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We explore the effect of transverse confinement on the stability of a Bose-Einstein condensate
(BEC) loaded in a shaken one-dimensional or two-dimensional square lattice. We calculate the
decay rate from two-particle collisions. We predict that if the transverse confinement exceeds a
critical value, then, for appropriate shaking frequencies, the condensate is stable against scattering
into transverse directions. We explore the confinement dependence of the loss rate, explaining the
rich structure in terms of resonances.

PACS numbers: 67.85.Hj, 34.50.-s,03.75.-b

I. INTRODUCTION

Intense effort has been directed at using periodic
driving to change the properties of cold atom systems
[1, 2]. For example, several experimental groups have
been able to control effective hopping matrix elements
by lattice shaking [3–11]. The Sengstock group explored
the physics of classical frustrated magnets [10, 11]. The
Ketterle group saw evidence for Hofstader butterfly
physics [12, 13]. The Esslinger group realized the
topological Haldane model [14]. The list of experiments
and theoretical proposals is large [15–53]. There are,
however both conceptual and practical issues with using
periodic driving to control a system. A driven system
has no “ground state” nor a well-defined thermody-
namic temperature. Furthermore, nearly all successful
examples of this technique study non-interacting or
very weakly interacting particles, and one almost
always sees strong heating effects when moderate or
strong interactions are introduced. Here we model
some simple examples where these fundamental and
practical issues are transparent. We make a series of
predictions which are readily verifiable using techniques
demonstrated in recent experiments [15, 16], and
which will enable the experimental study of interacting
Floquet systems with cold atoms.

In earlier works we began studying these questions by
modeling two geometries. First, we considered a 1D gas
of atoms trapped in a shaken 1D lattice [60]. There we
found large parameter regions where a Bose-Einstein
condensate (BEC) is stable against 2-body collisions.
Second, we considered a 3D gas of atoms trapped in a
shaken 1D lattice, making an array of “pancakes” [61].
We found that two-body collisions allowed energy to be
taken from the shaking and transferred to transverse
motion. The heating rates were consistent with those
observed in experiment. In this setting, there is no
steady state: the energy increases monotonically with
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time. The natural question is how these limits are
connected. A 3D gas with harmonic transverse con-
finement should interpolate between these behaviors.
Here, we calculate heating rates in this crossover.

We find a rich structure. First, there is a crit-
ical strength of the transverse confinement beyond
which two-body collisions are unable to deplete the
condensate. Second, as a function of the transverse con-
finement, the dimensionless loss rate is non-monotonic,
displaying drops and jumps characteristic of resonances.
We explain this behavior in terms of the opening and
closing of transverse decay channels. Our results will
be crucial to the next generation of experiments. For
example, one will be unable to observe a Floquet
fractional quantum Hall effect without tuning to
parameters where losses are negligible. While other
authors have conducted related studies of the stability
of driven systems [54–65], the question of collisional
loss into transverse channels is relatively unexplored.
While we focus on a particular model, the loss into
transverse modes is quite generic in cold atoms (see for
example [61]).

Driven systems are also of interest outside of cold
atoms. For example, Photonics experiments have seen
analogs of topological insulator physics in geometries
which mimic electrons in a honeycomb lattice subjected
to appropriate driving [66]. There are no interactions
here. Translating these ideas to an electronic setting
will require understanding the sort of loss processes
which we study. Given the different structure of the in-
teractions, our results cannot be applied directly in the
solid state setting, but our logical framework is valuable.

Figure 1(a) depicts a 1-D lattice with weak transverse
confinement yielding an array of pancake traps. We
consider driving the system by moving the lattice sites
back-and-forth in the lattice direction. Figure 1(b)
illustrate the tight confinement limit. Figure 1(c) illus-
trates a 2D lattice in the weak confinement limit, where
one has an array of cigar shaped traps. We consider
square arrays, with the shaking oriented 45o from a
lattice direction. These geometries are motivated by
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the experiments performed at Chicago [15, 16]. Using a
kinetic model, we predict the scattering rate of bosons
from a BEC as a function of the transverse confinement.
Bilitewski and Cooper have performed a related study
of the population dynamics in the Floquet realization
of the Harper-Hofstader model [63]. In places where
our studies overlap our results agree.

In section II, we introduce our model for analyzing
the shaken lattice experiments. We also discuss the
general formalism for obtaining the Floquet band
structure. In section III, we use Fermi’s golden rule
to predict the scattering rate for bosons out of the
BEC and obtain the stability phase diagram for a
BEC loaded in a one-dimensional shaken lattice and
in a shaken square lattice. Finally, we conclude with
directions for future experiments.

II. MODEL

Energy is not conserved in a periodically driven
system since the Hamiltonian, H(t) is time dependent
and work is being done on the system. However, one
can map the problem onto a static one by viewing the
system stroboscopically i.e. at times 0, T, 2T . . . nT (cf.
ref.[2]). At these times, the evolution operator is given
by :

U(nT ) = U(T )n = T exp

(

−i
∫ nT

0

dt H(t)/~

)

, (1)

where T stands for the time-ordering operator. This
structure allows us to define a time-independent effec-
tive Hamiltonian, Heff via

U(T ) = e(−iHeffT/~) = T exp

(

−i
∫ T

0

dt H(t)/~

)

(2)

This defines the effective Hamiltonian, Heff and the
eigenvalues of the effective Hamiltonian, the quasi-
energies. It is evident from Eq.(2) that the effective
Hamiltonian is not unique. If ǫ is a quasi-energy,
then ǫ + m~ω is also a quasi-energy where m is an
integer and ω = 2π/T . Clearly, the system has no
unique thermodynamic ground state and the eventual
occupations of various modes can only be determined
by detailed modeling of the kinetics.

For our model, it suffices to use the rotating wave
approximations (RWA) and we do not need the full
Floquet formalism. While this simplifies the mathe-
matics, the conceptual issues are unchanged.

(a)

(b)

(c)

FIG. 1. (Color Online) Schematic of shaken optical lattices:
(a)1D lattice with weak transverse confinement; (b) 1D Lat-
tice with tight transverse confinement; (c) 2D lattice with
weak transverse confinement. Ellipsoids represent edges of
cloud in each well of the optical lattice sites and arrows il-
lustrate motion of trap. A typical spacing between lattice
sites is 532 nm (half the laser wavelength λL = 1064 nm)
and a typical shaking amplitude is 15 nm.

A. One-Dimensional Shaken Lattice

The starting point of our modeling is the set-up
in [15] where a BEC of 133Cs atoms is trapped in
a one-dimensional shaken optical lattice (with weak
transverse confinement). When the shaking amplitude
exceeds a certain critical value, the BEC undergoes a
phase transition to a Z2 superfluid (where condensation
occurs at finite momentum k = ±k0 6= 0). A schematic
of the dispersion is shown in Fig. 2. For modeling this
physics, it is sufficient to consider the first two Bloch
bands and ignore the remaining bands (see supplement
of [15]).

In the frame of the moving lattice, the Hamiltonian
for the driven system is given by H = H0(t) + Hint,
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FIG. 2. (Color Online) Schematic showing first (top) and
second (bottom) Floquet quasi-energy bands of an optical
lattice: ǫ is the single-particle energy (arbitrary units used
for schematic), k is the quasi-momentum and a is the lattice
spacing. Since Floquet energies are only defined modulo
the shaking quanta ~ω, the energy of the second band has
been shifted down by ~ω so that it lies below the first band.
Alternatively, this shift can be interpreted as working in a
dressed basis, where the energy includes a contribution from
the phonons. The mixing between the bands depends on
the shaking amplitude. Dashed curves correspond to weak
shaking, where the first band has its minimum at k = 0.
Solid curves correspond to strong shaking, where there are
two minima at k = ±k0 6= 0.

where [1],

H0(t) =

∫

d3r Ψ†(r)

(−~
2

2m

d2

dz2
+ V0 sin

2

(

2πz

λL

))

Ψ(r)

+

∫

d3r Ψ†(r) (zF0 cos(ωt)) Ψ(r)

+

∫

d3r Ψ†(r)

(−~
2

2m
∇2
⊥ +mΩ2(x2 + y2)

)

Ψ(r),

Hint =
g

2

∫

d3r Ψ†(r)Ψ†(r)Ψ(r)Ψ(r). (3)

The atomic mass is m, the wavelength of the laser
forming the optical lattice is λL, the force from the

periodic shaking is F0 cos(ωt) and g ≈ 4π~2as

m is the
interaction strength, as being the scattering length.
The transverse trap frequency is Ω.

As is detailed in Appendix A, the single particle part
of the Hamiltonian describing the system Hsp can be

written as

Hsp =
∑

n,k

ǫ
(1)
nka

n†
k ank + ǫ

(2)
nk b

n†
k bnk

+ F0 cos(ωt)
(

χan†k bnk + χ∗bn†k ank

)

(4)

Here, ǫ
(1)
nk (ǫ

(2)
nk ) is the dispersion of the first (second)

band, ank (b
n

k ) is the annihilation operator for particles
in the first (second) band with the harmonic oscillator
level being n and χ is dipole matrix element between
the first and the second band. As described in Ap-
pendix A, ǫnk is generally time-dependent. However,
when F0a/(~ω) ≪ 1, ǫnk can be taken to be time-
independent.

We make the transformation bk → exp(−iωt)bk and
discard far off-resonant terms (making the rotating wave
approximation) to simplify the single-particle Hamilto-
nian :

H
(sp)
RWA =

∑

n,k

ǫ
(1)
nka

n†
k ank + ǫ

(2)
nk b

n†
k bnk

+ χF
(

an†k bnk + bn†k ank

)

, (5)

Here ǫ
(1)
nk = ǫ

(1)
k +(nx+ny+1)~Ω, ǫ

(2)
nk = ǫ

(2)
k +(nx+ny+

1)~Ω− ~ω. We diagonalize this quadratic form writing

H
(sp)
RWA =

∑

nk

ǫ
(1)
nka

n†
k ank + ǫ

(2)
nk b

n†

k b
n

k (6)

For a particular value of n = {nx, ny}, the dressed

dispersions ǫ
(1)
nk and ǫ

(2)
nk are shown as solid lines in

Fig. 2. The bare dispersions ǫ
(1)
nk and ǫ

(2)
nk are shown as

dashed lines. Reference [60] illustrates how the Floquet
dispersion can be calculated when the RWA is not
applicable.

B. Shaken Square Lattice

We can easily extend the analysis of the previous
section to the case of the square lattice. Since the
shaken square lattice is separable and equivalent to two
shaken one-dimensional lattices, one can write down
the single-particle part of the Hamiltonian, H2D in the
frame of the optical lattice as :

H2D =

∫

d3rΨ(r)†(H1D(z) +H1D(y))Ψ(r)

+

(

− ~
2

2m

d2

dx2
+mΩ2x2

)

Ψ(r)†Ψ(r) (7)
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FIG. 3. (Color Online) Schematic showing the dispersion of
the first Floquet band of a shaken square lattice beyond a
critical amplitude. Color represents energy in units of the re-
coil energy, ER (see scale). We see that the superfluid order
parameter develops a D4 symmetry in momentum space.

where,

H1D(z) = − ~
2

2m

d2

dz2
+ V0 sin

2

(

2πz

λL

)

+ zF0 cos(ωt)

H1D(y) = − ~
2

2m

d2

dy2
+ V0 sin

2

(

2πy

λL

)

+ yF0 cos(ωt)

(8)

Performing the same manipulations as in the last
section, we end up with the following single particle
Hamiltonian :

HRWA
2D =

∑

n,ky,kz

ǫ
(1,1)
n,kx,ky

an†kx,ky
ankx,ky

+ ǫ
(1,2)
n,kx,ky

b
n†

kx,ky
b
n

kx,ky

+ ǫ
(2,1)
n,kx,ky

cn†kx,ky
cnkx,ky

+ ǫ
(2,2)
n,kx,ky

d
n†

kx,ky
d
n

kx,ky

(9)

where ǫ
(i,j)
n,ky,ky

= ǫ
(i)
n=0,kz

+ ǫ
(j)
n=0,ky

+ (n+ 1/2)~Ω.

Due to the separability of the square lattice, instead
of the Z2 reflection symmetry, the ground band devel-
ops a D4 symmetry for shaking beyond a critical force.
We show this schematically in Fig. 3.

III. STABILITY ANALYSIS

In this section, we use a kinetic approach to inves-
tigate the stability of a Floquet BEC as a function of
transverse confinement. One would expect from our
results in [60] that the Floquet BEC would be stable
if the transverse confinement exceeds a critical value.

For both the 1D shaken lattice and the shaken square
lattice, we find this critical transverse confinement
strength. For tighter potentials, the condensate is truly
stable against energy-momentum conserving two-body
collisions. We also identify several distinct signatures
of interaction-driven scattering.

Within our rotating wave approximation we can
simply apply Fermi’s golden rule. The rate of scattering
of two atoms out of the BEC is then given by:

dN

dt
=

2π

~

∑

f

|〈ψf |Hint|ψi〉|2δ(ǫf − ǫi) (10)

where

|ψi〉 =
(a0†k0

)N
√
N !

|0〉

|ψf 〉 = Ψ
†

k0+kΨ
†

k0−k

(a0†k0
)(N−2)

√
N − 2!

|0〉

(11)

where, Ψk is a shorthand for representing
{ak, bk, ck, dk},the state |ψi〉 denotes the BEC where
the bosons have condensed at momentum k0, while
|ψf 〉 denotes a state where two bosons have scattered
out of the condensate to momenta k0 + k and k0 − k
respectively. The energies of the final states are ǫf and
ǫi respectively. If we did not use the Rotating Wave
Approximation, a more complicated expression is nec-
essary [22]. Using Eq.(10) we investigate the stability
of a Floquet BEC. All our calculations are done for
the experimental parameters of Ref.[15] a lattice depth
of 7ER, where the recoil energy, ER = h2/(2mλ2L)
where λL = 1064 nm and m = 133 amu. For these
units, the zero-momentum bandgap for the 1D optical
lattice is is 4.96 ER and the lattice is shaken at the
blue detuned frequency of 5.5 ER. It is reasonable
to assume that loss is exponential. If not, Eq.(10)
only describes the short-time behavior. At finite
temperature, there are also heating processes involving
one condensed atom and non-condensed atoms, or two
non-condensed atoms. At typical BEC temperatures,
these are negligible.

A. One-Dimensional Shaken Lattice

We first consider the case of a Floquet BEC loaded in
a shaken 1D lattice. For this case, the boson scattering
rate in Eq.(10) can be expressed as :

dN

dt
=

2π

~

g2

4

N2

Ll2⊥

1

ERa3
Γ (12)

where Γ is the adimensional scattering rate, L is the
linear system size and l⊥ =

√

~/(mΩ). The detailed
derivation and the expression for Γ are given in Ap-
pendix B. Γ depends on the lattice depth, shaking
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FIG. 4. (Color Online) Adimensional scattering rate Γ as
a function of the forcing amplitude, F0 in the limit of weak
confinement into a 1D lattice [Fig. 1(a)]. Blue, Dotted :
~Ω/ER = 0.04, Red, Dashed : ~Ω/ER = 0.08, Black, Solid:
Analytic result from Ref.[61].

frequency, shaking force and transverse confinement. It
does not depend on the scattering length or the density.

Fig. 4 shows Γ vs F0 for weak transverse confinement
(~Ω/ER = 0.04 and0.08). For small F0, Γ rises quadrat-
ically and is roughly independent of Ω. For large F0, a
series of resonances are visible.The lifetime of the con-
densate is given by :

τ =
N

dN/dt
=

mLl2⊥a

8ha2sNΓ
(13)

Taking typical experimental parameters from the ex-
periment in ref.[15], m = 133 amu, L = 30000 nm,
l⊥ = 1000 nm as = 1.5 nm, N = 30, 000 and Γ = 0.01,
we get τ ∼ 1 s.

To better understand the structure of resonances
in Fig. 4, we plot Γ on a log scale as a function of
the transverse confinement frequency, Ω in Fig. 5.
The set of vertical lines are given by the formula

~Ω
(a)
n = E12/(2n) and ~Ω

(b)
n = E22/(2n), where

E12 = ǫ
(1)
π + ǫ

(2)
−π − 2ǫ

(1)
0 and E22 = ǫ

(2)
π + ǫ

(2)
−π − 2ǫ

(1)
0 :

these are related to the bandwidths of the two bands.
These energy values, E12 and E22 correspond to the
maximum longitudinal energy transfer in two different
scattering channels and the resonance structure in Fig.
5 corresponds to the closing of scattering channels.
The factor of 2n corresponds to the spacing of parity
allowed states. This structure can be understood by
considering the energy and momentum conserving
scattering processes in Fig.(6). The density of states is
large when the final state has |ka| = π. This resonance
structure leads to special parameters where the BEC
would be particularly stable or unstable. These reso-
nances are a useful fingerprint of the loss mechanism
and can be used in an experiment to test our model
of interaction-driven instability. The dashed line in
Fig.5 corresponds to a lifetime of τ ≈ 10s (using the

FIG. 5. (Color Online) Logarithm of the adimensional scat-
tering rate, Γ in a 1D lattice [Fig. 1(a),(b)] as a function of
the transverse trapping frequency, Ω for a fixed value of the
forcing amplitude, F0 = Fc, where Fc is the amplitude where
the dispersion of the ground band is quartic near k = 0.

Red vertical lines denote resonances at Ω = Ω
(a)
n ,Ω

(b)
n corre-

sponding to the closing of scattering channels (see text).The
black dashed line shows the value of ln(Γ) for different val-
ues of the transverse confinement for which the BEC lifetime
is greater than 10 s (assuming the parameters quoted after
Eq.(13)).

FIG. 6. (Color Online) Schematic illustrating conservation
of energy and momentum in two-body collisions in a shaken
pancake lattice. Black dot denotes condensate in first band
at k = 0. Solid lines show first and second with no trans-
verse excitations. Arrows denote an energy and momentum
conserving collision. The resonances in Fig. 4,5 correspond
to the situation where the final states have |ka| = π

parameters below Eq.(13)). There is a large window
around ~Ω ∼ 1.1ER, where the lifetime exceeds 10
s. The BEC is completely stable against collisions
~Ω > 2.05ER. In Fig. 7, we show how the stability
boundary varies with drive frequency. In terms of the
dispersions of the two bands, the critical confinement is
given by :

~Ω = ǫ(2)π + ǫ
(2)
−π − 2ǫ

(1)
0 (14)
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FIG. 7. (Color Online) Stability phase diagram for a BEC in
a driven 1D lattice for a fixed value of the forcing amplitude,
F0 = Fc. Here ω−ω0 is the detuning of the shaking frequency
ω from the zero-momentum bandgap ω0.

FIG. 8. (Color Online) Adimensional scattering rate Γ as
a function of the forcing amplitude, F0 in the limit of weak
confinement (~Ω = 0.08ER) for a 2D lattice [Fig. 1(c)]

For larger Ω, energy and momentum can’t be conserved
in 2-body collisions.

B. Two Dimensional Shaken Lattice

In this section, we explore the stability of a Bose-
Einstein condensate loaded in a two-dimensional optical
lattice. The stability analysis is very similar to that of
the shaken 1D lattice. The scattering rate of bosons can
be written down as :

dN

dt
=

2π

~

g2

4

N2

LyLzl⊥

1

ERa3
Γ (15)

where Γ is the adimensional scattering rate and Lz

and Ly denotes the linear system size in the z and y
directions. The detailed derivation and the expression
for Γ are given in Appendix B.

FIG. 9. (Color Online) Logarithm of the adimensional scat-
tering rate Γ in a 2D lattice as a function of the transverse
confinement, Ω for a fixed value of the forcing amplitude,
F0 = Fc. The black dashed line shows the value of ln(Γ) for
different values of the transverse confinement for which the
BEC lifetime is greater than 10 s (assuming the parameters
quoted after Eq.(16)).

We show Γ for a relatively weak value of transverse
confinement (~Ω/ER = 0.08) in Fig. 8. We see that
the adimensional scattering rate, Γ, is higher for the
shaken two-dimensional square lattice when compared
to the one-dimensional lattice.

The lifetime of the condensate is given by :

τ =
N

dN/dt
=
mLyLzl⊥a

8ha2sNΓ
(16)

Now, taking typical experimental parameters from the
experiment in ref.[15], m = 133 amu, Ly = 30000 nm,
Lz = 30000 nm, l⊥ = 1000 nm as = 1.5 nm, N = 30, 000
and Γ = 0.4, we get τ ∼ 0.73 s.

The scatter of points in Fig. 8 is related to the
resonances. Again, these can be explored by fixing
F0 to some value (here, Fc) and then plotting the
scattering rate, Γ as a function of the transverse
confinement, Ω as shown in Fig. 9. The black dashed
line again corresponds to a lifetime of 10 s. There
are specific value of Ω at which the scattering rate
drops significantly. These values of Ω are shown
as vertical lines in Fig. 9 and correspond to ~Ω =
(E12 + E22)/(2n), (E12 + E12)/(2n), (E22 + E22)/(2n).
As in the 1D case, these frequencies correspond to the
closing of scattering channels. There is also structure
related to the van Hove singularities in the density
of states, but for clarity, we do not mark them with
vertical lines. Beyond a transverse confinement of 1.4
ER, the BEC will almost always have a lifetime τ > 10s.

Due to the separability of the Hamiltonian, the
critical transverse confinement for the 2D square lattice
is exactly twice that of the one-dimensional lattice, so
the stability phase diagram is readily inferred from Fig.7
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IV. CONCLUSION

In this paper we studied the effect of transverse
confinement on the stability of a Floquet BEC for both
a shaken 1D lattice and a shaken 2D square lattice.
We obtained scattering rates as well as the stability
phase diagrams for both systems. The scattering rate
shows a resonant structure and fine tuning parameters
can drastically reduce the loss rate. This structure
arises from the opening and closing of loss channels
corresponding to the quantized transverse modes. It
provides a fingerprint of the loss mechanism and could
be a valuable tool for minimizing loss. We find a
critical value of transverse confinement, beyond which
there are no allowed 2-body scattering processes which
can deplete the condensate. Well before this point
however, the scattering rate drops to extremely small
values, making the BEC stable for the time-scales of
the experiment.

The loss mechanism that we study has another dis-
tinct signature - namely that energy is converted from
the time-dependent potential into transverse motion of
the atoms. This transverse motion can be directly
probed in time-of-flight experiments.
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Appendix A: Derivation of the 1D Hamiltonian

In a tight-binding prescription, the single-particle
Hamiltonian describing the system in the frame co-
moving with the lattice can be written as H0(t):

H0(t) =

∫

d2r⊥
∑

ij

(

−t(1)ij a
†
iaj + t

(2)
ij b

†
ibj + h.c.

)

+
∑

j

F (t)
(

zj

(

a†jaj + b†jbj

)

+ χja
†
jbj + χ∗

jb
†
jaj

)

+
~
2

2m

(

∇⊥a
†
j∇⊥aj +∇⊥b

†
j∇⊥bj

)

+ mΩ2(x2 + y2)
(

a†jaj + b†jbj

)

(A1)

(A2)

where,

χj =

∫

dz zw∗
1(z − zj)w2(z − zj)

t
(1)
ij =

∫

dz w∗
1(z − zi)

(−~
2

2m

d2

dz2
+ V (z)

)

w∗
1(z − zj)

t
(2)
ij =

∫

dz w∗
2(z − zi)

(−~
2

2m

d2

dx2
+ V (z)

)

w∗
2(z − zj)

F (t) = F0 cos(ωt) (A3)

Here, wi is the Wannier function for the ith band. It
should be noted that χj is independent of j and so
we can call it χ. The operators aj and bj annihilate
particles in the two bands. If necessary more bands can
be included.

Performing a basis rotation : |ψ〉 → Uc(t)|ψ〉 where

Uc(t) = exp



− i

~

∫ t

0

∑

j

zjF0 cos(ωt)(a
†
jaj + b†jbj)



 ,

(A4)
we transform the Hamiltonian as:

H ′
0(t) = UcH0(t)U

−1
c − i~Uc∂tU

−1
c

=
∑

nx,ny

Hn (A5)

with

Hn =
∑

ij

(

−J (1)
ij (t)an†i anj + J

(2)
ij (t)bn†i bnj + h.c.

)

+
∑

j

F cos(ωt)
(

χan†j bnj + χ∗bn†j anj

)

+
∑

n

~Ω(nx + ny + 1)
(

an†j anj + bn†j bnj

)

=
∑

k

∑

m

cos(mka)
(

−J (1)
m (t)an†k ank − J (2)

m (t)bn†k bnk

)

+
∑

k

F0 cos(ωt)
(

χan†k bnk + χ∗bn†k ank

)

+
∑

n

~Ω(nx + ny + 1)
(

an†k ank + bn†k bnk

)

(A6)

where,

Jσ
ij(t) = tσij exp(−iF0

sin(ωt)

~ω
(zi − zj))

= tσij exp(−iF0
sin(ωt)

~ω
a(i− j)), (A7)

a = λL/2 is the lattice spacing and χ = χ∗ for a
suitable choice of phase for ak and bk. We use n as a
shorthand for denoting {nx, ny}.
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In the limit of F0a/(~ω) ≪ 1, Jσ
ij(t) = tσij . Hence, we

can write down the Hamiltonian as :

Hsp =
∑

n,k

ǫ
(1)
nka

n†
k ank + ǫ

(2)
nk b

n†
k bnk

+ F0 cos(ωt)
(

χan†k bnk + χ∗bn†k ank

)

(A8)

where,

ǫ
(1)
nk =

∑

k

∑

m

−t(1)m cos(mka) + ~Ω(nx + ny + 1)

ǫ
(2)
nk =

∑

k

∑

m

t(2)m cos(mka) + ~Ω(nx + ny + 1)

(A9)

Appendix B: Derivation of the scattering rate

1. 1D Lattice

For the case of the 1D optical lattice, the scattering
rate in Eq.(10) can be written down as

dN

dt
=

2π

~

g2

4
N2 L

2π

∑

na,nb

∫

dkΓna,nb

k δ(ǫf − ǫi) (B1)

where

Γna,nb

k =

∣

∣

∣

∣

∣

Ina,nb
x Ina,nb

y 〈ψf |
∫

dkΨ†
k0−kΨ

†
k0+kΨk0

Ψk0
|ψi〉

Ll2⊥

∣

∣

∣

∣

∣

2

and

Ina,nb
x =

∫

dxφ(n
x
a)(x)φ(n

x
b )(x)φ(0)(x)φ(0)(x) (B2)

with na(nb) = {nx
a, n

y
a}({nx

b , n
y
b}), φ(n)(x) =

Hn(x) exp(−x2/2), Hn(x) being the Hermite polyno-
mial of order n. An important consequence of the form
of B2 is that Ina,nb

x = 0 unless nx
a and nx

b (as well as ny
a

and ny
b ) have the same parity. Finally, Eq.(B1) can be

simplified to write

dN

dt
=

2π

~

g2

4

N2

Ll2⊥

1

ERa3
Γ (B3)

with

Γ =
L2l2⊥ERa

3

2π

∑

na,nb

∫

dkΓna,nb

k δ(ǫf − ǫi)

This is Eq.(12) in the main text.

2. 2D Square Lattice

For the case of the 2D square lattice, the scattering
rate in Eq.(10) can be written down as

dN

dt
=

2π

~

g2

4
N2LyLz

(2π)2

∑

na,nb

∫

d2kΓna,nb

k
δ(ǫf−ǫi) (B4)

where

Γna,nb

k
=

∣

∣

∣

∣

∣

Ina,nb〈ψf |
∫

d2kΨ†
k0−k

Ψ†
k0+k

Ψk0
Ψk0

|ψi〉
LyLzl⊥

∣

∣

∣

∣

∣

2

and

Ina,nb =

∫

dxφ(na)(x)φ(nb)(x)φ(0)(x)φ(0)(x) (B5)

with l⊥ =
√

~/(mΩ) just as in the case of the 1D shaken
lattice. An important consequence of the form of B5 is
that Ina,nb is 0 unless na and nb have the same priority.
Eqn.(B4) simplifies to give :

dN

dt
=

2π

~

g2

4

N2

LyLzl⊥

1

ERa3
Γ (B6)

with

Γ =
L2
yL

2
zl⊥ERa

3

(2π)2

∑

na,nb

∫

d2kΓna,nb

k
δ(ǫf − ǫi)

This is Eq.(15) in the main text.
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[49] A. G. Grushin, Á. Gómez-León and T. Neupert Phys.
Rev. Lett. 112, 156801 (2014).

[50] P. Titum, E. Berg, M. S. Rudner, G. Refael, and Netanel
H. Lindner arXiv:1506.00650

[51] L. D’Alessio and M. Rigol, Nature Commun. 6, 8336
(2015)
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