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ON A BOUNDARY VALUE PROBLEM FOR A MIXED TYPE

FRACTIONAL DIFFERENTIAL EQUATIONS WITH

PARAMETERS

TURSUN K. YULDASHEV AND BAKHTIYOR J. KADIRKULOV

Abstract. In this paper, we consider a boundary value problem for
a mixed type partial differential equation with Hilfer operator of frac-
tional integro-differentiation in a positive rectangular domain and with
spectral parameter in a negative rectangular domain. The mixed differ-
ential equation depends from another positive small parameter in mixed
derivatives. The considering mixed type differential equation brings to
a spectral problem for a second order differential equation with respect
to the second variable. Regarding the first variable, this equation is an
ordinary fractional differential equation in the positive part of the con-
sidering segment, and is a second-order ordinary differential equation
with spectral parameter in the negative part of this segment. Using the
spectral method of separation of variables, the solution of the boundary
value problem is constructed in the form of a Fourier series. Theorems
on the existence and uniqueness of the problem are proved for regular
values of the spectral parameter. It is proved the stability of solution
with respect to boundary function and with respect to small positive
parameter given in mixed derivatives. For irregular values of the spec-
tral parameter, an infinite number of solutions in the form of a Fourier
series are constructed.

1. Problem statement

In a rectangular domain Ω = {(t, x) : −a < t < b, 0 < x < l} we consider the
fractional partial differential equation of mixed type

0 =


(
D α, γ − ν D α, γ ∂2

∂ x2
− ∂2

∂ x2

)
U (t, x), (t, x) ∈ Ω 1,(

∂ 2

∂ t 2
− ν ∂ 4

∂ t 2 ∂ x 2 − ω2 ∂ 2

∂ x 2

)
U (t, x), (t, x) ∈ Ω 2,

(1.1)

where Ω 1 = {(t, x) : 0 < t < b, 0 < x < l}, Ω 2 = {(t, x) : −a < t < 0, 0 < x <
l}, ν is positive parameter, ω is positive spectral parameter, a, b are positive real
numbers,

Dα, γ = Jγ−α0+

d

dt
J1−γ

0+ , 0 < α ≤ γ ≤ 1
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is Hilfer operator and

J α0+ϕ (t) =
1

Γ (α)

t∫
0

ϕ (τ) d τ

(t− τ) 1−α , α > 0

is Riemann–Liouville integral operator.
Problem T ν, ω. It is required to find a function U (t, x), which belongs to the

class

t1−γ
∂kU

∂ xk
∈ C(Ω1),

∂kU

∂ xk
∈ C(Ω2), Dα,γU ∈ C(Ω1), Utt, Uxx ∈ C(Ω1∪Ω2), (1.2)

k = 0, 2; satisfies equation (1.1) in the domain Ω 1 ∪ Ω 2, boundary value condi-
tions

U (t, x) |x=0 =
∂ 2

∂ x 2
U (t, x) |x=l = 0, t 6= 0, (1.3)

U (−a, x) = U (b, x) + ϕ (x), 0 ≤ x ≤ l (1.4)

and gluing conditions

lim
t→+0

J 1−γ
0+ U (t, x) = lim

t→−0
U (t, x),

lim
t→+0

J 1−α
0+

d
d t J

1−γ
0+ U (t, x) = lim

t→−0

d
d t U (t, x),

(1.5)

where ϕ (x) is given sufficiently smooth function.
For γ = α and γ = 1 the Hilfer operator has the forms Dα, 0 = RLD

α
0+ and

D α, 1 = CD
α
0+ . Thus, the generalized integro-differentiation operator Dα,γ is

a continuous interpolation of the well-known fractional order differentiation op-
erators of Riemann–Liouville and Gerasimov–Caputo, which describe diffusion
processes [7, vol. 1, 47–85]. The construction of various models of theoretical
physics problems using fractional calculus is described in [7, vol. 4, 5], [6, 14].
A specific physical and engineering interpretation of the generalized fractional
operator D α, γ is given in [7, vol. 6–8], [10, 11, 13]. In [10], in particular, were
provide results on the existence and representation of solution of initial value
problem for the ordinary linear fractional differential equation with generalized
Riemann–Liouville fractional derivatives and constant coefficients by the method
of operational calculus of Mikusinski type. In [8], the problem of source identifi-
cation was studied for the generalized diffusion equation with operator D α, γ . In
the work [2] the inverse problems are investigated for a generalized fourth-order
parabolic equation with this operator D α, γ .

Note that boundary value conditions of the type (1.3) take place in modeling
problems of the flow around a profile by a subsonic velocity stream with a su-
personic zone. Some nonlocal problems for ordinary differential equations were
studied in [1, 9]. Nonlocal boundary value problems for different type of partial
differential equations were studied in the works of many authors, in particular,
in [12, 15, 16, 17].

In our work, unlike mixed parabolic-hyperbolic equations, the problem of small
denominators does not arise. In addition, in our solvability problem we impose
conditions that are two times weaker than in the case of parabolic-hyperbolic
equations. In this paper, we consider a self-adjoint boundary value problem
for a mixed type partial differential equation with Hilfer operator of fractional
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integro-differentiation. The spectral method of separation of variables is used
taking into account the features of the fractional integro-differentiation operator.
We study the solvability of the nonlocal boundary value problem (1.1)–(1.5) for
various values of the spectral parameter. We prove the stability of the solution
with respect to boundary function and with respect to parameter given in mixed
derivative. This work is a further development and generalization of the results
of [3, 4, 5].

2. Uniqueness of the solution of the problem T ν, ω

We seek solutions of the nonlocal boundary value problem T ν, ω in the form of
the product of two functions of different variables U (t, x) = u (t) · ϑ (x). Then
from equation (1.1) we arrive at the following presentations

D α, γ u (t)

u (t)
− ν ϑ

′′ (x)

ϑ (x)
· D

α, γ u (t)

u (t)
=
ϑ′′ (x)

ϑ (x)
, t > 0,

u′′(t)

T (t)
− ν ϑ

′′ (x)

ϑ (x)
· u
′′(t)

u (t)
= ω 2 ϑ

′′ (x)

ϑ (x)
, t < 0

or
ϑ′′ (x)

ϑ (x)
= −µ2, 0 < x < l,

D α, γ u (t)

u (t)
+ ν µ2 D

α, γ u (t)

u (t)
= −µ2, t > 0,

u′′ (t)

u (t)
+ ν µ2 u

′′ (t)

u (t)
= −µ 2ω 2 , t < 0,

where µ2 is constant of separation, 0 < µ. Hence, taking into account the bound-
ary conditions (1.3), obtain

ϑ′′ (x) + µ 2 ϑ′′ (x) = 0, ϑ (0) = ϑ (l), (2.1)

D α, γ u (t) + λ 2 (ν)u (t) = 0, 0 < t < b, (2.2)

u′′ (t) + λ 2 (ν)ω 2 u (t) = 0, −a < t < 0, (2.3)

where λ 2 (ν) = µ 2

1+ν µ 2 .

The spectral problem (2.1) is self-adjoint and in the space L 2 (0; l) has a com-
plete system of orthonormal eigenfunctions

ϑn (x) =

√
2

l
sin µn x, µn =

nπ

l
, n ∈ N.

Let U (t, x) be solution of the problem T ν, ω. We consider the following functions

un (t) =

√
2

l

l∫
0

U (t, x) sin µn x dx, −a < t < b. (2.4)

We show that functions (2.4) satisfy equations (2.2) and (2.3) in the corresponding
intervals. Applying the operator D α, γ with respect to t to both sides of equality
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(2.4) on 0 < t < b, differentiating (2.4) twice with respect to t on −a < t < 0,
taking into account equation (1.1), we obtain

D α, γ un (t) =

√
2

l

l∫
0

D α, γ U (t, x) sin µn x dx =

=

√
2

l

l∫
0

(ν D α, γ Uxx (t, x) + Uxx (t, x)) sin µn x dx, (2.5)

u′′n (t) =

√
2

l

l∫
0

U t t (t, x) sin µn x dx =

=

√
2

l

l∫
0

(
ν U t t x x (t, x) + ω 2Uxx (t, x)

)
sin µn x dx. (2.6)

Integrating twice in parts the integrals (2.5), (2.6), taking into account condi-
tions (1.3), we obtain the equations

D α, γ un (t) + λ 2
n (ν)un (t) = 0, t > 0, (2.7)

d 2

d t 2
un (t) + λ2

n (ν)ω 2 un (t) = 0, t < 0, (2.8)

where

λ 2
n (ν) =

µ 2
n

1 + ν µ 2
n

, µn =
nπ

l
, n ∈ N.

Differential equations (2.7) and (2.8) for λ = λn coincide with equations (2.2)
and (2.3), respectively. Further, taking into account conditions (1.5), from (2.4)
we obtain

lim
t→+0

J 1−γ
0+ un (t) =

√
2

l

l∫
0

lim
t→+0

J 1−γ
0+ U (t, x) sin µn x dx =

=

√
2

l

l∫
0

lim
t→−0

U (t , x) sin µn x dx = lim
t→−0

un (t), (2.9)

lim
t→+0

J 1−α
0+

d

d t
J 1−γ

0+ un (t) =

√
2

l

l∫
0

lim
t→+0

J 1−α
0+

d

d t
J 1−γ

0+ U (t, x) sin µn x dx =

=

√
2

l

l∫
0

lim
t→−0

d

d t
U (t , x) sin µn x dx = lim

t→−0

d

d t
un (t). (2.10)

Analogously we find from (1.4) that

un (−a) = un (b) + ϕn, (2.11)
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where

ϕn =

√
2

l

l∫
0

ϕ (x) sin µn x dx, n = 1, 2, ...

General form of solutions of the problem T ν, ω is

un (t) =

{
A 1n t

γ−1Eα, γ

(
−λ2

n (ν) tα
)
, t > 0,

A 2n sin λn (ν)ω t+A 3n cos λn (ν)ω t, t < 0,
(2.12)

where A i n are arbitrary constants, i = 1, 3, n = 1, 2, ...
Further, satisfying functions (2.12) to conditions (2.9)–(2.11), we obtain the

following systems of algebraic equations A 1n = A 3n, ω A 2n = −λn (ν)A 1n,
−A 2n sin λn (ν)ω a+A 3n cos λn (ν)ω a−
−A 1n b

γ−1Eα, γ

(
−λ2

n (ν) bα
)

= ϕni.
(2.13)

This system (2.13) has a unique solution

A 3n = A 1n =
ϕn

∆n(ω)
, A 2n = −λn (ν)

ω

ϕn
∆n(ω)

, (2.14)

if for all n ∈ N there holds the condition

∆n(ω) = λn(ν)ω sinλn(ν)ω a+ cosλn(ν)ω a− bγ−1Eα,γ
(
−λ2

n(ν)bα
)
6= 0. (2.15)

Substituting (2.14) into (2.12), we obtain the representation

un (t) =

{ ϕn

∆n (ω) t
γ−1Eα, γ

(
−λ2

n (ν) tα
)
, t > 0,

ϕn

∆n (ω)

(
cos λn (ν)ω t− λn (ν)

ω sin λn (ν)ω t
)
, t < 0.

(2.16)

We show the uniqueness of the solution of the problem T ν, ω. Suppose that
the condition (2.15) and ϕ (x) ≡ 0 are fulfilled. Then ϕn = 0 and from the
presentations (2.4) and (2.16) implies, that

l∫
0

t 1−γ U (t, x)ϑn (x) d x = 0, t ∈ [0; b], n = 1, 2, ...,

l∫
0

U (t, x)ϑn (x) d x = 0, t ∈ [−a; 0], n = 1, 2, ...

Taking into account the completeness of systems {ϑn (x)}∞n=1 in space L 2 (0; l),
we conclude that U (t, x) = 0 almost everywhere on the segment [0; l] for all t ∈
[−a; b]. Since t 1−γ U (t, x) ∈ C

(
Ω 1

)
, U (t, x) ∈ C

(
Ω 2

)
, then t 1−γU (t, x) ≡ 0

in the domain Ω. Therefore, the solution of problem T ν, ω is unique in the domain

Ω.
Thus, we have proved that the following theorem holds:

Theorem 2.1. Suppose that there exists a solution of the problem T ν, ω. Then
this solution is unique, if condition (2.15) is fulfilled for all n ∈ N.
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3. Existence of a solution of the problem T ν, ω

Now we consider the case, when condition (2.15) is violated. Let ∆m(ω) = 0
be for some ω, γ ∈ (0; 1) and n = m. Then the homogeneous problem T ν, ω
(ϕ (x) ≡ 0) has nontrivial solution

Vm (t, x) = υm(t)ϑm (x), (t, x) ∈ Ω, (3.1)

where

υm(t) =

{
t γ−1Eα, γ

(
−λ 2

m (ν) tα
)
, t > 0,

sin λm (ν)ω t+ cos λm (ν)ω t, t < 0.

From ∆n (ω) = 0 we come to the trigonometric equation√
1 + ω 2λ 2

n (ν) sin (λn (ν)ω a+ ρn)− b γ−1Eα, γ

(
−λ 2

n (ν) bα
)

= 0, (3.2)

where ρn = arcsin
(

1√
1+ω 2λ 2

n (ν)

)
. From this we obtain, that the quantity ∆n (ω)

vanishes at

ω =
1

λn (ν) a

[
(−1)k arcsin

bγ−1Eα, γ
(
−λ 2

n(ν) bα
)√

1 + ω 2 λ 2
n (ν)

+ πk − ρn

]
, k = 1, 2, ...

The set of positive solutions = of trigonometric equation (3.2) is called the
set of irregular values of the spectral parameter ω. The set of remaining values
of the spectral parameter ℵ = (0; ∞) \= is called the set of regular values of
the spectral parameter ω. For all regular values of the spectral parameter ω
the quantity ∆n (ω) is nonzero. So, for large n the values of ∆n (ω) can not
become quite small and there the problem of small denominators does not arise.
Therefore, for regular values of the spectral parameter ω the quantity ∆n (ω) is
separated from zero.

Indeed, from the relations λ 2
n (ν) = µ 2

n
1+ν µ 2

n
, µn = nπ

l we see that λ 2
n (ν)→ 1

ν

as n→∞. So, for regular values of the spectral parameter ω we have

lim
n→∞

∆n (ω) =
ω

ν
sin

ω

ν
a+ cos

ω

ν
a− b γ−1Eα, γ

(
−
(ω
ν

)2
bα
)
6= 0.

Lemma 3.1. Suppose that γ ∈ (0; 1], a, b are arbitrary positive real numbers,
ω ∈ ℵ is regular. Then for arbitrary n there exists a positive constant M0 such
that there holds the following estimate

|∆n (ω) | ≥M 0 > 0. (3.3)

Proof. From (3.2) for all n and a, b > 0 we derive

|∆n (ω) | ≥
∣∣∣±√1 + ω 2λ 2

n (ν) − bγ−1Eα, γ

(
−λ 2

n (ν) bα
) ∣∣∣ ≥

≥
∣∣ 1− b γ−1Eα, γ

(
−λ 2

n (ν) bα
) ∣∣ ≥ 1− b γ−1Eα, γ

(
−λ 2

n (ν) bα
)
.

We use the following properties of the Mittag–Leffler function [7, vol. 1, 269–
295]:

1) For all k > 0, α, γ ∈ (0; 1], α ≤ γ, t ≥ 0 the function tα−1Eα, γ (−k tα) is
complete monotonous and there holds

(−1)n
[
t γ−1Eα, γ (−k tα)

] (n) ≥ 0, n = 0, 1, 2, ... (3.4)
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2) For all α ∈ (0; 2), γ ∈ R and arg z = π there takes place the following
estimate

|Eα, γ (z) | ≤ M

1 + |z|
, (3.5)

where 0 < M = const does not depend from z.
Then, from (3.4) and (3.5) implies that there exists a number M 0 such that

1− bγ−1Eα, γ

(
−λ 2

n (ν) bα
)

= M0 > 0.

Consequently, for regular values of the spectral parameter ω ∈ ℵ there takes place
|∆n (ω) | ≥M 0 > 0. Lemma 3.1 is proved. �

By virtue of estimates (3.3) and (3.5), from (2.16) implies that the following
lemma holds.

Lemma 3.2. For regular values of the spectral parameter ω ∈ ℵ there holds

t 1−γ |un (t) | ≤ C 1 |ϕn | , t 1−γ |D α, γ un (t) | ≤ C 2 |ϕn | , t ∈ [0; b];

|un (t) | ≤ C 3 |ϕn | ,
∣∣∣∣ d un (t)

d t

∣∣∣∣ ≤ C 4 |ϕn | ,
∣∣∣∣ d 2un (t)

d t 2

∣∣∣∣ ≤ C 5 |ϕn | , t ∈ [−a; 0],

where C k, k = 1, 5 are positive constants.

By virtue of presentation (2.16), for regular values of the spectral parameter
ω we write the formal solution of the problem T ν, ω in the form of Fourier series

U (t, x) =
∞∑
n=1

ϕn
∆n (ω)

t γ−1Eα, γ

(
−λ2

n (ν) tα
)
ϑn (x), (t, x) ∈ Ω 1, (3.6)

U(t, x) =

∞∑
n=1

ϕn
∆n(ω)

[
cosλn(ν)ωt− λn(ν)

ω
sinλn(ν)ωt

]
ϑn(x), (t, x) ∈ Ω2. (3.7)

Now formally differentiating term-by-term the series (3.6) the required number
of times, we obtain the series

D α, γ U (t, x) =

∞∑
n=1

D α, γ un (t)ϑn (x), t > 0, (3.8)

∂ kU (t, x)

∂ xk
=
∞∑
n=1

un(t)
d kϑn(x)

d x k
= (−1)k+1

∞∑
n=1

un(t)µ knϑn(x), t > 0, (3.9)

∂ 2U (t, x)

∂ t 2
=

∞∑
n=1

d 2un (t)

d t 2
ϑn (x), t < 0, (3.10)

∂ kU (t, x)

∂ x k
=

∞∑
n=1

un(t)
d kϑn(x)

d x k
= (−1)k+1

∞∑
n=1

un(t)µ knϑn(x), t < 0, (3.11)

k = 1, 2.
By virtue of the validity of lemma 3.1 and lemma 3.2, we obtain that the series

(3.7), (3.10) and (3.11) are majorized by the following series

C 6

∞∑
n=1

n 2 |ϕn | , C 6 = const. (3.12)
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From series (3.8) and (3.9) by the aid of term-by-term multiplication by t 1−γ

we obtain the series

∞∑
n=1

t 1−γD α, γ un (t)ϑn (x),

∞∑
n=1

t 1−γ un (t)
d k ϑn (x)

d x k
, k = 1, 2, t > 0. (3.13)

The series in (3.13) are also majorized by the series (3.12). Taking into account
the fact that the function ϕ (x) is sufficiently smooth and integrating by parts
three times the integral

ϕn =

l∫
0

ϕ (x)ϑn (x) d x,

we obtain

ϕn = − 1

µ 3
n

ϕ′′′n = − 1

µ 3
n

l∫
0

ϕ′′′ (x)ϑn (x) d x, µn =
nπ

l
.

By virtue of these presentations, we apply the Cauchy-Schwartz inequality and
Bessel inequality to (3.12). Then we have

∞∑
n=1

n 2|ϕn| ≤ C 7

∞∑
n=1

1

n

∣∣ϕ′′′n ∣∣ ≤
≤ C 7

( ∞∑
n=1

1

n 2

) 1/2( ∞∑
n=1

∣∣ϕ′′′n ∣∣ 2
) 1/2

≤ C 8

∥∥ϕ′′′(x)
∥∥
L 2(0; l)

<∞,

where C 7, C 8 = const.
From this estimate implies that the series (3.6)–(3.11) converge absolutely

and uniformly in the domains Ω1 and Ω2, respectively. Therefore, the function
U (t, x), represented by series (3.6) and (3.7), possesses properties (1.2) and sat-
isfies conditions (1.3)–(1.5).

We note that ∆n (ω) = 0 for irregular values of the spectral parameter ω and
n = k 1 , ..., k s, 1 ≤ k 1 < k 1 < ... < k s , s ∈ N, (γ 6= 1). Then, for the solvability
of systems (2.13), it is necessary and sufficient that the orthogonality conditions
are satisfied

ϕn =

l∫
0

ϕ (x)ϑn (x) d x = 0, n = k 1 , ...k s . (3.14)

In this case, the solutions of problem T ν, ω are represented as sum of the series

U (t, x) =

k1−1∑
n=1

+

k2−1∑
n=k1+1

+...+
∞∑

n=ks+1

 un (t)ϑn (x)+
∑
m

Cm Vm (t, x), (3.15)

where m = k 1 , ..., k s, Cm are arbitrary constants, functions Vm (t, x) are deter-
mined from (3.1).

Thus, it is proved that there following theorem holds.
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Theorem 3.1. Suppose that the following conditions are fulfilled:

ϕ (x) ∈ C 2 [0; l], ϕ′′′ (x) ∈ L 2 (0; l), ϕ (0) = ϕ (l) = 0.

Then the boundary value problem T ν, ω is uniquely solvable for regular values of
spectral parameter ω and this solution is represented in the form of the Fourier
series (3.6) and (3.7) in the domains Ω 1 and Ω 2, respectively.

For irregular values of the spectral parameter ω and for some n = k 1 , ..., k s
problem T ν, ω has an infinite number of solutions in the form of series (3.15).
The solvability condition is formula (3.14).

4. Stability of solution of the problem T ν, ω

For regular values of the spectral parameter ω we consider the questions of
stability of the solution of boundary value problem T ν, ω with respect to the
function ϕ (x) of condition (1.4) and with respect to parameter ν. To this end,
we introduce the norm in the space of continuous functions as follows

||U (t, x) ||C (Ω) = max
(t, x)∈Ω 1

∣∣ t1−γU (t, x)
∣∣+ max

(t, x)∈Ω 2

|U (t, x) | .

4.1. Stability with respect to function ϕ (x).

Theorem 4.1. Suppose that all conditions of theorem 3.1 are fulfilled. Then, the
solution of the problem T ν, ω for regular values of the spectral parameter ω ∈ ℵ is
stable with respect to given function ϕ (x).

Proof. We show that the solution U (t, x) of the mixed differential equation (1.1)
is stable with respect to the given function ϕ (x). Let U 1 (t, x) and U 2 (t, x)
be two different solutions of the boundary value problem T ν, ω, corresponding to
functions ϕ 1 (x) and ϕ 2 (x), respectively.

We put that |ϕ 1n − ϕ 2n | < δn , where 0 < δn is sufficiently small quantity
and the series

∑∞
n=1 | δn | is convergent. Then, taking this fact into account, by

virtue of the conditions of the theorem, from (3.6) and (3.7) it is easy to see that

‖U 1(t, x)− U 2(t, x) ‖C (Ω) ≤ C 9

∞∑
n=1

|ϕ 1n − ϕ 2n | < C 9

∞∑
n=1

| δn | ,

where C 9 = const. From this estimate we finally obtain assertions of stability of
the solution of differential equation (1.1) with respect to the given function ϕ (x),

if we put ε = C 9

∞∑
n=1
| δn |. The theorem 4.1 is proved. �

4.2. Stability with respect to parameter ν. Now we show that the solution
U (t, x) of the mixed differential equation (1.1) is stable with respect to a given
parameter ν in mixed derivatives of this equation.

Theorem 4.2. Suppose that all conditions of theorem 3.1 are fulfilled. Then, the
solution of the problem T ν, ω for regular values of spectral parameter ω is stable
with respect to given parameter ν.
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Proof. Let U 1 (t, x) and U 2 (t, x) be two different solutions of the boundary value
problem T ν, ω, corresponding to two different values of the parameter ν 1 and ν 2,
respectively.

By virtue of λ2
n (ν) = µ 2

n
1+ν µ 2

n
, we derive the following estimates∣∣Eα, γ

(
−λ2

n (ν 1) tα
)
− Eα, γ

(
−λ2

n (ν 2) tα
) ∣∣ ≤ C 10

∣∣λ2
n (ν 1)− λ2

n (ν 2)
∣∣ ≤

≤ C 10

∣∣∣∣∣∣
ν 2∫
ν 1

d

d ν

µ 2
n

1 + ν µ 2
n

∣∣∣∣∣∣ ≤ C 11 | ν 1 − ν 2 | ;

| cos λn (ν 1)ω t− cos λn (ν 2)ω t | ≤

∣∣∣∣∣∣
ν 2∫
ν 1

d

d ν
cos λn (ν)ω t

∣∣∣∣∣∣ ≤
≤

∣∣∣∣∣∣
ν 2∫
ν 1

d ν

λn (ν)

∣∣∣∣∣∣ ≤ C 12 | ν 1 − ν 2 | ;

|λn(ν1) sinλn(ν1)ω t− λn(ν2) sinλn(ν2)ω t | ≤ |[λn(ν1)− λn(ν2)] sinλn(ν2)ω t |+

+ |λn(ν 1) [sin λn(ν 1)ω t− sin λn(ν 2)ω t] | ≤ C 13 | ν 1 − ν 2 | ,
where C 1i , i = 0, 1, 2, 3 are constants. We put that | ν 1 − ν 2 | < δ, where 0 < δ
is sufficiently small real number. Then, by virtue of above derived estimates, from
series (3.6) and (3.7) we obtain

‖U1(t, x)− U2(t, x) ‖C(Ω) ≤ C14||ϕ′′′(x) ||C[0;l] | ν1 − ν2 | < C14||ϕ′′′(x) ||C[0;l]δ,

where C 14 is constant. If we put ε = C 14 ||ϕ′′′(x) ||C [0; l] δ, then we obtain

‖U 1(t, x)− U 2(t, x) ‖C (Ω) < ε.

The theorem 4.2 is proved. �

5. Conclusions

We studied the boundary value problem T ν, ω with following assumption

ϕ (x) ∈ C 2 [0; l], ϕ′′′ (x) ∈ L 2 (0; l), ϕ (0) = ϕ (l) = 0.

If these conditions fulfilled, then the boundary value problem T ν, ω is uniquely
solvable for regular values of the spectral parameter ω ∈ ℵ and this solution is
represented in the form of the Fourier series (3.6) and (3.7) in the domains Ω 1

and Ω 2, respectively.
For irregular values of the spectral parameter ω ∈ = and for some n =

k 1 , ..., k s the problem T ν, ω has an infinite number of solutions in the form of
series (3.15). The solvability condition is formula (3.14). For regular values of
the spectral parameter ω we studied the questions of the stability of the solution
of the boundary value problem T ν, ω with respect to the function ϕ (x) and with
respect to parameter ν.
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