [Hansen 2007]) 1.835 2.592 2.778 2.759 1.236
sr 0.007(0.005 [Hansen 2007]) 0.013 0.044 0.021 0.027 0.082

2-term Gaussian Eq. (3.1) A1 0.792 0.687 0.874 0.907 0.892 0.592
A2 0.174 0.254 0.155 0.094 0.106 0.407
σ1 2.245 2.113 2.592 2.776 2.765 1.237
σ2 13.36 7.745 8.124 10.02 9.127 5.377
sr 0.007 0.011 0.035 0.022 0.031 0.081

4-term Gaussian Eq. (3.1) A1 0.432 0.566 0.778 0.689 0.868 0.398
A2 0.394 0.248 0.118 0.190 0.047 0.538
A3 0.120 0.138 0.088 0.114 0.089 0.055
A4 0.056 0.047 0.017 0.017 0.020 0.008
σ1 3.228 2.826 2.950 2.709 2.814 4.355
σ2 1.261 0.821 0.651 2.709 0.145 1.155
σ3 8.165 6.973 8.496 7.037 7.628 10.46
σ4 15.19 14.74 23.66 24.94 19.99 37.56
sr 0.008 0.002 0.012 0.014 0.024 0.018

Lorentzian-type Eq. (3.2) α 0.198(0.180 [Hansen 2007]) 0.170 0.062 0.041 0.043 0.239
β 1.562(1.662 [Hansen 2007]) 1.715 2.326 2.602 2.572 1.667
sr 0.002(0.005 [Hansen 2007]) 0.005 0.042 0.018 0.042 0.016
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Tab. 3.3. Total amplitude for Gaussian functional form

WCA LJ Chlorine
State Point ρa 0.375 0.480 0.840 0.840 0.840 1.088

T 0.765 0.765 1.000 0.765 1.0 0.97

2-term Gaussian
P2

j=1 A 0.966 0.941 1.029 1.001 0.998 0.999

4-term Gaussian
P4

j=1 A 1.002 0.999 1.001 1.010 1.024 0.999

η̃G2H
a good analytical three parameter approximation of the reciprocal space viscosity kernel.

The maximum difference between the Lorentzian-type fit and Gaussian fits are around 4%
while the maximum difference between the Gaussian fits is around 2%, see Fig. 3.1(d). Essen-
tially, this suggests that, when computing the real space kernels, the four-term Gaussian func-
tional form is to be trusted. It is obvious that eight parameters in the four-term Gaussian make
its use less convenient, but on the other hand the Gaussian function can analytically be inverse
Fourier transformed while the inverse Fourier transform of the Lorentzian-type function can only
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Fig. 3.1. Normalized kernel data, best fit of Eq. (3.1) with NG = 2 and 4, and Eq. (3.2) and difference
between the fits: (a) Best fits to normalized kernel for chlorine fluid (ρa = 1.088, T = 0.97, Na = 1728);
(b) Best fits to normalized kernel for LJ fluid (ρa = 0.840, T = 1.0, Na = 2048); (c) Differences between
the kernels and simulation data (a); (d) Differences between the fitted kernels (b).
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Fig. 3.2. Reciprocal-space kernels of monatomic and diatomic fluids: (a) Kernel data of a WCA fluid at
two different densities (T = 0.765, Na = 2048); (b) Best fit of normalized kernel data (a) to Lorentzian-
type function Eq. (3.2); (c) Kernel data of a WCA fluid and LJ fluid at the same state point (ρa = 0.840,
T = 1.0, Na = 2048), Chlorine at (ρa = 1.088, T = 0.97, Na = 1728); (d) Best fit of the normalized
kernel data (c) to the Lorentzian-type function Eq. (3.2).

be evaluated numerically for general values of β.
Fig. 3.2(a) shows the kernel data for a WCA fluid at two different densities along with two

sets of data published previously by Hansen et al. [Hansen 2007]. EMD is the set obtained from
an equilibrium MD simulation at the same state point (ρa = 0.375, T = 0.765) and NEMD is
the set obtained from a nonequilibrium MD simulation based on the sinusoidal transverse force
(STF) method. An excellent agreement between both sets of data was found. Fig. 3.2(b) shows
the normalized fit to Eq. (3.2).

The normalized kernels, Fig. 3.2(b), show a similar behavior for kn ≤ 4. Though the higher
density kernel is slightly lower for kn ≥ 4 they show a similar limiting behavior. This effect
was not seen by Hansen et al. due to lack of data for high wave vectors. Fig. 3.2(d) indicates
that despite the difference between the interaction potentials, the results for LJ and WCA fluids
are very close. This confirms that transport is dominated by repulsive interactions, rather than
attractive. The sharper kernel for the diatomic system, Fig. 3.2(d), suggests a more Lorentzian-
type behavior in the low wavevector region. It is also important to mention that even though
the fitting parameters are significantly affected by temperature, the resulting kernels vary weakly
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over the range of temperatures chosen here. This was also observed by Hansen et al. for WCA
monatomic fluids.

3.3 Real space viscosity kernel

The viscosity kernel in reciprocal space is an even function since it is symmetric about the ori-
gin; thus the the real space kernel is symmetric because the Fourier transform keeps the even
properties of the function. This means that the viscosity kernel in real space can be found via
an inverse Fourier cosine transform, F−1

c [. . . ], of the viscosity kernel in reciprocal space. Since
the integral is being computed over an interval symmetric about the origin (i.e. -∞ to +∞), the
Fourier cosine transform simplifies to:

F−1
c [η̃(ky)] = η(y) =

√
2
π

∞∫
0

η̃(ky) cos(kyy)dky. (3.4)

The inverse Fourier cosine transform of the Gaussian function, Eq. (3.1), exists [Papoulis 1962]
and it is even possible to obtain an analytical expression. For an NG term Gaussian function the
inverse Fourier cosine transform is

ηG(y) =
η0√
2π

NG∑
j

Ajσj exp[−(σjy)2/2] Aj , σj ∈ R+. (3.5)

Though the Lorentzian-type function given in Eq. (3.2) fulfills the criteria for having an
inverse Fourier transform ηL(y) (i.e. the function is absolutely integrable, square integrable and
the function and its derivative are piecewise continuous), the integral in Eq. (3.4) is not readily
obtained analytically in the general case. However, the integral can be evaluated numerically. In
this work, a Simpson method has been employed for this purpose.

The real space kernels for atomic and diatomic fluids at zero frequency are presented in
Figs. 3.3, 3.4 and 3.5. Fig. 3.3(a) shows the resulting kernels for chlorine and Fig. 3.3(b) shows
the resulting kernels for a LJ fluid extracted from two-term and four-term Gaussian functions,
Eq. (3.5), and inverse Fourier transform of Eq. (3.2). We find very little difference between the
kernels obtained via two- and four-term Gaussians for these systems.

Figs. 3.3(c) and 3.3(d) show the differences between all three fits. It can be seen that there
exists a significant difference (almost 25%) between the kernels extracted from Gaussian and
Lorentzian type functions for small y. The discrepancy decreases rapidly as y increases and
becomes approximately zero for y ≥ 1.5. The width of the kernel for chlorine is roughly 4-
6 atomic diameters, Fig. 3.3(a), and 3-5 atomic diameters for monatomic LJ and WCA fluids,
Fig. 3.3(b).

For monatomic systems at relatively low densities (ρa = 0.375 − 0.480), the real space
kernels are affected considerably by the functional form chosen to fit the reciprocal space kernel,
Fig. 3.4. For instance, the equally weighted two-term Gaussian function, Fig. 3.4(a), distorts the
real space kernels and predicts a noticeably higher η(y = 0) value. As we increase the density,
the discrepancy between Gaussian functions, as well as between Gaussian and Lorentzian-type
functions, only partially reduces, Fig. 3.4(b,d). The width of the kernel for WCA fluids at low
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Fig. 3.3. Real space kernel of monatomic and diatomic fluids as predicted by Gaussian and Lorentzian fits
of reciprocal space kernel data: (a) chlorine (ρa = 1.088, T = 0.97); (b) LJ (ρa = 0.840, T = 1.0); (c)
Differences between the kernels shown in (a); (d) Differences between the kernels shown in (b).

density is roughly 2-4 atomic diameters.
In Figs. 3.5(a) and 3.5(b) we compare the unnormalized kernel data in y space extracted from

four-term Gaussian and Lorentzian-type functional forms for all the simulated systems. Despite
the fact that the difference between the reciprocal kernels is less than 4%, Fig. 3.1(d) (e.g. chlo-
rine - dashed line), the kernels for the corresponding systems in real space look noticeably differ-
ent (Figs. 3.5(a) and 3.5(b)), for all the systems (e.g. chlorine - dashed dotted line). However, the
zero wavevector viscosities obtained from both functional forms are very close, with less than
2% error. We can determine the zero wavevector viscosities η0 = η(k = 0, ω = 0) by integrating
the real space kernel over y, and thus test our numerical analysis.

The zero wavevector viscosity η0 obtained from a Gaussian function ηG(y) is

η0 =

∞∫
−∞

ηG(y)dy =
η0√
2π

∞∫
−∞

{ NG∑
j

Ajσj exp[−(σjy)2/2]
}

dy. (3.6)

Since the general analytical expression for ηL(y) does not exist [Hansen 2007] we evaluate the
integral numerically and present the results from all functional forms in Table 3.4. A comparison
of the viscosities in Table 3.4 with the simulated zero frequency zero wavevector shear viscosities
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Fig. 3.4. Real space kernel of monatomic WCA fluids as predicted by Gaussian fits of the reciprocal
space kernel data, Eq. (3.5): (a) Kernels obtained from two- and four-term Gaussian fits for a WCA fluid at
ρa = 0.375 and T = 0.765; (b) Kernels obtained from two- and four-term Gaussian fits for a WCA fluid
at ρa = 0.480 and T = 0.765; (c) Differences between the kernels for a WCA fluid at ρa = 0.375 and
T = 0.765; (d) Differences between the kernels for a WCA fluid at ρa = 0.480 and T = 0.765.
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Fig. 3.5. Real space viscosity kernels of monatomic and diatomic fluids, WCA (ρa = 0.375, T = 0.765),
WCA (ρa = 0.480, T = 0.765), WCA (ρa = 0.840, T = 1.0), LJ (ρa = 0.840, T = 1.0), chlorine
(ρa = 1.088, T = 0.97): (a) Kernels obtained from the four-term Gaussian functional form Eq. (3.5); (b)
Kernels obtained numerically from the Lorentzian-type functional form Eq. (3.2).
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Tab. 3.4. Effective viscosities evaluated from ηG4(y), ηG2H (y) and numerically from η̃L(k). The values
can be compared to the zero frequency, zero wavevector viscosities shown in Table 3.2.

WCA LJ Chlorine
State Point ρa 0.375 0.480 0.840 0.840 0.840 1.088

T 0.765 0.765 1.000 0.765 1.000 0.97

2-term Gaussian η0 0.265 0.392 2.290 2.723 2.614 6.881
4-term Gaussian η0 0.265 0.390 2.288 2.807 2.653 6.897
Lorentzian η0 0.269 0.428 2.320 2.913 2.711 7.049

given in Table 3.2 shows an integration error of less than 3%. This confirms the accuracy of our
numerical analysis techniques.

It is of interest to discuss the real space viscosity kernels for monatomic and diatomic systems
from a structural point of view. For this purpose we define a structural normalization factor

ξg =

∞∫
0

r[g(r)− 1]2dr

∞∫
0

[g(r)− 1]2dr

(3.7)

where g(r) is the radial distribution function (RDF). Eq. (3.7) is a measure of the range over
which the correlation function decays to 1 and therefore could be regarded as a correlation length
of the radial distribution function. The RDF (or structure factor in reciprocal space) can be
defined by

g(r) =
〈∑N

i=1

∑N
j>1 δ(|r− rij |)

4πr2Nρ

〉
. (3.8)

For an atomic description rij is the distance vector between atoms i and j, N is the total number
of atoms, and ρ is the atomic number density. For a molecular fluid rij is the distance vector
between the centers of mass of molecules i and j, N is the total number of molecules, and ρ is
the molecular number density.

The atomic radial distribution functions and normalization factors are presented in Fig. 3.6.
We can see that the RDF are typical monatomic and diatomic Lennard-Jones pair correlation
functions. ξg generally increases as we increase the density and temperature from 0.605 at state
point ρa = 0.375, T = 0.756 to 0.730 at ρa = 0.480, T = 1.0 and only slightly increases as we
increase the cutoff distance, i.e. switch from WCA system to a LJ system at the same state point.
ξg for chlorine at state point ρa = 1.088, T = 0.97 was found to be 0.585.

The normalized kernels with respect to η(y = 0) and spatial scaling factor ξg are shown
in Figs. 3.7(a) and 3.7(b). While generally the width of unnormalized kernels increases as we
increase the density (Figs. 3.5(a) and 3.5(b)), the width of the normalized kernels of WCA fluids
decreases marginally as we increase the density from 0.376 (continuous line) to 0.840 (short-
dashed line). The LJ system shows a slightly narrower kernel (dotted line) compared to the
WCA system at the same state point (short-dashed line). Though the kernels obtained from both
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Fig. 3.6. Radial distribution function g(r) and normalization factors ξg , Eq. (3.7): WCA [(a) ρa = 0.375,
(b) ρa = 0.480 both at T = 0.765], (c) WCA (ρa = 0.840, T = 1.0); LJ (d) (ρa = 0.840, T = 1.0);
chlorine (e) (ρa = 1.088, T = 0.97). For clarity, the RDFs are shifted upwards by 3 units.

functional forms are quite close to each other (almost identical for values of y of about half of
the atomic or molecular diameters, i.e. y = 0.5σ), we can see in Fig. 3.7(a) and 3.7(b) that
the structural normalization did not completely remove the discrepancy between the normalized
kernels of the WCA system at different densities, and the normalized kernels of WCA, LJ and
chlorine systems, for values higher than y = σ.

If we recall that Fig. 3.7(b) is based on a Lorentzian-type fit, a further question as to whether
the kernel differences are due to numerical analysis, i.e. the choice of the fitting function, or due
to improper structural factor arises. A four-term Gaussian only shows slightly narrower kernels
which suggests a need for a more comprehensive structural normalization.

3.4 Summary

The main results can be summarized as follows:
(i) For monatomic fluids the shape of the normalized viscosity kernel in reciprocal space in
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Fig. 3.7. Normalized real space viscosity kernels of monatomic and diatomic fluids, WCA (ρa = 0.375,
T = 0.765), WCA (ρa = 0.480, T = 0.765), WCA (ρa = 0.840, T = 1.0), LJ (ρa = 0.840, T = 1.0),
chlorine (ρa = 1.088, T = 0.97): (a) Normalized kernels, shown in Fig. 3.5(a), obtained from the four-
term Gaussian functional form Eq. (3.5); (b) Normalized kernels, shown in Fig. 3.5(b), obtained numerically
from the Lorentzian-type functional form Eq. (3.2).

the low wavevector region is the same for a whole range of densities considered here. Though
the normalized reciprocal kernels insignificantly decrease with the density, they show a similar
limiting behaviour at high ky values. For the LJ potential compared to a WCA potential we
find higher viscosities in the low wavevector region but the normalized shapes of the kernels are
almost identical.

(ii) While a relatively simple Lorentzian-type function fits the atomic and diatomic data well
over the entire range of ky at all the state points it is not possible to analytically inverse Fourier
transform it to the real space domain. Therefore one may consider up to a four-term Gaussian
function which gives better accuracy in reciprocal space compared to the Lorentzian-type func-
tion. Our analysis of the high ky regime reveals that the two-term equally weighted Gaussian
functional form is inaccurate in predicting the real space kernels whilst the unequally weighted
Gaussian only slightly improves the fit.

(iii) The overall conclusion is that the real space viscosity kernel for chlorine has a width of
roughly 4-6 atomic diameters while for monatomic systems at high densities the width is about
3-5 atomic diameters and 2-4 atomic diameters at low densities. This means that generalized
hydrodynamics must be used in predicting the flow properties of such fluids on length scales
where the gradient in the strain rate varies significantly on these scales.

Finally, our results for diatomic fluids should also provide a good test for more complex
molecular systems and the methodology can easily be used for instance in chain-like molecules.
Such an analysis follows in the next section.
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4 Molecular Fluids: Alkanes and Polymer Melts

4.1 Introduction

Because of their technological relevance, polymer solutions and melts are the subject of intense
study. A polymer (synthetic or natural) is a macromolecule made up of many smaller units,
sometime called monomers or mers. Polymers can vary in size from several mers to thousands
of mers. These chains can be well organized like a box of uncooked spaghetti or very entangled
like a bowl of cooked spaghetti. Bonded together these polymeric molecules form different
architectures, such as linear and branched chains, rings, combs, networks etc. and the way they
organize themselves greatly influences a material’s property which motivates the great interest in
understanding their dynamics.

Polymer chains can tangle up. The longer a polymer chain is, the more tangled up it can get.
Since the chains are harder to pull out or separate, that can make products made out of polymers
stronger. Some polymers are more straight and stiff than others. These won’t tangle up as much,
but they’re strong for a different reason - stiff chains can pack together and stick to each other.
Studies on time and length scales which determine the transition from unentangled to entangled
dynamical behaviour by means of MD simulations can be found in [Doi 1986, Kremer 1990,
Padding 2002].

The polymers we will consider here are all linear polymers. A linear polymer is made up
of one molecule after another, hooked together in a long chain usually called the backbone.
Linear polymers do not have to be in a straight, rigid line. Those single bonds between atoms in
the backbone can swivel around. The dynamics of a separate polymer chain is by itself a very
complex problem: the random motion of each bead is restricted by the chain connectivity and the
interactions with other monomers, while the overall motion is the result of successive individual
adjustments. Chain dynamics is even more complicated if the chain is part of a dense ensemble
of other chains (in melts, glasses or networks): supplementary restrictions arise due to the chain
entanglement.

We can understand the polymer structure and dynamics through the use of models
[Flory 1969, Ferry 1980]. Analytic theories typically deal with idealized models, meaning
that the specific chemical structure is reduced to the very essential parameters, such as con-
nectivity, topology, excluded volume, etc. [Kremer 2003]. To understand a specific chem-
ical system this is not sufficient. Therefore, there is also a tradition of work dealing with
models, which incorporates as many chemical details as possible either by conducting ex-
tended quantum chemical calculations or by using ab initio density functional approaches
[Car 1985, Cramer 2002, Jensen 2007]. Without going into great detail, we will only men-
tion two of the most widely used theories for polymer melt dynamics: the Rouse model for the
simple case of unentangled chains [Rouse 1953] and the reptation model for entangled chains [de
Gennes 1979, Doi 1986]. In the Rouse model, a Gaussian chain of beads connected by springs in-
teracts with a stochastic medium that mimics the presence of the other chains. As a consequence,
the chain center of mass is subjected to particle-like diffusion. In the reptation model, on the
other hand, the polymer chain is confined inside a ”tube” formed by the constraints imposed by
entanglement with other chains. The chain length at which these reptation models dominate the
dynamics is known as the entanglement length Nc. The reptation model was originally developed
to describe the dynamics of a long chain inside highly dense polymer melts. Nevertheless this
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model might also be applied to the fracture behaviour of amorphous polymers [Evans 1987, Bu-
lacu 2008]. It is important to mention that amorphous polymers in the glassy state have countless
technical applications and therefore are very important. Our next section will be solely dedicated
to such systems.

Alkane chains, also known as paraffins, are very important chemical compounds, yet rela-
tively simple, and therefore will be targeted in this section. In short, alkanes consist only of
the elements carbon and hydrogen (i.e. hydrocarbons), wherein these atoms are linked together
exclusively by single bonds (i.e. they are saturated compounds) without any cyclic structure (i.e.
loops) [Olah 2003]. Saturated hydrocarbons can be linear wherein the carbon atoms are joined in
a snake-like structure, branched wherein the carbon backbone splits off in one or more directions,
or cyclic wherein the carbon backbone is linked so as to form a loop. Saturated hydrocarbons can
also combine any of the linear, cyclic and branching structures, and they are still alkanes as long
as they are acyclic (i.e. having no loops). In general, there is no limit to the number of carbon
atoms that can be linked together, the only limitation being that the molecule is acyclic, is satu-
rated, and is a hydrocarbon. Saturated oils and waxes are examples of larger alkanes where the
number of carbons in the carbon backbone tends to be greater than 10. An investigation on how
the branching structure of alkanes changes under confinement and its ramifications for transport
properties of confined fluids can be found in [Wang 2002].

Although alkanes are not very reactive and have little biological activity they are very im-
portant in biological applications. Alkanes can be viewed as a molecular tree upon which can
be hung the interesting biologically active/reactive portions of molecules. However, their ther-
modynamic and transport properties are of interest mainly in petrochemical applications [Fre-
und 1982]. Some synthetic polymers such as polyethylene and polypropylene are alkanes with
chains containing hundreds of thousands of carbon atoms. These materials are used in innumer-
able applications.

A considerable number of studies have been devoted to the simulation of thermophysical
properties of alkanes over a wide range of physical conditions. Many groups worldwide have
worked on the development of sophisticated alkane models and force fields to achieve excellent
agreements with experiments often with the price of high computational costs [Gordon 2006,
Smit 1999].

In this work3 we will focus our attention on a linear alkane with four carbon atoms i.e.
butane. Though the term butane may refer to any of two structural isomers (i.e. unbranched and
branched), or to a mixture of them, in the IUPAC nomenclature [IUPAC 2010], however, butane
refers only to the unbranched n-butane isomer; the other one being called ”methylpropane”. To
simulate butane we have used the united atom model by Ryckaert and Bellemans [Daivis 1994,
Ryckaert 1975, Ryckaert 1978] because it gives a reasonable value for the viscosity.

Our simulations are based on the Edberg, Evans, and Morriss algorithm [Edberg 1986, Ed-
berg 1987b, Baranyai 1990, Daivis 1992] with an improved cell neighbour list construction al-
gorithm [Matin 2003]. Both, model butane and polymer melts, were summarized in Section 2.
We have also studied the chain length dependence of the viscosity kernel. A series of three dif-
ferent molecular sizes was studied, consisting of 10, 20 and 50-site molecules. The system sizes
studied were 108 and 864 molecules and the molecular temperature and reduced site number

3This section contains material reprinted with permission from R. M. Puscasu et al., Phys. Rev. E 82, 011801 (2010).
Copyright 2010, American Physical Society.
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density were T = 1.0 and ρa = 0.84, respectively. The state point was chosen to correspond to
previous studies [Daivis 2007, Kröger 1993, Kremer 1990] of chain dynamics. These parame-
ters remained constant through this series of simulations. The values of the relevant simulation
parameters are summarized in Table 4.1.

We conduct the simulations using a fifth-order Gear algorithm [Gear 1966, Gear 1971] with
an integration timestep of δt = 0.002. The equations of motion (EOM) for model butane and
polymer melts were introduced in Section 2.

After the initial equilibration, we performed production runs for a minimum of 1.4 × 107

time steps averaging 14 runs, each of length 106 steps. The transverse momentum density ACFs
were computed over at least 10 reduced time units for 10-site molecules and over at least 20
reduced time units for 50-site molecules. The stress ACFs were computed over at least 20 and 40
reduced time units for 10-site and 50-site molecules, respectively. Correlation functions, Laplace
transforms and wavevector dependent viscosities are all computed as described in Section 3.1.

The results presented below have been obtained by simulation of 108 and 864 molecules
in the isokinetic molecular dynamics ensemble. In this section we report results for transverse
momentum density and shear stress autocorrelation functions, structural properties, reciprocal
and real space viscosity kernels for two molecular systems, namely, butane and FJC polymeric
melts. In order to validate our code and results we reproduced and compared previous results for
correlation functions, self-diffusion and zero wavevector, zero frequency dependent viscosities
of butane and FJC chains where possible. Very good agreement was found in all cases.

4.2 Correlation functions

Initially, we examine the momentum density and shear stress autocorrelation functions in atomic
and molecular representations. We must first note that the ACFs were evaluated for both 108 and
864 molecule systems in order to determine whether the results were system size dependent. No
such evidence was found for butane as well as for FJC systems. In order to limit the number
of figures, we only display the results for one state point for butane and FJC molecules and for
system size Nm = 864.

The transverse momentum density ACFs in atomic and molecular representations for four
non-zero wavevectors are shown for butane in Figs. 4.1(a,b), and for FJC in Figs. 4.2(a,b). Their
corresponding integrals are shown in Figs. 4.1(c,d) and Figs. 4.2(c,d) respectively.

The general features of our transverse momentum density ACFs are in agreement with those
observed previously for hard spheres [Alley 1983a] and for Lennard Jones liquids [Palmer 1994].

Tab. 4.1. Simulation details

Butane FJC/FENE

Site number density, ρa 1.676, 1.46 0.84
Temperature, T 4.05, 3.79 1
Number of molecules, Nm 108, 864 108, 864
Number of sites, Ns 4 10, 20, 50
Bond length, l 0.39 1

LJ cutoff, rc 2.5 21/6
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Fig. 4.1. Momentum density ACFs as a function of mode number n for butane in atomic and molecular
formalisms (ρa = 1.46, T = 4.05, Nm = 864, Ns = 4): (a) Atomic transverse momentum density
ACFs, Eq. (1.53); (b) Molecular transverse momentum density ACFs, Eq. (1.53); (c) Integral of the atomic
transverse momentum density ACFs, Eq. (1.54); (d) Integral of the molecular transverse momentum density
ACFs, Eq. (1.54). The momentum density J in Eq. (1.53) is either in atomic or molecular representation
i.e. either Eq. (1.11) or Eq. (1.21). The insets show the long-time behaviors for the same mode numbers.

Though the simulated values of C⊥(k, t = 0) (for butane C⊥(k = 0, t = 0) = 5.913 at
ρ = 1.46, T = 4.05) in the molecular representation are in agreement with theoretical values,
Eq. (1.55), (for butane C⊥(k = 0, t = 0) = 5.909, ρa = 1.46, T = 4.05), a closer examination
of Fig. 4.1(a) and Fig. 4.2(a) shows that, in the atomic representation, the zero time momentum
density ACFs differ for different ky values. Presumably, this is a consequence of correlations
between the momenta of different sites on the same molecule that are involved in bond angle or
bond length constraints (see Evans and Morriss, Chapter 4. Eq. (37) in [Evans 1990]). As a
consequence, there is no longer a simple relationship between the temperature and the zero time
value of the momentum density ACF. This is confirmed by the following analysis.

Having the transverse momentum current for a molecular system in the atomic representation
defined by Eq. (1.11) we can form the equilibrium transverse current autocorrelation function by〈

Jx(ky)J∗x(ky)
〉

=
〈 Nm∑

i=1

Ns∑
α=1

pxiαeikyyiα

Nm∑
j=1

Ns∑
β=1

pxjβe−ikyyiβ

〉
. (4.1)
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Fig. 4.2. Momentum density ACFs as a function of mode number n for FJC in atomic and molecular
formalisms (ρa = 0.84, T = 1.0, Nm = 108, Ns = 10): (a) Atomic transverse momentum density
ACFs, Eq. (1.53); (b) Molecular transverse momentum density ACFs, Eq. (1.53); (c) Integral of the atomic
transverse momentum density ACFs, Eq. (1.54); (d) Integral of the molecular transverse momentum density
ACFs, Eq. (1.54). The insets show the long-time behaviors for the same mode numbers.

If we expand Eq. (4.1) into〈
Jx(ky)J∗x(ky)

〉
=

〈 Nm∑
i=1

Ns∑
α=1

p2
xiα

〉
+

〈 Nm∑
i=1

Ns∑
α=1

Ns∑
β 6=α

pxiαpxiβeiky(yiα−yiβ)
〉

+
〈 Nm∑

i=1

Ns∑
α=1

Nm∑
j 6=i

Ns∑
β=1

pxiαpxjβeiky(yiα−yjβ)
〉

(4.2)

we can see that Eq. (4.2) factorizes into three terms. The first term is the total atomic kinetic
energy, which is directly related to the atomic temperature. The second term involves the zero
time value of a correlation function of the momenta for different atoms on the same molecule.
These atoms may be connected by constraints and their momenta will be correlated, so the mean
value of this term is expected to have a non-zero value. The third term, involving correlations
between the momenta of atoms on different molecules is expected to be zero at equilibrium.
Therefore the y-intercepts in Figs. 4.1 and 4.2 are computed from the correlation function in
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Fig. 4.3. Stress ACFs as a function of mode number n for butane in atomic and molecular formalisms
(ρa = 1.46, T = 4.05, Nm = 864, Ns = 4): (a) Atomic stress ACFs, Eq. (1.57); (b) Molecular stress
ACFs, Eq. (1.57); (c) Integral of the atomic stress ACFs, Eq. (1.60); (d) Integral of the molecular stress
ACFs, Eq. (1.60). The atomic stress ACFs in Eq. (1.57) were computed with atomic pressure tensor and
the molecular stress ACFs were computed with molecular pressure tensor. The insets show the long-time
behaviors for the same mode numbers.

Eq. (1.53) and not from the temperature, Eq. (1.55). Note that Eq. (1.55) is only true when T is
interpreted as the molecular temperature.

The shear stress ACFs in atomic and molecular representations for four wavevectors are
plotted for butane in Figs. 4.3(a,b) and for FJC in Figs. 4.4(a,b) and their integrals in Figs. 4.3(c,d)
and Figs. 4.4(c,d) respectively. All the ACFs show a fast, oscillatory, initial decay followed by
a long-time tail. The tail’s noise is surprisingly higher in the molecular formalism and equally
pronounced in both butane and polymeric systems. The main difference between zero and finite
ky functions is that their time integral is proportional to the viscosities at ky = 0, but it vanishes
for nonzero ky due to the conservation law. As a consequence the generalized viscosities cannot
be obtained from a Green-Kubo integration at nonzero ky as pointed out by Evans and Morriss
[Evans 1990]. The long-time value of the zero wavevector integral (the Green-Kubo expression
for the viscosity) converges to a viscosity of 4.8 for butane, which is in excellent agreement
with the Green-Kubo data at the same state point given by Daivis and Evans [Daivis 1995]. The
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Fig. 4.4. Stress ACFs as a function of mode number n for FJC in atomic and molecular formalisms
(ρa = 0.84, T = 1.0, NM = 108, Ns = 10): (a) Atomic stress ACFs, Eq. (1.57); (b) Molecular stress
ACFs, Eq. (1.57); (c) Integral of the atomic stress ACFs, Eq. (1.60); (d) Integral of the molecular stress
ACFs, Eq. (1.60). The insets show the long-time behaviors for the same mode numbers.

butane system shows a shorter convergence time value compared to polymeric systems.

4.3 Reciprocal space viscosity kernel

The reciprocal space viscosity kernels for model butane and FJC are shown in Figs. 4.5-4.7. The
error bars are within the symbol sizes and are therefore omitted. The statistical reliability of
reciprocal space kernel data increases as ky increases.

For butane we found the zero wavevector, zero frequency viscosity to be η0 = 4.8±0.2
which agrees with the results of Daivis et al. [Daivis 1995] 4.8±0.1 (or 0.154±0.004 kg m−1

s−1). For polymer melts we found η0 = 8.1±0.2 (Ns = 10), η0 = 15.2±0.3 (Ns = 20),
η0 = 41.2±0.4 (Ns = 50) which agrees with the limiting values η0 = 8.42±0.04 (Ns = 10),
η0 = 15.6±0.1 (Ns = 20), η0 = 41.3±0.6 (Ns = 50) [Daivis 2007] of the shear viscosities at
zero strain rate. Kröger et al. also reported a slightly lower viscosity of 7.09± 0.09 for a 10-site
FENE (finite extensible nonlinear elastic) chain [Kröger 1993]. We see that the zero-wave vector
viscosity follows a simple proportionality η ∝ Ns (typically described by a Rouse model) which
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Fig. 4.5. Reciprocal space kernel of butane (ρa = 1.46, Nm = 864) in the atomic formalism: (a)
Normalized kernel data at T = 4.05 and best fits to Eqs. (3.1) and (3.2); (b) Normalized kernel data at
T = 3.79 and best fits to Eqs. (3.1) and (3.2); (c) Differences between the kernels data and fits shown in
(a); (d) Differences between the fits shown in (a).

confirms that the chain considered here is not long enough to cover the crossover regime from
the nonentangled to the entangled state.

In Figs. 4.5(a) and 4.5(b) we compare the reciprocal space kernels of butane at two state
points (ρ = 1.46, T = 4.05) and (ρ = 1.46, T = 3.79). While the zero wavevector viscosity
decreases with temperature from 5.41 at T = 3.79 to 4.76 at T = 4.05, the width and the shape
of the normalized kernel data varies insignificantly in this range of temperatures, getting slightly
larger at T = 4.05. The kernel data points in Figs. 4.5(a) and 4.5(b) have also been fitted to
several functional forms given in the previous section for simple monatomic and diatomic fluids.
We discuss the parameterization of the reciprocal space kernels further below. In Figs. 4.6 we
plot the wavevector dependent viscosity for a polymeric chain upon increasing the chain length
from 10 up to 50 sites per chain. It is seen that the zero wave-vector viscosity increases linearly
with Ns. However, the half width at half maximum is almost constant which suggests that the
normalized shape of the reciprocal space kernel with respect to zero wave-vector value must be
identical for all three chain lengths. Further evidence supporting this statement will be shown
later in Fig. 4.7.

For completeness we also compared the FJC kernels with kernels computed for FENE
[Kröger 1993] chain systems of equivalent molecular weight and state point. The kernels in
both models were essentially identical, therefore FENE results are not explicitly displayed. The
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Fig. 4.6. Reciprocal space kernel of FJC melts in the atomic formalism at three different chain lengths
(ρa = 0.84, T = 1.0, Nm = 864): Ns = 10, Ns = 20 and Ns = 50.

Fig. 4.7. Reciprocal space kernels of FJC melts at three different chain lengths: Ns = 10, Ns = 20 and
Ns = 50 (ρa = 0.84, T = 1.0, Nm = 864): (a) Kernels obtained from the two-term Gaussian functional
form Eq. (3.1); (b) Kernels obtained from the four-term Gaussian functional form Eq. (3.1); (c) Kernels
obtained from the Lorentzian-type functional form Eq. (3.2).

similarity of the viscosity kernel of these two molecules arises because, despite using different
models, the molecular structure varies only slightly. The similarity of FJC and FENE systems has
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also been recently confirmed by Hunt and Todd [Hunt 2009a, Hunt 2009b] for shear and exten-
sional viscosities and diffusion tensor. The computational efficiency of the FENE and FJC force
calculations are also similar due to the sparse matrix linear equation solver used for tridiagonal
matrices which is applied in the FJC system.

In the previous section we proposed functional forms that fit the reciprocal space viscosity
kernel data. The results of the fittings based on Eqs. (3.1) and (3.2) for butane and FJC chains
are listed in Table 4.2 along with the magnitude of the residuals estimated using the residual
standard deviation defined by Eq. (3.3). Table 4.3 also confirms the value of 1 for the total
Gaussian amplitudes.

The results show that a relatively simple equally-weighted two-term Gaussian function fits
the butane data, Figs. 4.5(a) and 4.5(b), with less then 2% error Fig. 4.5(c). The Lorentzian-type
function fits the butane data much better over the entire wavevector range. While generally a
third term in the Gaussian function improves the fit, only the fourth term shows a better preci-
sion compared to the Lorentzian-type function Fig. 4.5(c). In Fig. 4.5(d) we plot the diferences
between all three functional forms for the same state point of butane.

In Figs. 4.7(a-c) we plot the Gaussian and Lorentzian-type fits to the atomic reciprocal space
kernel data of the FJC system shown previously in Figs. 4.6(a-c) at three different chain lengths.

Tab. 4.2. Zero frequency, zero wavevector shear viscosity and fitting parameter values for molecular systems
in the atomic representation

Butane FJC
State Point ρa 1.46 1.46 0.84

T 4.05 3.79 1.0

System size Nm 864 864
Ns 4 10 20 50

η0 4.8[0.2]1 5.4[0.3] 8.1[0.2] 15.2[0.3] 41.2[0.4]

2-term Gaussian, A2 = 1− A1 Eq. (3.1) A 0.133 0.202 0.375 0.170 0.250
σ1 10.29 6.708 2.769 3.810 3.213
σ2 2.105 1.585 1.044 1.452 1.261
sr 0.078 0.086 0.092 0.194 0.552

2-term Gaussian Eq. (3.1) A1 0.123 0.200 0.368 0.139 0.252
A2 0.855 0.795 0.629 0.842 0.749
σ1 10.87 6.764 2.792 4.169 3.203
σ2 2.170 1.598 1.056 1.511 1.257
sr 0.077 0.089 0.094 0.181 0.567

4-term Gaussian Eq. (3.1) A1 0.646 0.349 0.571 0.773 0.544
A2 0.231 0.532 0.270 0.061 0.188
A3 0.094 0.095 0.144 0.147 0.251
A4 0.028 0.023 0.016 0.019 0.027
σ1 2.549 2.762 1.618 1.556 1.413
σ2 1.127 1.284 0.730 0.093 0.811
σ3 7.876 7.175 3.423 3.227 2.639
σ4 28.17 28.02 12.92 11.29 8.544
sr 0.006 0.004 0.006 0.102 0.443

Lorentzian-type Eq. (3.2) α 0.145 0.235 0.338 0.167 0.270
β 1.997 1.872 2.210 2.726 2.398
sr 0.046 0.032 0.054 0.069 0.417
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Tab. 4.3. Total amplitude for Gaussian functional form

Butane FJC
State Point ρa 1.46 1.46 0.84

T 4.05 3.79 1.0
Ns 4 10 20 50

2-term Gaussian
P2

j=1 A 0.978 0.995 0.997 0.981 1.001

4-term Gaussian
P4

j=1 A 0.997 0.999 1.001 1.000 0.940

Though the shape of the normalized kernels is slightly affected by the choice of fitting function
it shows very little difference upon increase of the chain length. Essentially, the normalized
reciprocal space kernel of polymer melts does not change with the chain lengths considered here
and the insignificant deviations could simply be due to the numerical error of the fitting procedure
and relatively high zero wave-vector value the reciprocal space kernels are normalized with as
we increase the chain length.

4.4 Real space viscosity kernel

The viscosity kernel in physical space can be found via an inverse Fourier cosine transform,
Eq. (3.4), which is a special case of the continuous Fourier transform of even functions. The
inverse Fourier cosine transform of the Gaussian function was given previously in Eq. (3.5) and
for the Lorentzian-type function, the integral in Eq. (3.4) was evaluated numerically by a Simpson
method [Hansen 2007, Puscasu 2010b].

The real space viscosity kernel results for butane at two temperatures (T = 4.05 and T =
3.79) are presented in Fig. 4.8 and data for polymer melts at three densities are presented in
Figs. (4.9). The real space kernel decreases slightly with the temperature, but it is strongly af-
fected by the choice of fitting function in reciprocal space. For instance, kernels obtained from
a two-term equally-weighted Gaussian functional form, shown in Fig. 4.8(a), are strongly dis-
torted in physical space and therefore more terms in the Gaussian form are needed. To illustrate
this point, we consider a four-term Gaussian shown in Fig. 4.8(b). Kernels obtained numerically
from the Lorentzian-type functional form are shown in Fig. 4.8(c), and feature a much smoother
behaviour in real space. The maximum difference between the kernels obtained from the Gaus-
sian functions is about 5% and between the kernels obtained from the Lorentzian-type function
and Gaussian functions is less than 10%, Fig. 4.8(d).

For the FJC system, the trends are illustrated in Fig. 4.9 for unnormalized data and in
Figs. 4.10 for normalized data. The difference between these functional forms is given in
Fig. 4.11. Despite the very large discrepancy between kernels predicted by a four-term Gaus-
sian function and a Lorentzian-type function of almost 40% at y = 0, Fig. 4.11(a), the local
effective viscosity, η0, obtained by integrating the nonlocal real space kernel over y is in good
agreement (Table 4.4).

As mentioned previously, the four-term Gaussians show much better fits and can be trusted
when transforming the reciprocal space kernels into the physical domain. However, we note that
the four-term Gaussian function is sensitive to the statistical variation of the data and may result
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Fig. 4.8. Real space kernel of butane (ρa = 1.46) at two different temperatures, T = 4.05 and T = 3.79:
(a) Real space kernels obtained from Gaussian functional form Eq. (3.5); (b) Real space kernels obtained
from Gaussian functional form Eq. (3.5); (c) Real space kernels obtained numerically from the Lorentzian-
type functional form Eq. (3.2); (d) Difference between the kernels (a-c) for T = 4.05.

in unnatural behaviour while the Lorentzian-type function shows a much smoother shape of the
real space kernels.

The zero wavevector viscosity η0 obtained via the Gaussian function Eq. (3.6) with NG = 2
for the two-term Gaussian and NG = 4 for the four-term Gaussian along with the zero wavevec-
tor viscosity obtained via the Lorentzian-type function are shown in Table 4.4. Though all three
functional forms yield different kernel shapes the local effective viscosities η0 are in good agree-
ment with the simulated values presented in Table 4.2. It is seen that the error associated with
the integration is less than 2% compared to simulated zero frequency zero wavevector viscosities
given in Table 4.2. This confirms the accuracy of our numerical analysis.

The difference between the kernels obtained from the Lorentzian-type function and the four-
term Gaussian functions increases with the chain length as seen in Fig. 4.11(b). However, the
local effective viscosities agree with the computed values even at high molecular weights.

In order to compare the real space viscosity kernels for different molecular systems we use the
normalization factor ξg that accounts for the structural properties defined previously in section
3. ξg is a measure of the range over which the radial distribution function decays to 1 and
therefore is regarded as a correlation length of the radial distribution function (RDF). The RDF
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Fig. 4.9. Real space kernel of FJC melts at three different chain lengths Ns = 10, Ns = 20 and Ns = 50
(ρa = 0.84, T = 1.0, Nm = 864): (a) Real space kernels obtained from the equally-weighted two-
term Gaussian functional forms Eq. (3.5); (b) Real space kernels obtained from the four-term Gaussian
functional forms Eq. (3.5); (c) Real space kernels obtained numerically from the Lorentzian-type functional
form Eq. (3.2).

Fig. 4.10. Real space kernel of FJC melts at three different chain lengths, Ns = 10, Ns = 20 and
Ns = 50 (ρa = 0.84, T = 1.0, Nm = 864): (a) Real space kernels normalized by η(y = 0) obtained
from the equally-weighted two-term Gaussian functional form Eq. (3.5); (b) Real space kernels normalized
by η(y = 0) and obtained numerically from Lorentzian-type functional form Eq. (3.2).
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Fig. 4.11. Difference between the real space kernels for (a) 10-site FJC system obtained from three func-
tional forms and (b) the difference between the real space kernels obtained from the Lorentzian-type and
four-term Gaussian functions for three different chain lengths Ns.

gives us important information about structure in dense liquid butane and polymer melts and
corresponding normalization factors for these systems are presented in Fig. 4.12.

RDFs for butane at state point (ρa = 1.46, T = 4.05) and (ρa = 1.46, T = 3.79) are shown
in Fig. 4.12(a,b) and have the same form as those from [Edberg 1986, Ryckaert 1978]. The sharp
peaks at σ = 0.39 and σ = 0.63 arising from nearest- and next-nearest-neighbour constraints
are omitted from the calculation of ξg in Eq. (3.7). The broad and sharp peaks in Figs. 4.12(a,b)
correspond to gauche and trans conformations respectively. The remainder of the g(r) curves
show intermolecular correlations. For the FJC system the radial distribution functions, given for
Ns = 10, Ns = 20 and Ns = 50 in Figs. 4.12(c), 4.12(d) and 4.12(e), show the sharp peaks
due to bonds (l = 1.0σ) and LJ shells. The second LJ coordination shell is visible in a peak at
r ≈ 2σ. Our RDFs for polymer melts are in agreement with [Bulacu 2007, Bennemann 1998].
Compared to butane, for which ξg changes significantly from 0.489 at state point ρ = 1.676,
T = 4.05 to 1.195 at state point ρ = 1.46, T = 3.79, ξg for FJC only slightly increases from

Tab. 4.4. Effective viscosities evaluated from ηG2H (y), ηG4(y) and numerically from ηL(ky)

Butane FJC

State Point ρa 1.46 1.46 0.84
T 4.05 3.79 1.0

System size Nm 864 108
Ns 4 10 20 50

2-term Gaussian η0 4.759 5.410 8.09 15.2 41.2
4-term Gaussian η0 4.760 5.410 8.09 15.2 41.2
Lorentzian η0 4.761 5.412 8.09 15.2 41.2
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Fig. 4.12. Total intra- and intermolecular radial distribution function g(r) and normalization factors ξg for
butane at two state points (a) (ρa = 1.46, T = 4.05), (b) (ρa = 1.46, T = 3.79) and FJC at state point
(ρa = 0.84, T = 1.0, Nm = 864) for (c) Ns = 10, (d) Ns = 20 and (e) Ns = 50. For butane the peaks at
σ = 0.30 and σ = 0.63 arising from nearest-neighbour and next-nearest neighbour constraints are omitted.
For clarity, the RDFs in (d), (c) (b) and (a) are shifted upwards by 4 units.

0.534 to 0.548 as we enlarge the polymers from 10 to 50 sites per molecule.
The real space kernels for butane, normalized with respect to their zero wavevector values

and spatial scaling factor ξg , are shown in Fig. 4.13. Firstly, we see that the kernels obtained from
a Lorentzian-type fit for two-different temperatures T = 4.05 (continuous line) and T = 3.79
(long-dashed line), Fig. 4.13(b), normalized with respect to ξg deviate substantially from their
unnormalized analogs shown in Fig. 4.13(a). Since the normalization factor has been calculated
from the total intra- and inter-molecular radial distribution function it is to be expected that the
peaks due to intra-molecular interactions will have a greater contribution at low temperatures
as seen in Fig. 4.13(b). Therefore, in addition to previously given kernels, we also plot the
normalized kernels with respect to only the inter-molecular RDF (dashed and dotted lines in
Fig. 4.13(b). We can see that the kernels are closer in Fig. 4.13(b) for the same set of temperatures
and densities. However, our normalization did not remove the discrepancy between the kernels
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Fig. 4.13. Real space kernel of butane (ρa = 1.46) obtained in the atomic formalism at two different
temperatures, T = 4.05 and T = 3.79: (a) Real space kernels in the atomic formalism obtained from the
Lorentzian-type functional form and normalized by η(y = 0) value; (b) Real space kernels shown in (a)
normalized by the factor ξg . Note intermolecular interaction normalization in (b) (dotted and dashed lines).

Fig. 4.14. Real space kernel of FJC melts for three different chain lengths: Ns = 10, Ns = 20, Ns = 50:
(a) Real space kernels obtained from the equally-weighted two-term Gaussian functional form, Eq. (3.5),
normalized by the factor ξg; (b) Real space kernels obtained from the Lorentzian-type functional form
normalized by the factor ξg Eq. (3.7). The corresponding structurally unnormalized kernels are shown in
Fig. (4.10).

for these two structures i.e. at T = 4.05 (dashed line) and T = 3.79 (dotted line).
Figs. 4.14(a) and 4.14(b) depict the FJC kernels in real space according to the atomic defi-

nition, normalized with respect to ξg and obtained from an equally-weighted two-term Gaussian
function and Lorentzian-type function, respectively. We can see that despite the fact that struc-
tural normalization procedure preserved the features of the real space kernels, neither Lorentzian-
type function nor Gaussian function completely remove the differences between the kernels in
Figs. 4.10(a) and 4.10(b). As mentioned above for butane, a more comprehensive structural nor-
malization is needed in order to be able to reduce the viscosity kernels to a universal curve for
complex molecular fluids.
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4.5 Summary

The main results can be summarized as follows:
(i) An insignificant variation in the shape of both normalized reciprocal space and real space

kernels has been noted for the entire range of molecular weights considered here.
(ii) Though a relatively simple Lorentzian-type function fits the data well over a wide range

of wavevectors, at all the state points, it is not possible to analytically inverse Fourier transform
it to the spatial domain. Therefore, one may consider an expansion up to a four-term Gaussian
which also gives a better accuracy compared to the Lorentzian-type function. Even though the
parameterization of the reciprocal space kernel has shown that the density and temperature have
a great impact on the parameters, the resulting kernels vary only slightly with those temperatures
chosen here.

(iii) We identified that the choice of functional forms in reciprocal space plays a significant
role in the prediction of the real space kernel shape. For instance, in the case of butane an equally
weighted two-term Gaussian function is unsuitable as it distorts the real space kernel and under-
estimates the local effective viscosities which is consistent with earlier results for monatomic and
diatomic fluids. However, for polymeric fluids all the fits reproduce accurately the local effective
viscosities even though they have slightly different shapes.

(iv) The viscosity kernels of FENE and FJC chains are essentially the same. Much larger
chains would also be worth considering in the future in order to cover the crossover regime from
the nonentangled to the entangled state.

(v) Though a normalization scaling based on the correlation length of the radial distribution
function allows us to compare the real space kernels of different polymeric melts, in the case
of butane, only the inter-molecular contributions in the radial distribution function leads to an
improved agreement. This suggests a need for a more comprehensive structural normalization of
complex molecular structures.

(vi) Overall, we have shown that the normalized real space viscosity kernel of butane has a
width of roughly 3-5 atomic diameters while for polymer melts the width is about 4-6 atomic
diameters. This means that the generalized hydrodynamic viscosity must be used in predicting
the flow properties of molecular fluids on length scales where the gradient in the strain rate is of
the order of these dimensions.
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5 Polymers approaching their Glassy State

5.1 Introduction

Generally, molecular systems can exist in three possible physical states: solid, liquid and gas.
However, the transitions in polymers are more complex. Firstly, at high temperatures, polymeric
molecules decompose rather than boil since what we would consider conventionally as their
”boiling points” are generally higher than their decomposition temperatures. Secondly, a given
polymeric sample is composed of a mixture of molecules having different chain lengths (molec-
ular weights). In contrast to simple molecules, the transition between the solid and liquid forms
of a polymer is rather diffuse and occurs over a temperature range the magnitude of which (of
the order of 2 to 10C) depends on the polydispersity of the polymer. Polymers become very vis-
cous (viscoelastic) fluids on melting, unlike freely flowing low-molecular-weight materials. In
addition, there is a more fundamental difference between the thermal behavior of polymers and
simple molecules. Molecular motion in a polymer sample is promoted by its thermal energy. It
is opposed by the cohesive forces between structural segments (groups of atoms) along the chain
and between neighboring chains. These cohesive forces and, consequently, thermal transitions
in polymers depend on the structure of the polymer. In this regard, two important temperatures
at which certain physical properties of polymers undergo drastic changes, have been identified:
the glass transition (GT) temperature, Tg and the crystalline melting point, Tm.

If a polymer is amorphous, the solid-to-liquid transition occurs very gradually, going through
an intermediate ”rubbery” state without a phase transformation. The transition from the hard and
brittle glass into a softer, rubbery state occurs over a narrow temperature range referred to as the
GT temperature. In the case of a partially crystalline polymer, the above transformation occurs
only in the amorphous regions. The crystalline zones remain unchanged and act as reinforcing
elements thus making the sample hard and tough. If heating is continued, a temperature at which
the crystalline zones begin to melt is reached. The equilibrium crystalline melting point, Tm,
for polymers corresponds to the temperature at which the last crystallite starts melting. Again,
in contrast to simple materials, the value of Tm depends on the degree of crystallinity and size
distribution of crystallites.

Thermodynamic transitions are classified as being first- or second-order. In a first-order
transition there is a transfer of heat between the system and its surroundings and the system
undergoes an abrupt volume change. In a second-order transition, there is no transfer of heat, but
the heat capacity does change. The volume changes to accommodate the increased motion of the
wiggling chains, but it does not change discontinuously. A GT is known as a ”pseudo-second-
order transition” since the discontinuities are not sharp and occur over a range of temperatures.
Moreover, a glassy system is not actually in equilibrium because aging phenomena and flow have
a non-negligible effect at long times. At best, we refer to a metastable equilibrium which can be
treated as an equilibrium system in the case of short experimental times.

Generally speaking, the fundamental nature of the GT is still unclear. It is a complex
process that involves equilibrium, thermodynamic and kinetic factors. Various theories of the
glass transition exist, such as kinetic, equilibrium [Gibbs 1958, Gibbs 1955] and free volume
[Williams 1955] theory. The thermodynamic approach is based on entropy considerations of the
glassy state, while the kinetic theory of the glass transition considers the relaxation phenom-
ena associated with the glass transition. Each approach gives only a partial explanation to the
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observed behavior of polymers [Ebewele 2000].
Historically viscosity has played an important role in analyzing glasses. The GT was associ-

ated for practical purposes with a specific number for the viscosity where the material could be
considered not to flow during experimental time scales. A body of literature exists on the vis-
coelastic properties and the behaviour of the viscosity near the glass transition [Varnik 2002, Ya-
mamoto 2002, Wallace 2004]. For instance, the group of K. Binder played a significant role
in the computer simulation of glasses in general as well as in polymer glasses [Binder 2003,
Binder 2010]. In particular, Binder et al. looked at a melt of simple bead spring polymer mod-
els. These are the simplest molecular dynamics models and allow, because of their enormous
efficiency, to study a rather wide variation of cooling rates which can lead to a very different
behaviour and huge jumps in the observed glass transition temperature. Also, the group of P.
Harrowell [Harrowell 1993, Harrowell 2010] are currently carrying out detailed analysis of the
nature of slow relaxation in some simple models of glass forming liquids using computer simu-
lations and theoretical treatments. More recently Berthier et al. [Berthier 2010] investigated the
glass transition of a dense fluid of hard spheres [Berthier 2009c, Berthier 2009b] and the dynamic
criticality in glass-forming liquids [Berthier 2003, Whitelam 2004, Whitelam 2005].

However, to date there is much less information about the spatial dependence of viscosity.
In order to understand the transport in such systems we devote this chapter to the analysis of
the spatially dependent viscosity of polymeric fluids, when cooled towards their glass transition
temperature. Another contribution of this section is the analysis of the chain length influence
on the viscosity kernel. Though our previous results indicate little difference when increasing
the chain length to up to 100 beads per chain at the standard state point (ρ = 0.84, T = 1.0)
it is worth looking at much lower temperature regions which might offer an insight into where
exactly the onset of large spatial correlations occurs.

We must stress that the main objective is not a precise prediction of the glass transition,
but rather an analysis of temperature dependence of the viscosity kernel (i.e. the shape of the
kernel) as we approach Tg . Though an impressive number of works exist on glass transition
temperature estimation, it is generally difficult to compare all data values because they have
been computed for different systems (bulk liquids, films, networks), under different conditions
(constant pressure, constant volume), by applying different models (potential energy functions,
cutoff distances) for various chain lengths and densities. Nevertheless, we will present the results
for self-diffusion coefficients and stress autocorrelation functions which show the characteristics
of the glassy state. We also estimate the value of Tg and compare the values with previous works
where possible.

Our simulation methods have been described in detail in the previous section. In brief, we
employ a freely jointed tangent chain model (FJC) and the Kremer-Grest model [Kremer 1990]
to simulate three polymeric systems:

(i) In the first system each molecule consists of Ns sites of equal mass miα interacting via
a truncated (rc = 21/6) and shifted Lennard-Jones (LJ) potential (or Weeks-Chandler-Andersen
(WCA) interaction, Eq. (2.1) [Weeks 1971]. The sites are joined by rigidly constrained bonds
of length l = σ. The WCA interactions in this model can occur between any two different sites
except those connected by a bond. This case will be termed, for simplicity, FJC-WCA system.

(ii) In the second system we also include the attractive part of the shifted LJ interaction by
letting rc = 2.5σ. This case will be termed FJC-LJ system.

(iii) In the third system, termed as FENE-LJ, in addition to the LJ potential, adjacent con-
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nected beads also interact through a FENE potential. The LJ potential cutoff distance was
rc = 2.5σ.

A series of three different systems composed of different molecular sizes consisting of 10-,
20- and 50-site molecules were studied. The reduced site number density was ρa = 0.84.

The fifth-order Gear predictor corrector algorithm was employed to solve the equations of
motion [Gear 1966, Gear 1971], and the thermostatted equations of motion are given in Sec. 2.4.

After an equilibration run of length 106 times steps at low density, the molecular systems were
compressed to the required density and re-equilibrated for 106 time steps. A total of 1.4 × 107

time steps was used to compute the ACF at each state point by ensemble averaging 14 indepen-
dent runs, each of length 106 steps. The transverse momentum density ACFs were computed
over at least 20 reduced time units for 10-site molecules and over at least 40 reduced time units
for 50-site molecules. The stress ACFs were computed over at least 40 and 80 reduced time units
for 10-site and 50-site molecules, respectively. Several very long test runs over 200, 400 and 600
reduced time units for 10-, 20- and 50-site molecules were also carried out at very low temper-
atures where a much slower convergence of the integral stress ACF occurs. By cooling down
the polymer melts, conventional MD simulations become unfeasible due to the enormously large
relaxation times. Therefore, in addition to the ACFs, we have employed a widely used fitting
procedure (see Sec. 5.3) in which the stress ACF is extrapolated to much larger time values.

The results presented below were obtained by simulation of 864 molecules in the isokinetic
molecular dynamics ensemble [Puscasu 2010a]4. In order to validate our code and results we
reproduced and compared previous results for self-diffusion and wave-vector and frequency de-
pendent viscosities where possible. Very good agreement was found in all cases. We must also
note that all our correlation functions were evaluated for both 108 and 864 molecule systems in
order to determine whether the results were system size dependent. No such evidence was ob-
served within statistical uncertainties either at relatively high temperatures or down to the glass
transition region.

5.2 Self-diffusion coefficient and glass transition temperature
The self-diffusion coefficient can be obtained either from the mean square displacement or via
the Green-Kubo relation. In this work we evaluate the integral

D =
1

3m2
i

∫ ∞

0

dt〈pi(t)pi(0)〉. (5.1)

The momenta pi can be interpreted either as the momentum of an individual atom or as the center
of mass momentum of a molecule. In this work we use the latter interpretation.

Figs. 5.1(a-c) depict the dependence of the self-diffusion as a function of temperature T
and Figs. (5.2-5.4) depict the velocity correlation functions (VACFs) along with their running
integrals.

A comparison of the velocity ACF of a 20-site FENE-LJ, Fig. 5.2(c), with those of Hunt and
Todd [Hunt 2009b] at the lowest strain rate and for the highest temperature shows an excellent
agreement. However, in order to limit the number of figures, we only show the results for the

4This section contains material reprinted with permission from R. M. Puscasu et al., J. Chem. Phys. 133, 144907
(2010). Copyright 2010, American Institute of Physics.
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Fig. 5.1. Equilibrium diffusion coefficient D for FJC-WCA, FJC-LJ and FENE-LJ at different temperatures
T and for three chain lengths: (a) D vs. T for Ns = 10; (b) D vs. T for Ns = 20; (c) D vs. T for Ns = 50;
(d) DNs vs. Ns for FJC-WCA; (e) DNs vs. Ns for FJC-LJ; (f) DNs vs. Ns for FENE-LJ. The dynamics
of the systems is characteristic for a Rouse model.

self-diffusion coefficient and velocity ACFs for a few state points and system sizes. The complete
set of correlation function results are available from the author.

Each of the velocity ACFs in Figs. (5.2-5.4)(a,c) begins with a peak at t = 0 and decays to
zero as t increases. In FENE-LJ and FJC-LJ systems at low temperatures the ACFs have also a
shallow minimum before an increase to zero. As it is expected, the initial values of the velocity
ACFs are linearly proportional to the temperature and inversely proportional to the chain length
for all three systems. Looking at the correlation functions for FENE-LJ and FJC-LJ polymer
melts at the same temperature we can see that the ACFs and their running integrals are almost
indistinguishable both in the low-time region as well as in their long-time behaviours shown
in the insets. For temperatures below the glass transition temperature the ACFs even become
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Fig. 5.2. Velocity ACFs as a function of temperature for a FENE-LJ polymer melt: (a) Velocity ACF of a
10-site chain function of temperature; (b) Velocity ACF integral of a 10-site chain function of temperature;
(c) Velocity ACF of a 20-site chain function of temperature; (d) Velocity ACF integral of a 20-site chain
function of temperature. The insets show the long-time behaviour.

Fig. 5.3. Velocity ACFs as function of temperature for a FJC-LJ polymer melt: (a) Velocity ACF of a
10-site chain function of temperature; (b) Velocity ACF integral of a 10-site chain function of temperature;
(c) Velocity ACF of a 20-site chain function of temperature; (d) Velocity ACF integral of a 20-site chain
function of temperature. The insets show the long-time behaviour.
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Fig. 5.4. Velocity ACFs as function of temperature for a FJC-WCA polymer melt: (a) Velocity ACF of a
10-site chain function of temperature; (b) Velocity ACF integral of a 10-site chain function of temperature;
(c) Velocity ACF of a 50-site chain function of temperature; (d) Velocity ACF integral of a 50-site chain
function of temperature. The insets show the long-time behaviour.

negative and then gradually increase to zero. At high temperatures, similar trends are found
in the FJC-WCA melts. However, below T = 0.8 the trend of the ACFs for FJC-WCA melts
is quite different compared to FJC-LJ melts. Furthermore, for FJC-WCA systems no negative
values in the velocity ACFs were noticed, Fig. 5.4(a,c). Consequently, the integration of the
above mentioned VACFs for FJC-WCA systems over the entire time space is likely to lead very
different self-diffusion coefficients compared to the other systems.

In Figures 5.1(a-c), the dependence of the self-diffusion coefficient as a function of tem-
perature T follows the expected behaviour: higher temperatures lead to higher diffusion coef-
ficients and D decreases as Ns increases. However, for the FJC-WCA system, the diffusion
coefficient seems to vanish at a much lower temperature compared to the other systems, i.e.
TFJC−WCA

g < 0.01 at ρ = 0.84. For this model one should recover a hard sphere poten-
tial [Berthier 2009c, Berthier 2009b]. This explains why it appears the diffusion constant is ap-
proaching a limiting constant value at low temperature [McCormick 2005]. Such systems exhibit
a rather topologically induced glass transition which is controlled exclusively by chain structure
since energy barriers do not exist for the hard sphere potential [Rosche 2000]. For a hard core
model the temperatures and density chosen here are too low to furnish sufficient packing con-
straints to drive the glass transition, hence the glass aspects are weak. Therefore our results for
the FJC-WCA model deal with a slightly supercooled liquid above the glass transition.

The glass transition temperature for the FJC-LJ and FENE-LJ polymer melts is considerably
higher. This is generally explained by the fact that the diffusion is significantly reduced by the
second LJ coordination shell which falls within the attractive region of the potential. For these
systems T

FJC/FENE−LJ
g ≈ 0.40 − 0.45 at ρ = 0.84. Later we find further evidence of the
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glass transition by investigating the zero wave-vector stress autocorrelation function. Our results
for the self-diffusion are in agreement with those previously reported by Bennemann et. al for
an identical system [Bennemann 1998]. It is also seen that for all chain lengths, Figs. 5.1(a-c),
the data points collapse onto one curve at around T = 1 and above this temperature, there is
no difference in the diffusion for different model chains at the same Ns, as found previously by
Kremer and Grest [Kremer 1990].

The FJC-WCA system is not likely to undergo a sharp transition at the temperatures simu-
lated here and should only be considered as an estimate of the interval associated with the glass
transition. These results are consistent with those of Bulacu et al. [Bulacu 2007] though their
suggested Tg for a similar system was 0.05. A more accurate estimation of the Tg would be
necessary either by conducting simulations at lower temperatures or by fitting D as a function
of T with different theoretical or empirical equations [Götze 1992]. Both methods are some-
what troublesome; equilibrium MD simulations are not accurate enough to distinguish between
exponentially small and strictly zero values of D and the fitting procedure is weakly dependent
on the temperature interval used. Since Tg is not our primary interest we did not perform such
estimations.

Figs. 5.1(d-f) show the self-diffusion coefficient as a function of chain length at temperatures
ranging from well below Tg to above Tg . At all temperatures, the chains behave approximately
according to the Rouse theory for all three system types. The diffusion coefficient is inversely
proportional to the chain length (hence viscosity should be directly proportional to Ns) which is
consistent with our polymeric chains being not long enough to cover the crossover regime from
the nonentangled to the entangled state, in agreement with previous observations [Kröger 2000].

5.3 Momentum density and stress correlation functions

The transverse momentum density ACF expressed by Eq. (1.53) and their running integrals,
Eq. (1.54), are shown in Figs. 5.5, 5.6 and 5.7 for FJC-WCA, FJC-LJ and FENE-LJ systems
respectively. Again, in order to limit the number of figures we only show here results for a 10-
site system and for mode number n = 2. While C⊥(ky, t) in all three models look similar, the
running integrals in the case of FJC-WCA chain behave differently from FJC-LJ and FENE-LJ
chains as we lower the temperature.

Figs. 5.5(a-d) show clear evidence that the FJC-WCA system, which contains only the repul-
sive part of the LJ potential, is unlikely to undergo a structural arrest even at T = 0.05.

A further examination of Figs. 5.5(a) and (b), 5.6(a) and (b), and 5.7(a) and (b) shows
that in the atomic representation the zero time momentum density ACFs slightly differ from the
molecular ones. As mentioned in the previous section, this is a consequence of correlations
between the momenta of different sites on the same molecule that are involved in bond angle or
bond length constraints. As a consequence, there is no longer a simple relationship between the
temperature and the zero time value of the momentum density ACF. As discussed in the previous
section, this is a consequence of correlations between the momenta of different sites on the same
molecule that are involved in bond angle or bond length constraints (see Evans and Morriss,
Chapter 4. Eq. (37) in [Evans 1990]). Therefore the y-intercepts in Figs. (5.5-5.7) are computed
from the correlation function in Eq. (1.53) and not from the temperature, Eq. (1.55).

The stress autocorrelation function expressed by Eq. (1.57) and their running integrals ex-
pressed by Eq. (1.60) are shown in Figs. 5.8, 5.9 and 5.10 for FJC-WCA, FJC-LJ and FENE-LJ
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Fig. 5.5. Momentum density ACFs as function of temperature for a 10-site FJC-WCA chain: (a) Atomic
transverse momentum density ACFs; (b) Molecular transverse momentum density ACFs; (c) Integral of the
atomic transverse momentum density ACFs; (d) Integral of the molecular transverse momentum density
ACFs. The mode number is n = 2. The insets show the long-time behaviours.

Fig. 5.6. Momentum density ACFs as function of temperature for a 10-site FJC-LJ chain: (a) Atomic
transverse momentum density ACFs; (b) Molecular transverse momentum density ACFs; (c) Integral of the
atomic transverse momentum density ACFs; (d) Integral of the molecular transverse momentum density
ACFs. The mode number is n = 2. The insets show the long-time behaviours.
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Fig. 5.7. Momentum density ACFs as function of temperature for a 10-site FENE-LJ chain: (a) Atomic
transverse momentum density ACFs; (b) Molecular transverse momentum density ACFs; (c) Integral of the
atomic transverse momentum density ACFs; (d) Integral of the molecular transverse momentum density
ACFs. The mode number is n = 2. The insets show the long-time behaviours.

Fig. 5.8. Stress ACFs as function of temperature for a 10-site FJC-WCA chain: (a) Atomic stress ACFs;
(b) Molecular stress ACFs; (c) Integral of the atomic stress ACFs; (d) Integral of the molecular stress ACFs.
The insets show the long-time behaviours. Estimated glass transition temperature is Tg ≈ 0.40− 0.45.
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Fig. 5.9. Stress ACFs as function of temperature for a 10-site FJC-LJ chain: (a) Atomic stress ACFs; (b)
Molecular stress ACFs; (c) Integral of the atomic stress ACFs; (d) Integral of the molecular stress ACFs.
The insets show the long-time behaviours. Estimated glass transition temperature is Tg ≈ 0.40− 0.45.

Fig. 5.10. Stress ACFs as function of temperature for a 10-site FENE-LJ chain: (a) Atomic stress ACFs;
(b) Molecular stress ACFs; (c) Integral of the atomic stress ACFs; (d) Integral of the molecular stress ACFs.
The insets show the long-time behaviours. Estimated glass transition temperature is Tg ≈ 0.40− 0.45.
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Fig. 5.11. Atomic stress ACF and running integrals at different temperatures for a 10-, 20- and 50-site
FENE-LJ chain: (a) 10-site stress ACFs; (b) 20-site stress ACFs; (c) 50-site stress ACFs; (d) 10-site integral
stress ACFs; (e) 20-site integral stress ACFs; (f) 50-site integral stress ACFs. The time extensions in (d-f)
have been obtained from a fit based on Eq. (5.2) except for T = 0.4 in (a) where a power law, Eq. (5.3),
was used. We note that in (e) and (f) the stretched-exponential fits the data slightly better compared to the
power law, but due to the lack of data, we suggest the former underestimates the limiting value. The value
of the exponent characterizing the power law was found to be approximately θ = 0.64 for Ns = 10.

chains respectively. In contrast to the FJC-WCA model, in the FJC-LJ and FENE-LJ chains,
the relaxation increases monotonically with decreasing temperature until a specific temperature
is reached. At this temperature a sudden increase of the relaxation occurs indicating a strong
slowing down of the chain dynamics. This temperature is very similar to the one obtained from
the vanishing of the diffusion coefficient D, Fig. 5.1(a-c).

In addition to the above mentioned stress correlation functions calculated over 40 reduced
time units, we also performed longer test runs over at least 200, 400 and 600 reduced time
units for 10-, 20- and 50-site molecules respectively. The log-log stress atomic ACFs, for three
different chain lengths, are displayed in Fig. 5.11(a-c) and their corresponding running integrals
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Fig. 5.12. Reciprocal space kernel of 10-site FJC-LJ and FENE-LJ melts at different temperatures in the
atomic formalism: (a) Normalized kernels for FJC-LJ; (b) Normalized kernels for FENE-LJ.

are displayed in Fig. 5.11(d-f). As can be seen in Fig. 5.11(d-f), it is necessary to extend the ACF
to times longer than actually observed to ensure convergence of the integral. In such situations,
the stress correlation functions are usually fitted to the Kohlarausch-Williams-Watts (KWW) (or
stretched-exponential) function above Tg and to a power law form below Tg [Wallace 2004].
Instead of fitting the ACFs in Fig. 5.11(a-c), we will use the running integrals, Figs. 5.11(d-f),
to tune the fitting parameters. The latter method reduces the noise and gives better convergence.
The stretched-exponential functional form is

IKWW
N (ky = 0, t) = IN (0, 0)

[
1− exp(−γtθ)

]
, (5.2)

and the power law functional form is

Ipow
N (ky = 0, t) = A + Btφ. (5.3)

It is important to note that the values of fitting parameters depend weakly on where the fit starts.
The fits are shown in Fig. 5.11 and cover all times beyond t = 0.4.

5.4 Reciprocal space viscosity kernel

The reciprocal space kernels in the atomic formulation for FJC-LJ and FENE-LJ systems are
shown in Fig. 5.12. The statistical reliability of non-zero wavevector kernel data increases as
ky increases. The error bars for these components are of the same size as the symbols and are
therefore omitted in all figures. For the zero wavevector component the main source of error at
temperatures approaching the glass transition is associated with the fitting procedure.

The kernels in Fig. 5.12 are normalized with respect to the zero wavevector values which
are given in Table 5.1. For higher temperatures, our results for the zero wavevector viscosity
are in agreement with those reported previously by Daivis et al. [Daivis 2007] and Kröger et
al. [Kröger 1993], but are slightly lower compared to Wallace et al. [Wallace 2004] especially
for temperatures close to Tg . Some of the previously reported results are taken as limiting values
of the shear rate dependent viscosities at zero strain rate. Nevertheless, they agree within the
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Tab. 5.1. Zero wavevector, zero frequency viscosity obtained via Eq. (1.60) for different temperatures and
chain lengths

Number of sites Ns 10 20 50

T η0

FENE-LJ 1.0 8.1 15.3 42.8
0.8 9.3 30.2 105
0.6 20 50 150
0.5 80 110 200
0.45 ≈ 103

0.4 ≈ 104

FJC-WCA 1.0 8.09 15.2 41.2
0.8 9.3 17.0 44.5
0.6 10 18 47
0.4 12 21 52
0.2 17 29 61
0.1 25 38 72
0.05 41 56 93
0.02 67 81 117

statistical uncertainty.
The kernels of FJC-LJ and FENE-LJ chains are almost identical and therefore only FENE-

LJ results are considered further in this chapter. The similarity of these two molecules has also
been confirmed by Hunt and Todd [Hunt 2009a, Hunt 2009b] for shear viscosities, extensional
viscosities and diffusion tensor.

We have previously found that two relatively simple functional forms could be used to extract
the wavevector dependent viscosities for a polymer melt, namely, a Gaussian function and a
Lorentzian-type function. As pointed out in our previous section, the inclusion of additional
terms in the Gaussian sum yields a better fit and makes the Gaussian function a suitable analytical
approximation of the reciprocal space viscosity kernel. However, a Gaussian function with higher
number of terms may result in unnatural behaviour of the kernel with unphysical distortions in
the real space kernels. By contrast, the Lorentzian-type function shows a much smoother shape
of the real space kernels. The fitted parameter values for both functional forms are given in
Table 5.2 and the results of the fitting are shown in Fig. 5.13.

Tab. 5.2. Parameter values of the Gaussian and Lorentzian-type fits for a 10-site FENE-LJ chain at different
temperatures

T 1.0 0.8 0.6 0.5 0.45 0.4
η0 8.1 9.3 20 80 103 104

2-term Gaussian Eq. (3.1) A 0.605 0.528 0.366 0.166 0.023 0.006
σ1 2.454 2.351 2.416 2.426 2.364 1.993
σ2 0.745 0.674 0.672 0.578 0.402 0.342

Lorentzian-type Eq. (3.2) α 0.327 0.497 0.811 2.182 19.5 55.5
β 2.057 1.940 1.854 1.777 1.639 1.200
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Fig. 5.13. Normalized reciprocal space kernel data of a 10-site FENE-LJ chain and the fits to the (a)
two-term Gaussian functional form Eq. (3.2) and (b) Lorentzian-type functional form Eq. (3.2).

In order to test the iterative fitting procedure the magnitude of the residuals was estimated
using the residual standard deviation defined by Eq. (3.3). The results of the fitting parameters
as a function of temperature for different chain lengths are plotted in Fig. 5.14.

It is interesting to see whether η0 obeys a Vogel-Fulcher-Tamman (VFT)-law [Varnik 2002]

ηV FT (T ) = η(∞) exp[c/(T − T0)], (5.4)

where η(∞) is the shear viscosity at infinite temperature, c is a constant, and T0 is the tempera-
ture where the shear viscosity is expected to diverge. Fitting our data for all three chain lengths
to Eq. (5.4), we obtained η(∞) = 4.5 ± 0.1, c = 0.306 ± 0.005 and T0 = 0.393 ± 0.001 for
a 10-site chain; η(∞) = 18.2 ± 4.8, c = 0.16 ± 0.04, T0 = 0.395 ± 0.007 for a 20-site chain
and η(∞) = 46.8 ± 13.5, c = 0.14 ± 0.05, T0 = 0.40 ± 0.01 for a 50-site chain. It should be
mentioned that Varnik et al. [Varnik 2002] reported η(∞) = 13.23 ± 0.13, c = 0.615 ± 0.036
and T0 = 0.19± 0.005 for a similar 10-site chain model, however, they introduced an additional
potential barrier acting on the monomers in a layered confined system. We can see that T0 ≈ 0.39
is close to the estimated glass transition temperature from the calculations of self-diffusion. As
shown in Fig. 5.14(a), the quality of the fit is very good for the 10-site molecule. However, as we
have already mentioned, our data are not reliable below T = 0.45. Here correlation functions
decay very slowly in time and the fitting procedure must be extended over much larger delay
times.

The differences between the data and the fits are shown in Figs. 5.15(a) and (b) and confirm
that a relatively simple two-term Gaussian functional form reproduces the kernel data with a
similar accuracy (≈ 1 − 3%) as the Lorentzian-type does. While generally a fourth term in
the Gaussian function improves the fit, it makes the Gaussian expansion of the reciprocal space
kernel less convenient. At low temperatures the difference between the Lorentzian-type fit and
the Gaussian fit (except equally-weighted two-term Gaussian at first non-zero wavevector value)
becomes lower (≈ 1%) due to a delta function like behaviour of the viscosity data.

Table 5.1 clearly suggests that the Rouse model of the viscosity breaks down as we lower the
temperature and it is therefore of interest to quantify the product Dη0 as a function of temperature
and chain length. In order to quantify the Rouse failure and the break down of the Stokes-Einstein
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Fig. 5.14. Temperature dependence of the fitting parameters as a function of chain length for a FENE-LJ
chain in the atomic formalism: (a) Temperature dependence of zero wavevector, zero frequency viscosity.
Also shown are best fits with the VFT expression; (b) and (c) Temperature dependence of parameter α and
β Eq. (3.2); (d-f) Temperature dependence of parameter A, σ1 and σ2 respectively. In (a) the error bars are
based on averages over the test runs and in (b-f) the errors represent the asymptotic standard errors.

relation we plot the product Dη0 as a function of T and Ns in Fig. 5.16. In contrast to the self-
diffusion coefficient presented in Sec. 5.2 for which the Ns scaling of the center of mass D is
very simple and Rouse like irrespective of temperature (Fig. 5.1), the Rouse-type scaling of the
viscosity for FENE-LJ polymer melts is only seen at high temperatures with a strong deviation
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Fig. 5.15. Differences between the reciprocal space kernels of a 10-site FENE-LJ chain at two different
temperatures: (a) T = 0.6; (b) T = 0.5. The lines serve as a guide to the eye.

Fig. 5.16. Temperature and chain length dependence of Dη0: (a) Dη0 vs. N for FENE-LJ polymer melts;
(b) Dη0 vs. N for FENE-WCA polymer melts; (c) Dη0 vs. T for FENE-LJ polymer melts; (d) Dη0 vs. T
for FENE-WCA polymer melts.

at T = 0.8 (Table 5.1). For the FJC-WCA systems the viscosity is Rouse like down to around
T = 0.4. Below this temperature Dη0 follows a power law for both FENE-LJ and FJC-WCA
systems. More evidence for the slowing down of the dynamics can be seen in the temperature
dependence of Dη0 shown in Fig. 5.16(c,d).

There are two reasons that can explain the observed behaviour. One is related to the ex-
trapolation of the stress ACF integrals. If we recall that η0 was taken as a limiting value based
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Fig. 5.17. Real space kernel of a 10-site FENE-LJ melt obtained numerically from the Lorentzian-type
functional form Eq. (3.2) for different temperatures and normalized by η(y = 0).

on stretched exponential and power law fits, Eqs. (5.2,5.3), given in Figs. 5.11(d,e,f), which be-
comes very sensitive to the interval used in the fitting in the absence of data at high time values
as we lower the temperature below T = 0.6. Hence the product Dη0 is not accurate enough in
the low-T regime. When much longer simulations are employed we expect a better agreement
with the Rouse model prediction down to T = 0.5. The second reason relates to the crossing
over between the two distinct regimes. This occurs at a temperature 0.45 < T < 0.5 for FENE-
LJ systems, Fig. 5.16(c), and T < 0.1 for FJC-WCA systems, Fig. 5.16(d) which is found to
correspond well to the thermal decoupling associated with dynamic heterogeneity (as seen later
in Sec. 5.5).

5.5 Real space viscosity kernel

The real space kernels of a 10-site FENE-LJ chain obtained analytically via a Gaussian function
Eq. (3.4) and numerically via a Lorentzian-type function Eq. (3.4), are presented in Fig. 5.17. We
can see that the width of the kernel is roughly 4-6 atomic diameters at T = 1.0. As mentioned
previously, the reciprocal space kernel of both FJC-WCA and FENE-LJ chains decreases with
decreasing temperature. This means that the real space kernel will increase with decreasing
temperature. By cooling the melts down to T = 0.5, the width of the kernel increases to at
least 10 atomic diameters and then increases dramatically in the glass transition region. As
stated previously, the normalized real space kernel for the FJC-WCA system upon decreasing
the temperatures are very close to each other and, since we are not confident that such a system
will actually exhibit a glass transition within the temperature range considered here, we do not
display them.

We have shown in the previous section that the form of the fitting function plays an important
role on the kernel’s shape [Puscasu 2010c]. As temperature decreases, the choice of fitting
function has a greater effect on the shape compared to the form of the potential and consequently
on the width of the kernel. For instance, kernels obtained from the two-term equal-weighted
Gaussian functional forms are slightly distorted in physical space and yield smaller widths. This
problem could be easily solved by including more terms in the Gaussian form. However, this
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Tab. 5.3. Zero shear viscosities η0 evaluated using the Gaussian and Lorentzian-type functions.

T 1.0 0.8 0.6 0.5 0.45 0.4 0.2 0.02

FENE-LJ
2-term Gaussian Ns = 10 8.2 8.8 17 53 0.4 · 103 0.4 · 104 - -

Ns = 20 15.7 28.2 43 86 0.6 · 103 0.5 · 104 - -
Ns = 50 42.8 105 150 140 0.9 · 103 0.8 · 104 - -

4-term Gaussian Ns = 10 8.1 9.3 19 78 0.8 · 103 0.9 · 104 - -
Ns = 20 15.3 29.8 48 103 0.9 · 103 1.1 · 104 - -
Ns = 50 42.8 105 150 184 1.1 · 103 1.3 · 104 - -

Lorentzian-type Ns = 10 8.1 9.2 28 70 0.7 · 103 0.8 · 104 - -
Ns = 20 15.5 31.0 55 119 0.9 · 103 1.0 · 104 - -
Ns = 50 42.8 105 150 223 1.2 · 103 1.3 · 104 - -

FJC-WCA
2-term Gaussian Ns = 10 8.0 8.9 9.2 - - 10 15 61

Ns = 20 14.9 16.8 18 - - 19 28 77
Ns = 50 40.2 42.5 44 - - 50 59 102

4-term Gaussian Ns = 10 8.1 9.3 10.1 - - 11 17 65
Ns = 20 15.2 17.0 19 - - 20 30 80
Ns = 50 41.3 44.5 46 - - 52 62 124

Lorentzian-type Ns = 10 8.1 9.2 12 - - 11 18 69
Ns = 20 15.9 17.2 22 - - 21 30 84
Ns = 50 42.4 45.8 50 - - 53 63 131

introduces undesired additional fitting parameters with insignificant improvement in the overall
shape at temperatures above T = 0.5.

For the FENE-LJ chain, the trends with chain length and the dependence of the results upon
the choice of functional form for the real space are similar to those at state point ρ = 0.84,
T = 1.0 shown in the previous section. The shape of the kernels varies slightly with the number
of sites per chain for the range of chain lengths considered here. Though the Gaussian and
Lorentzian-type functional forms predict different shapes of the real space kernel in general and
the η(y = 0) value in particular, the local effective viscosities, η0 =

∫∞
−∞ η(y)dy, shown in

Table 5.3 were in good agreement with the simulated values given in Table 5.1 for the above
mentioned state point and for all molecular weights. However, we stress that care must be taken
when the Lorentzian-type function is inverse Fourier transformed over a very narrow function as
it is very sensitive to the interval, number of points and truncation used in integration.

Additional insight into the relationship between the viscosity kernel and the structure of the
fluid can be gained by considering a normalization factor that accounts for the structural prop-
erties. Structural properties that we have investigated include the radial distribution functions
(RDFs) (or structure factor in reciprocal space) and the structural normalization factor ξg calcu-
lated from the RDF. If we recall that ξg is a measure of the range over which the RDF decays to
one it is therefore regarded as a correlation length of the radial distribution function.

Our radial distribution functions presented in Fig. 5.18 are in good agreement with those
published previously [Bulacu 2007, Bennemann 1998]. The RDFs for Ns = 10 in Fig. 5.18
show sharp peaks due to bonds (l = 1.0σ) and LJ shells. The second LJ coordination shell is
visible in a peak at r ≈ 2σ. ξg increases as we lower the temperature, from 0.582 at T = 1.0 to
0.836 at T = 0.4 for a 10-site molecule and only slightly increases as we enlarge the polymers
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Fig. 5.18. Total intra- and intermolecular radial distribution function g(r) and normalization factors ξg , as
functions of temperature for a 50-site FENE-LJ chain. For clarity, the RDFs are shifted upwards by 4 units
in (b), (c), (d) and (e). A complete set of normalization factors are plotted in Fig. 5.20.

from 10 to 50 sites per molecule as seen in Fig. 5.20(a). The static scaling factor based on the
pair distribution function slightly decreases with temperature simply because of the peaks in g(r)
which attenuate as we raise the temperature. It is not a complete “structural” representation and
must be therefore treated as an attempt to introduce structural normalizations. In addition, we
found in our previous chapter that the inter-molecular contribution in g(r) leads to a completely
different picture of the static scaling factor. Consequently, a deeper analysis of the structural
normalization for different complex fluids is needed.

The real space kernels shown in Figs. 5.17(a) and (b) are normalized with respect to ξg and
replotted in Figs. 5.19(a) and (b). We can see that despite the fact that the structural normal-
ization procedure has slightly reduced the difference between the real space kernels in the high
temperature region 0.6 ≤ T ≤ 1.0 and preserved their features, it does not completely remove
this difference. This suggests that the width of the kernel does not only depend on the site-site
correlations. The normalization factor based on the pair distribution function, which is gener-
ally related to liquid structure, must be extended to include correlations such as alignment and
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Fig. 5.19. Real space kernel of a 10-site FENE-LJ melt obtained numerically from the Lorentzian-type
functional form Eq. (3.2) at different temperatures and normalized by the factor ξg .

orientation correlations. Furthermore, as the temperature approaches the glass transition region
T < 0.5 the normalization must be further generalized in order to suggest a universal kernel
function.

Such an approach could be based on the idea of dynamic heterogeneity which states that
the dynamics of a glass former is governed by dynamic spatial correlations in contrast to the as-
sumption of homogeneity of mode coupling theories [Hurley 1995]. Therefore a dynamic scaling
factor must be employed. Such a scaling factor can be extracted for instance from Eq. (3.2) by
non-dimensionalizing ky by a length we will call ζ.

ζ = α1/β . (5.5)

The temperature dependence of ζ for different chain lengths is given in Fig. 5.20(b). We can
see an exponential increase in the length scales as we approach the glass transition region. This
confirms the existence of a dynamic heterogeneity in the system which implies that the increase
in time scales as the glass transition is approached is associated with growing length scales of
dynamically, not statically, correlated regions of space [Garrahan 2002].

Surprisingly, a qualitative comparison of the temperature dependence of the dynamic scaling
factor ζ with the temperature dependence of the coherence length ` [Berthier 2004] shows a good
agreement. The coherence length ` was associated with the ordering of the liquid’s dynamics by
measuring spatial correlations between individual particle relaxations [Hurley 1995] and calcu-
lated from the wavevector dependence of a correlator based on the standard self-intermediate
scattering function [Berthier 2004, Whitelam 2005].

A further confirmation of the collective or cooperative dynamics can be seen in Fig. 5.21.
The real space viscosity kernels fall onto essentially one curve for the entire range of temper-
atures. From Fig. 5.21, we can draw the conclusion that the behaviour of the relaxation time
changes from the high-temperature to low-temperature behaviour close to the onset of a criti-
cal point responsible for the existence of the glass state. Thus, the viscosity of a supercooled
liquid increases rapidly as temperature is lowered, because the dynamics becomes increasingly
spatially correlated (or nonlocal).
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Fig. 5.20. Temperature dependence of the (a) static scaling factor ξg , Eq. (3.7), and (b) dynamic scaling
factor ζ, Eq. (5.5), for different chain lengths.

Fig. 5.21. Real space kernel of a 10-site FENE-LJ melt obtained numerically from the Lorentzian-type
functional form Eq. (3.2) at different temperatures and normalized by the dynamic factor ζ, Eq. (5.5).
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5.6 Summary

The main results can be summarized as follows:
(i) This section has been devoted to the analysis of the nonlocal viscosity kernel of polymeric

fluids, when cooled towards their glass transition temperature using equilibrium molecular dy-
namics simulation. This study confirms the previous results for the self-diffusion coefficient and
glass transition temperature and points out the importance of including the attractive part in the
potential [Berthier 2009a] in order to achieve a glassy state in which to study the shape of the
kernels.

(ii) The values obtained for the self-diffusion coefficients and the glass transition tempera-
tures are in good agreement with those available in the literature. For the FJC-WCA system we
observe no glasslike enhancement except at extremely low temperatures of less than 0.01. This
value is not evident from the stress ACF.

(iii) The evaluation of the zero wave-vector viscosity involves calculations of the shear stress
ACFs in the atomic hydrodynamic representation, as well as their extrapolation in the low tem-
perature regions. The correlation functions and consequently zero wave-vector viscosity follow
the expected behaviour when decreasing the temperature and the overall shape of the kernel at
low temperatures is primarily affected by the attractive part of the potential. The data near and
below the glass transition behave like a delta function in reciprocal space. Otherwise, it is well
represented by a Lorentzian-type or two-term Gaussian function.

(iv) In the spatial domain and close to the glass transition temperature, the width of the
kernel increases significantly from 4-6 atomic diameters at T = 1 to at least 10 atomic diameters
at T = 0.5 followed by a dramatic increase closer to Tg . It is found that a dynamic scaling
factor obtained from the reciprocal space viscosity kernels reduces the real space kernels to a
unique form unlike the static scaling factors based on pair distribution functions. This is a further
evidence that the slow dynamics in supercooled liquids is governed by a dynamic critical point
at which time and length scales diverge [Whitelam 2004].

In conclusion, the response of polymer melts to a velocity gradient near Tg turns out to be
highly nonlocal. In systems where the strain rate varies significantly over these distances, the
generalized viscosity must be used in order to correctly compute the velocity profile of poly-
mer melts via use of generalized hydrodynamics. This implies that the classical Navier-Stokes
hydrodynamics will fail for such systems [Goyon 2008].

In view of the long runs required to obtain reliable data for the transport coefficients via
equilibrium time correlation functions, the MD simulations should be extended to cover a much
greater time range [Sen 2006, Ramirez 2007b, Ramirez 2007a]. We repeat that our conclu-
sions are based on solid, but necessarily limited in range, numerical evidence. Thus, we leave
open the possibility that the zero-wavevector zero-frequency viscosities change when a broader
range of time scales is covered. However, we do not believe that our results would be signif-
icantly altered by computing correlation functions with longer total delay times except at the
very lowest temperatures studied. The trend in the width of the real space viscosity kernel with
decreasing temperatue would not significantly change. In future work, it would also be inter-
esting to study polymer melts in the entangled regime [Kremer 1990, Yamamoto 2004, Likht-
man 2007, Read 2008].
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6 Conclusions

In this paper, we used molecular dynamics simulations to investigate the wave-vector dependent
viscosities and their inverse Fourier transforms for simple monatomic fluids and two classes of
molecular fluids: alkane (butane) and polymer (FJC and FENE) chains. Generally, the agree-
ment between our results and other equilibrium data in the zero-frequency zero-wavevector limit
confirms the validity of our data. The equilibrium molecular dynamics calculation involved the
evaluation of the transverse momentum density and shear stress autocorrelation functions. The
main results can be summarized as follows:

For monatomic fluids the shape of the normalized viscosity kernel in reciprocal space in the
low wavevector region is the same. Though the normalized reciprocal kernels insignificantly
decreases with the density they show a similar limiting behaviour at high ky values. For the LJ
potential compared to a WCA potential we find higher viscosities in the low wavevector region
but the normalized shape of the kernels are almost identical.

For liquid chlorine, the real space viscosity kernel has a width of roughly 4-6 atomic diame-
ters while for monatomic systems at high densities the width is about 3-5 atomic diameters and
2-4 atomic diameters at low densities.

For molecular systems, an insignificant variation in the shape of both normalized reciprocal
space and real space kernels has been noted for the entire range of molecular weights considered
here. The real space viscosity kernel of butane has a width of roughly 3-5 atomic diameters while
for polymer melts the width is about 4-6 atomic diameters. The viscosity kernels of FENE and
FJC chains are essentially the same but much larger chains would also be worth considering in
the future in order to cover entangled polymers.

The proposed normalization scaling based on the correlation length of the radial distribution
function allowed us to compare the real space kernels of different polymeric melts, however,
in the case of butane, only the inter-molecular contributions in the radial distribution function
leads to an improved agreement. This suggests a need for a more comprehensive structural
normalization of complex molecular structures.

Also, we identified that the choice of functional forms used in the parameterization of the re-
ciprocal space kernels plays a significant role in the prediction of the real space kernel shape. The
parameterization reveals that two relatively simple functional forms, namely a sum of Gaussian
terms and a Lorentzian-type function, fits the data well over a wide range of wavevectors and
state points. The Lorentzian-type function can not be Fourier inverse transformed analytically,
therefore an expansion up to a four-term Gaussian (which gives a better accuracy compared to
the Lorentzian-type function) can be used in situations when an analytical input into fluid dy-
namics computations is needed. Even though the parameterization of the reciprocal space kernel
has shown that the potential energy function, density and temperature have a great impact on the
parameters, the resulting kernels vary only slightly with those temperatures chosen in this work
(except for supercooled polymers).

For polymers cooled down towards their glassy state, our study confirms the previous results
for the self-diffusion coefficient and glass transition temperature but points out the importance of
including the attractive part in the potential in order to achieve a glassy state in which to study the
shape of the kernels. While the values obtained for the glass transition temperatures of FENE-LJ
and FJC-LJ polymer melts are in good agreement with those available in the literature for the
FJC-WCA system we observe no glasslike enhancement except at extremely low temperatures
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of less than 0.01. At low temperatures the overall shape of the kernel is primarily affected by the
attractive part of the potential. The data near and below the glass transition behave like a delta
function in reciprocal space. Otherwise, it is well represented by a Lorentzian-type or two-term
Gaussian function. In the spatial domain and close to the glass transition temperature, the width
of the kernel increases significantly from 4-6 atomic diameters at T = 1 to at least 10 atomic
diameters at T = 0.5 followed by a dramatic increase closer to Tg . It is found that a dynamic
scaling factor obtained from the reciprocal space viscosity kernels reduces the real space kernels
to a unique form unlike the static scaling factors based on pair distribution functions. This is an
evidence that the slow dynamics in supercooled liquids is governed by a dynamic critical point
at which time and length scales diverge [Whitelam 2004]. Thus, the response of polymer melts
to a velocity gradient near the glass transition temperature turns out to be highly nonlocal.

Overall, in systems where the strain rate varies significantly over the width of the real space
kernels, the generalized nonlocal viscosity must be used in order to correctly compute the veloc-
ity profile of atomic and molecular fluids via use of generalized hydrodynamics.

In view of the long runs required to obtain reliable data for the transport coefficients via
equilibrium time correlation functions, the MD simulations could be extended to cover a much
greater time range in particular by using coarse grained models [Ramirez 2007b, Ramirez 2007a].
In future work, it would also be interesting to study polymer melts in the entangled regime and
to extend the spatial scaling factor to include alignment and orientation correlations. In order
to compute the reciprocal space viscosities in the molecular hydrodynamic representation the
extra correlation functions (e.g. due to coupling between the momentum current and the angular
velocity at nonzero frequency) must be included in the future.

It might also be of interest to simulate systems in the near-critical region [Fixman 1967].
Many of the near-critical phenomena (e.g. shear thinning) cannot be experimentally observed on
Earth due to gravity which stratifies the density so that the layer near the critical density is too thin
to be studied in a viscometer [Berg 2008]. The density of fluids near their liquid-vapour critical
point is enormously sensitive to gradients of pressure and temperature, therefore simulations
have to be carried out at an extremely high resolution. A continuation in this regard would be the
simulation of monatomic Lennard-Jones liquids [Smit 1992], alkanes [Smit 1994, Smit 1999] or
more complex mixtures [Lisal 1999] and FENE [Ouyang 2008] chains near their critical region.

Finally, this work has been concerned with a few molecular systems, but the methodology
can easily be used for larger and more complex molecules with different constraint schemes or
nearest-neighbour bond constraints.
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