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Abstract

Background: Copy number variations play a significant role in the aetiology of developmental disabilities including

non-syndromic intellectual disability and autism.

Case presentation: We describe a 19-year old patient with intellectual disability and autism for whom chromosomal
microarray (CMA) analysis showed the unusual finding of two de novo microdeletions in cis position on chromosome
6416.1916.2 and 6416.3. The two deletions span 10 genes, including FBXL4, POU3F2, PRDM13, CCNC, COQ3 and GRIK2.
We compared phenotypes of patients with similar deletions and looked at the involvement of the genes in neuronal
networks in order to determine the pathogenicity of our patient’s deletions.

Conclusions: We suggest that both deletions on 6q are causing his disease phenotype since they harbour several
genes which are implicated in pathways of neuronal development and function. Further studies regarding the
interaction between PRDM13 and GRIK2 specifically may be interesting.
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Background
Copy number variations (CNV) play a significant role in
the aetiology of developmental disabilities including
non-syndromic intellectual impairment and/or autism
[1-3], accounting for about 10-20% of non-syndromic
patients [1, 4, 5]. In addition, mutations in numerous
genes have been linked to the aetiology of intellectual
disability (ID) [1] and autism spectrum disorders (ASD).
Reduced penetrance and variable expressivity of CNVs
and mutations add to the complexity of interpretation of
causality. Therefore, although known to be highly herit-
able, the aetiology of ASD is still poorly understood with
no single candidate gene accounting for a majority of
ASD susceptibility [6—8]. Interpretation of the clinical
significance of CNVs and evaluation of their contribu-
tion to the phenotype remains challenging, although
CMAs are now widely used for diagnostic purposes.

We report on a patient with global developmental
delay/intellectual disability (DD/ID) and autism for
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whom CMA analysis revealed the unusual finding of two
microdeletions on chromosome 6q. Familial segregation
analysis confirmed de novo events and cis-configuration
of both deletions. Phenotype-genotype correlations of all
genes within the deletions allowed to determine a likely
pathogenic contribution of both deletions. Genes within
both deletions are involved in ASD pathways and likely
represent a contiguous gene deletion syndrome.

Case presentation

Our patient, which was last seen at 19 years of age, was
the second of three children of healthy non- consan-
guineous Caucasian parents. The family history was
unremarkable.

He was born at term after an uneventful pregnancy.
Birth measurements were all above the 90th centiles
with weight of 4750 g (>P 90), length of 55 cm (>P90)
and occipitofrontal circumference (OFC) of 37 cm (>P
90). Neonatal and infancy periods were unremarkable.
The boy said his first words at 12 months and walked
unsupportedly at 15 months of age. At age two, macro-
cephaly (above the 97th centiles for OFC) and stagnation
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of expressive speech as well as stereotypic behaviour and
missing eye contact were noted.

At 6 Y%years the boy was diagnosed with infantile
autism and severe intellectual disability. The results
of the autism diagnostic observation schedule (ADOS)
were above the cut-off for autism. In the Vineland
adaptive behaviour scale he showed a severe develop-
mental delay (developmental quotient 30); his social
behaviour and communication behaviour met the
level of a 1 Y%year old, and everyday life skills levels
were comparable with a 2 %year old child. The boy
had a very short attention span, showed stereotypic
behaviour, hardly no functional or symbolic playing,
almost no eye contact and minimal adaptive social
skills. Expressive and receptive language skills were
limited to simple orders.

Further regular follow-up exams at different ages
confirmed the clinical findings. Except for a mild
hypotonia neurological exams were in normal range.
The patient developed dog phobia. No aggressivity or
autoaggressivity was noted. Access to specialized
school education and therapies as well as a stimulat-
ing familial environment allowed a certain independ-
ence in these surroundings. The patient today is able
to ride a bicycle and swim. He still needs help with
body hygiene.

At the last clinical exam at age 19 dysmorphic signs
were a mild dolichocephalus, a low set hairline on the
neck, a broad face, hypertelorism (IPD > 97 P), medial
sparse eyebrows, bilateral prominent anthelices, poster-
iorly rotated ears, a short wide nose, full lips, widely
spaced teeth, prominent upper incisors, long hands
(hand length >97 P), hyperextensible joints and a slight
funnel chest. Measurements taken for OFC, weight and
length were above the 97™ centile. The parents and sib-
lings physical parameters are the following: mother
167 cm, 64 kg (BMI 22.9 kg/m?), father 187 cm, 98 kg
(BMI 28 kg/m*” sister 1 and 2 174 cm, 58 kg (BMI
19.2 kg/m?) and 179 cm, 65 kg (BMI 20.3 kg/m?),
respectively.

Apart from frequent middle ear infections the pa-
tient was in good health. Extensive investigations in
childhood which included brain magnetic resonance
imaging (MRI), cranial computed tomography (CT),
electroencephalogram and an abdominal ultrasound
all proved unobtrusive. An X-ray of the hand per-
formed at age 10 showed a slightly retarded bone
age. Conventional chromosome analysis of lympho-
cytes (GTG-banding, 450 band level) did not show
any numerical or structural anomalies. Specific test-
ing for Fragile — X syndrome, Prader-Willi-, Angel-
man- and Beckwith-Wiedemann syndromes and for
a 22ql3 deletion did not show any abnormal
results.
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Methods and results

Chromosomal microarray

Array genomic hybridization of DNA from peripheral
blood lymphocytes was performed in the patient and
both his parents, using the NimbleGen WG HGI18
Tiling 385 K CGHv.2.0 array. The tiling array version
2.0 contains 385,000 probes with a probe spacing of
6000 bp. Labelling and hybridization of test and refer-
ence DNA was performed according to manufacturer’s
protocols.

The analysis identified two deletions in 6q separated
by a segment of 2 Mb. The proximal deletion (Deletion
Nr.1) (Fig. 1) is an interstitial deletion localized in the
chromosomal region 6q16.1q16.2, spanning ~1.4 Mb
(chr6: 98,693,279-100,083,279 bp, hgl9 build) and
encompassing nine protein coding genes of which five
are listed in the Online Mendelian Inheritance in Man
(OMIM) database (Table 2).

The distal deletion (Deletion Nr.2), (Fig. 2) also
an interstitial deletion, spans 760 kb and was
assigned to the 6ql6.3 chromosomal region (chré:
102,113,307-102,873,307 bp, hgl9 build). Its proximal
breakpoint disrupts the GRIK2 gene in exon 3; cod-
ing exons 4-16 are therefore deleted. Results are
shown in Fig. 3.

Fluorescence in situ hybridization

To further investigate the structural anomaly
fluorescence-in-situ-hybridization (FISH) using the
BlueGnome probes RP11-758C21 for 6ql6.2 (green)
and RP11-487 F5 for 6q16.3 (red) was done in the pa-
tient and his parents. The deletions were confirmed to
be in cis-position in the patient. FISH analysis of the
parents showed both loci to be present in correct pos-
ition and orientation which proved a de novo origin of
the deletions in the patient. There was no evidence for
a complex structural rearrangement in the parents.
FISH results are shown in Fig. 4.

Sanger sequencing of GRIK2

Because bi-allelic mutations in GRIK2 have been shown
to cause autosomal recessive intellectual disability [9],
we sequenced all 16 exons of the GRIK2 gene including
exon-intron boundaries to confirm or rule out a com-
pound heterozygous mutation on the second allele in
GRIK2. No mutation was identified. Primer sequences
can be obtained upon request.

Genotype-phenotype correlations

We searched current databases, specifically Decipher
[10], ClinGen [11] and DGV [12] for overlapping
copy number variations in patients or healthy individ-
uals. Results of the overlapping pathogenic deletions
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Fig. 1 UCSC genome browser, chromosomal region 6q16.1g16.3. The black bar marked “Patient del. Nr. 1" shows the proximal deletion of our
patient, the other black bars patients with overlapping deletions as described in Table 1. RefSeq genes are depicted in blue

are shown in Table 1. We performed an extended lit-
erature and database search on all genes included in
the deleted regions, their functions and related phe-
notypes using PubMed [13] and OMIM [14]. Results
are summarized in Table 2.

Discussion

Chromosomal microarray is now widely used as a diag-
nostic tool to elucidate the aetiology of developmental
delay, intellectual disability and autism spectrum disor-
ders. The genetic heterogeneity, reduced penetrance and
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Fig. 2 UCSC genome browser, chromosomal region 6q16.2q16.3. The black bar marked ,Patient del. Nr.2" shows the distal deletion of our patient,
other black bars patients with overlapping or flanking deletions as described in Table 1. RefSeq genes are depicted in blue
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Fig. 3 Array plot of chromosome 6q. Deletion Nr. 1 is on 6g16.1g16.2 (chr6:98693279-100083279 bp); Deletion Nr. 2 on 6g16.3 (chré:102113307-

variable expressivity as well as suggested polygenic
versus monogenic inheritance often renders the inter-
pretation of the causal contribution of single rare CNVs
to these phenotypes difficult. Here, we report on a now
adult patient with global developmental delay/intellec-
tual disability and autism for which CMA analysis
has revealed the unusual finding of two interstitial
de novo microdeletions in cis-position on chromo-
some 6q. Both deletions, spanning ~1.39 Mb and
~0.7 Mb respectively, separated by a genomic seg-
ment of ~2 Mb, have not been described before, but
phenotype-genotype correlations with overlapping

deletions mentioned in the medical literature and da-
tabases as well as haploinsufficiency of genes part of
neuronal networks encompassed in both deletions,
likely suggest their pathogenic contribution. Notably,
Kasher et al. reported on several small heterozygous
deletions in 6ql6.1 presenting with variable develop-
mental delay, intellectual disability and susceptibility
to obesity. In one of their patients the deletion of
1.04 Mb includes the same nine genes as does the de-
letion Nr. 1 in the patient we describe [15]. The au-
thors suggest a common critical region in their
patients encompassing POU3F2.
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Fig. 4 Fluorescence- in-situ-hybridization (FISH) on metaphase spreads of the patient and his parents’ chromosomes 6. We used the locus-specific
Bluegnome probes RP11-758C21 for 6q16.2 (green), targeting deletion Nr 1, and RP11-487 F5 for 6q16.3 (red), targeting deletion nr.2, and the
Abbott centromere specific probe cep 6 (agua) for control. a Patient, b Patient’s father, ¢ Patient's mother: Both loci are present in correct
orientation in the parent’s FISH analysis and proved a de novo origin of the deletions in the patient. Deletions in the patient are in cis position
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Table 1 Overlapping deletions
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Decipher ID Variant Interval (Mb) Phenotypes
Overlapping deletion Nr. 1
Our patient loss: 1.39 posterior rotated ears, macrocephaly, autism,
6:98693279-100083279 intellectual disability, speech impairment, hypertelorism,
264111 loss: 2.89 behavioural/psychiatric abnormality, mild intellectual
6:98966910-101858361 disability, obesity [18]
291784 loss: 343 abnormality of body height, abnormality of the ear,
6:96200844-99629252 abnormality of the nasal bridge, behavioural/psychiatric
abnormality, cognitive impairment, high forehead,
macrocephaly, neurological speech impairment,
overgrowth [18]
Variant Call ID loss: 1.04 abnormality of the heart
nssv/07162 6:99218523-100260987 global developmental delay
(nsv533449)
dbVvar ID loss: 2.59 global developmental delay
nsv530906 6:99116405-101714826
(Variant Call ID: nssv578123)
292356 loss: 137 development delay, learning disabilities, behavioural
6:98905933-100642867 disorders, brachycephaly, triangular face shape, unilateral
cryptorchism, strabismus [18]
265018 loss: 1 neonatal hypotonia, mild motor delay, moderate learning
6:99218535-100260996 disability, speech delay, very severe obesity (BMI 47),
hyperphagia, behavioural problems [14]
273148 loss: 149 severe intellectual disability, lipoma of the CNS, round
6:99156238-100644046 face, congenital muscular torticollis, plagiocephaly,
thoracolumbar scoliosis
Overlapping deletion Nr.2
Qur patient loss: 0.7 posterior rotated ears, macrocephaly, autism, intellectual
6:102113307-102873307 disability, speech impairment, hypertolerism,
dbvar ID loss: 06 global developmental delay
nsv529294 6:102474505-103122745
275474 loss: 22 perinatal hypotonia, developmental delay, learning
6:100382250-102582366 disabilities, behavioural disorders, hyperphagia, obesity,
synophris, hirsutism, small mouth [18]
284729 loss: 0.7 autistic behaviour
6:102266317-102931873
Flanking deletion Nr. 2
291845 loss: 0.1 autism, moderate global developmental delay

6:101962579-102060754

Deletions spanning <3.5 Mb with a specified phenotype overlapping or flanking with the deletion in our patient as mentioned in the Decipher
(decipher.sanger.ac.uk/browser) and ClinGen (www.clinicalgenome.org/data-sharing/) databases as well as referenced in the medical literature

POUS3F2/Brn2 belongs to a family of transcription
factors that share a highly homologous POU domain
and is highly expressed in the central nervous system
[16], especially the human hypothalamus and hippocam-
pus [15]. POU3F2 upregulates proneuronal genes [16],
promotes neurogenesis in the neocortex and is required
for cortical neural migration [17]. Kasher et al. showed
that in zebrafish, POU3F2 functions as a downstream
target of SIMI in the leptin — melanocortin — SIM1
pathway and plays a role in the regulation of oxytocin
expression in the hypothalamus. They suggest POU3F2
being the likely causal mechanism affecting hypothal-
amic functions such as the control of food intake and

social behaviour or learning, compatible with the human
phenotypes in 6q16.1 deletions [15].

Previously, Bonaglia et al. [18], Griswold et al. [5], El
Khattabi el al. [19] and Le Caignec et al. [20] reported
on patients with mostly larger heterozygous deletions in
6q16 (in a range between 1.7 and 14 Mb) which do not
allow specific phenotype-genotype correlations. How-
ever, their patients, the patients summarized in Table 1
and our patient share phenotypic findings such as hypo-
tonia, intellectual disability, developmental delay as well
as autistic features or behavioural anomalies reminiscent
of ASD. Macrocephaly and tall stature and/or obesity
are shared physical findings in some patients compatible
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Table 2 Involved genes
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Chromosome  Gene/OMIM
number

Patient phenotype

Gene function

Resource Mendelian inheritance

Deletion Nr. 1

6 FBXL4/605654  mtDNA depletion syndrome

Coding for a member of the F-Box family

[31-33] recessive

(infantile encephalomyopathic (targeting substrates for degradation of

type)

cellular regulatory proteins)

Maintenance of mtDNA
%H| score 10.28

6 POU3F2/600494 None described

POU domain transcription factor

[15-17, 34] Unknown

predominantly expressed in the CNS.
Likely playing an important role in
mammalian neurogenesis and neuronal
migration in the neocortex, positive
regulator of Schwann cell development,
downstream target of SIM1

%HI score 15.18

North Carolina Macular
Dystrophy (NCMD), no
other neurologic
phenotype described

6 PRDM13/616741

Prdm transcription factor, neural specific
direct target of Ptf1a, controlling balance
of inhibitory and excitatory neurons in
somatosensory circuits during neuronal

dominant for NCMD,
otherwise unknown

[25, 35, 36]

development,

Required to produce the right number

of pax2+ neurons in the dorsal spinal cord
by repressing excitatory cell fate

%H| score 56.20

6 CCNC/123838 None described

6 COQ3/605196 None described

Member of the cyclin family,

Protein kinase in the RNA polymerase I
complex, cell cycle regulator

%HI score 2.44

Encodes an O-Methyltransferase, involved

[30, 371 Unknown, Protein
involved in
pathogenesis of
tumour development

and Alzheimer disease

[29, 38] Unknown

in two steps of Ubiquinone (Coenzyme
Q10) biosynthesis
%H| score 40.90

Deletion Nr. 2

6 GRIK2/138244 Intellectual disability;
ASD; behavioural
disorder, epilepsy,

dystonia

Encodes for the glutamate receptor 6,
excitatory neurotransmission in the brain
%HI score 2.34

[5,6,9 18,22, 39] recessive;

susceptibility gene

Deletion 1 of our patient encompasses 9 genes, including FBXL4, POU3F2, CCNC, USP45, PNISR, FAXC, TSTD3, COQ3 and PRDM13. Deletion 2 partially encompasses
GRIK2 (details see text). In this table only genes are listed with a known function described in OMIM (www.omim.org) or PubMed (http://www.ncbi.nIm.nih.gov/
pubmed). Haploinsufficiency score (%HI) is mentioned as given in the Decipher database. HI score: predicted probability of exhibiting haploinsufficiency. High

ranks 0-10% more likely to exhibit haploinsufficiency, low ranks 90-100% [40]

with a contribution of the genomic region to growth
regulation. El Khattabi et al. suggested an involvement
of the MCHR2 and SIM1I genes in behavioural disorders
and SIMI in obesity [19]. Both genes are not located
within the deleted region of our patient. The normal
BMI and feeding habits in our patient are in keeping
with the finding of an incomplete obesity phenotype in
the cohort of El Khattabi et al.

Of further interest, each of the two deletions in our
patient span genes which have been described to play a
significant role in the pathogenesis of autism [5, 6, 18,
21] and intellectual disability [22] due to their common
roles in ASD associated pathways (Table 2). Particularly,
the genes GRIK2, disrupted and partially deleted by
deletion 2 in our patient, and PRDM13, encompassed by
deletion 1, are functionally linked.

Barbon and co-workers showed experimental evidence
that several different splicing variants exist, and splicing
mechanisms lead to truncated subunit isoforms suggest-
ing a complex GluR system [23]. Zhawar et al. found
GluR6 receptor subunits to be differentially expressed
with expression of the GIuR6A variant specifically in
brain [24]. Studies on mice lacking the GluK2 subunit of
kainate receptors, for which GRIK2 encodes, observed
reduced social interaction and altered executive func-
tions. The homozygous knockout of the GRIK2 gene
produces a lower capacity for pattern separation and an
increased propensity for pattern completion [8]. Patients
with homozygous mutations in GRIK2 present with auto-
somal recessive intellectual disability [22]. In addition,
studies on CNVs in ASD phenotypes suggest a
contributory role of GRIK2 haploinsufficiency in ASD
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[5, 18, 20, 21]. The small size of the deletion reported
by Griswold et al. supports the hypothesis of GRIK2
being a candidate gene for ASD.

GRIK?2 is linked to the expression of PRDM13, a gene
involved in neuronal development. PRDMI3, a tran-
scription factor, is a critical component in neuronal di-
versity and balance of inhibitory and exhibitory neurons
in the dorsal spinal cord [25]. Most interestingly, cells of
the inhibitory neuronal lineage in the dorsal spinal cord
express excitatory receptor genes/subunits, among them
GRIK?2, indicating an interaction between excitatory and
inhibitory neurons [26] (Fig. 5).

Based on these findings haploinsufficiency of all three
genes POU3F2, GRIK2 and PRDM1I3 indicate a contri-
bution of both deletions to our patient’s phenotype and
suggest their functional interaction as part of a contigu-
ous gene deletion syndrome. However, the specific con-
tribution of PRDM13 to human disease phenotypes
remains to be further elucidated.

Griswold et al. identified several novel candidate
genes in molecular pathways or genetic networks im-
plicated in autism aetiology in a large genome-wide
SNP array in a European ancestry case—control data
set [5]. ASD candidate genes and their functional in-
teractions are tightly linked with general dysregulation
of gene expression, disturbances of neuronal matur-
ation and pattering and may be key in conferring
susceptibility to autism spectrum conditions [27].
Multi-dimensional co-expression analysis of ASD can-
didate genes in the normal developing human brain
suggests the heterogeneous set of ASD candidates to
share transcriptional networks related to synapse

formation and elimination, protein turnover, and mito-
chondrial function [28]. The majority of genes encom-
passed in deletion Nr.1 (Table 2), in particular FBXL4,
CCNC, POUS3F2, PRDM13 and COQ3, can be considered
part of these networks [16, 17, 25, 26, 29-31].

Conclusions

Recent research into gene interaction and networks in
autism spectrum disorders and intellectual disability sug-
gest that phenotype-related gene products are integral to
neuronal development. It often remains difficult to draw
firm conclusions as to the pathogenic contribution of
each single CNV or mutation of these genes. However,
we suggest that the two neighbouring deletions on 6q in
our patient are likely to cause his ID/ASD phenotype
since they harbour several genes implicated in different
linked pathways of neuronal development and function.
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