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VECTOR MEASURES APPLIED TO OPTIMAL CONTROL

FOR A CLASS OF EVOLUTION EQUATIONS

ON BANACH SPACES

Nasir Uddin Ahmed

Abstract. In this paper we consider a class of nonlinear evolution equa-
tions on infinite dimensional Banach spaces driven by vector measures.

We prove existence and uniqueness of solutions and continuous depen-

dence of solutions on the control measures. Using these results we prove
existence of optimal controls for Bolza problems. Based on this result we

present necessary conditions of optimality.

1. Introduction

It is well known that vector measures cover probability measures, signed
measures, Borel measures, Radon measures, Dirac measures etc. Therefore it
has broader application in many different fields including the area of impulsive
control systems [3, 4]. A dynamic system may be subject to natural impulsive
forces or it may be controlled by impulsive forces or both. In a recent paper
[6] we considered a class of nonlinear evolution equations on Banach spaces
driven by finitely additive vector measures and developed several results on
optimal control theory. There we considered nonatomicity of the dominating
measure. Here in this paper we relax this condition by some alternate assump-
tions thereby improving the scope of application to a broader class of problems.

In Section 2, after some preliminaries, we introduce a class of evolution equa-
tions defined on infinite dimensional Banach spaces and controlled by finitely
additive vector measures (covering discrete measures given by a sum of vector
valued Dirac measures) having bounded variation. In Section 3, we prove exis-
tence and uniqueness of mild solutions [1]. In Section 4, we present a result on
weak to strong continuity of solutions with respect to vector measures. This
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result is then used to prove existence of optimal controls. Following this, in Sec-
tion 5, we develop necessary conditions of optimality. The paper is concluded
with reference to some open questions.

2. Preliminaries

Let I ≡ [0, T ] be a closed bounded interval and let AI denote a field of
subsets of the set I and Z be a Banach space with the dual Z∗. Let B∞(I, Z)
denote the space of bounded measurable functions defined on I and taking
values in the Banach space Z. Furnished with sup-norm topology, it is a Banach
space. A vector measure γ is a set function defined on AI and taking values in
the Banach space Z∗. It is said to be finitely additive if γ(∅) = 0 and for any
finite family {Ei} of disjoint AI measurable subsets

γ(∪Ei) =
∑

γ(Ei).

Let ΣI = σ(AI) denote the sigma field (sigma algebra) of subsets of the set
I generated by AI . In this case the set function γ : ΣI −→ Z∗ is said to
be countably additive if the above equality holds for any countable family of
disjoint ΣI measurable subsets of the set I. For convenience of the reader we
recall the definition of the variation norm. Let D be a AI measurable subset
of the set I and let Π denote any finite disjoint AI measurable partition of the
set D. The total variation of γ on D, denoted by |γ|(D), is given by

|γ|(D) ≡ sup
Π

∑
σ∈Π

‖γ(σ)‖Z∗ ,

where the summation is taken over the elements of the partition Π and the
supremum is taken with respect to the class of all such finite partitions. The
norm of the measure γ is then given by ‖γ‖ ≡ |γ|(I). We denote by Mbfa(AI ,
Z∗) the class of finitely additive Z∗-valued vector measures having bounded
total variation. Endowed with the total variation norm,Mbfa(AI , Z∗) is a Ba-
nach space. LetMca(ΣI , Z

∗) denote the class of countably additive Z∗ valued
vector measures having bounded total variation. This is a closed linear subspace

of Mbfa(AI , Z∗) and hence a Banach space. A continuous linear functional ˆ̀

on B∞(I, Z) has the representation through an element γ ∈ Mbfa(AI , Z∗)
giving

ˆ̀(f) =

∫
I

〈f(t), γ(dt)〉Z,Z∗

for f ∈ B∞(I, Z). This is easily proved for simple functions S(I, Z) and
then, for the general case, one uses the fact that simple functions are dense
in B∞(I, Z). In fact one can prove the following result.

Lemma 2.1. The topological dual of the Banach space B∞(I, Z) denoted by
(B∞(I, Z))∗ is isometrically isomorphic to the space of finitely additive vector
measures Mbfa(AI , Z∗) expressed symbolically by

(B∞(I, Z))∗ ∼=Mbfa(AI , Z∗).
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Proof. In principle the proof follows from similar arguments as given in the
proof of theorem 3.1 in [5, Theorem 3.1, p. 70]. �

In case when Z∗ has the Radon-Nikodym property (RNP) with respect to
a finitely additive nonnegative measure ν ∈ M+

bfa(AI) and the measure γ is

ν-continuous then it is given by γ(dt) = h(t)ν(dt) where h ∈ L1(ν, Z∗). In this

case the functional ˆ̀ has the representation

ˆ̀(f) =

∫
I

〈f(t), γ(dt)〉 =

∫
I

〈f(t), h(t)〉Z,Z∗ν(dt).

We can use these measures as perturbation or as controls for dynamic sys-
tems defined on infinite dimensional Banach space X. The system we consider
here is given by the following evolution equation,

dx(t) = Ax(t)dt+ F (t, x(t))dt+G(t, x(t))γ(dt), t ∈ I, x(0) = x0,(2.1)

where A is the infinitesimal generator of a C0 semigroup [1] {S(t), t ≥ 0} ⊂
L(X), and the functions F : I × X −→ X and G : I × X −→ L(Y,X)
are Borel measurable maps and γ ∈ Mbfa(AI , Y ). Using the semigroup and
variation of constants formula (Duhamel’s formula) this differential equation
can be transformed into an integral equation on the Banach space X as follows:

x(t) = S(t)x0 +

∫ t

0

S(t− s)F (s, x(s))ds

+

∫ t

0

S(t− s)G(s, x(s))γ(ds), t ∈ I.(2.2)

Throughout this paper, by a solution of the evolution equation (2.1) we mean
the mild solution [1] given by the solution (if one exists) of the integral equation
(2.2).

3. Existence and uniqueness of solutions

Here we consider the system (2.2) driven by finitely additive Y valued vector
measures. Let Mad ⊂Mbfa(AI , Y ) be a nonempty bounded set denoting the
set of admissible control measures. Later, we state more precise characteri-
zation of this set. Let B∞(I,X) denote the Banach space of bounded Borel
measurable functions defined on I and taking values from the Banach space X.

We introduce the following basic assumptions.
(A1) The linear operator A is the infinitesimal generator of a C0-semigroup

{S(t), t ≥ 0} of bounded linear operators inX satisfying, for some finite positive
number M, sup{‖S(t)‖L(X), t ∈ [0, T ]} ≤M.

(A2) F : I×X −→ X is Borel measurable and there exists a constant K > 0
such that

(1) ‖F (t, x)‖X ≤ K(1 + ‖x‖X), x ∈ X, t ∈ I,
(2) ‖F (t, x1)− F (t, x2)‖X ≤ K‖x1 − x2‖, x1, x2 ∈ X, t ∈ I.
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(A3) G : I ×X −→ L(Y,X) is Borel measurable and there exists a constant
L > 0 such that

(1) ‖G(t, x)‖L(Y,X) ≤ L(1 + ‖x‖X), x ∈ X, t ∈ I,
(2) ‖G(t, x1)−G(t, x2)‖L(Y,X) ≤ L‖x− y‖L(Y,X), x1, x2 ∈ X, t ∈ I.

Theorem 3.1. Consider the evolution equation (2.1) with the control measure
γ ∈ Mbfa(AI , Y ) satisfying γ({0}) = 0, and suppose the assumptions (A1),
(A2), (A3) hold. Then, for every x0 ∈ X, the system (2.1) has a unique mild
solution x ∈ B∞(I,X).

Proof. For the proof we use the Banach fixed point theorem. For any given
x0 ∈ X and γ ∈ Mbfa(AI , Y ), we use the semigroup S(t), t ≥ 0, and define
the operator Γ on B∞(I,X) as follows,

(Γx)(t) ≡ S(t)x0 +

∫ t

0

S(t− s)F (s, x(s))ds

+

∫ t

0

S(t− s)G(s, x(s))γ(ds), t ∈ I.(3.1)

Under the given assumptions, we show that Γ maps B∞(I,X) to itself. Since
{S(t), t ≥ 0} is a C0-semigroup on X and I is a finite interval there exists a
finite positive number M such that sup{‖S(t)‖L(X), t ∈ I} ≤ M. Computing
the norm of (Γx)(t) and using the assumptions (A2) and (A3) it follows from
triangle inequality that for each t ∈ I,

‖(Γx)(t)‖X ≤ M‖x0‖X +MK

∫ t

0

(1 + ‖x(s)‖X)ds

+ML

∫ t

0

(1 + ‖x‖X)|γ|(ds),(3.2)

where |γ|(·) denotes the finitely additive nonnegative measure induced by the
variation of the vector measure γ. Consider the measure µ on AI given by

µ(σ) ≡
∫
σ

M [Kds+ L|γ|(ds)], σ ∈ AI .

Since |γ| is a finitely additive nonnegative measure it is clear that µ is a finitely
additive bounded strictly positive measure. Define the constant

C ≡ [M‖x0‖X +MKT +ML|γ|(I)].

Since γ is a finitely additive measure having bounded total variation, the con-
stant C is positive and finite. Using these parameters we can rewrite the
inequality (3.2) in the following compact form

‖(Γx)(t)‖X ≤ C +

∫ t

0

‖x(s)‖Xµ(ds), t ∈ I.(3.3)

Hence

sup{‖(Γx)(t)‖X , t ∈ I} = ‖Γx‖B∞(I,X) ≤ C + µ(I)‖x‖B∞(I,X) <∞.(3.4)
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This shows that the operator Γ maps B∞(I,X) into itself. We prove that it has
a unique fixed point in B∞(I,X). For any pair of elements x1, x2 ∈ B∞(I,X),
it follows from equation (3.1) that

[(Γx1)(t)− (Γx2)(t)] =

∫ t

0

S(t− s)[F (s, x1(s))− F (s, x2(s))]ds

+

∫ t

0

S(t− s)[G(s, x1(s))−G(s, x2(s))]γ(ds), t ∈ I.(3.5)

Using the assumptions (A2) and (A3) and triangle inequality applied to the
above expression we obtain the following inequality,

‖(Γx1)(t)− (Γx2)(t)‖X ≤
∫ t

0

‖x1(s)− x2(s)‖Xµ(ds), t ∈ I.(3.6)

Define the function β as follows

β(t) ≡
∫ t

0

µ(ds), t ∈ I.

Using this function, the expression (3.6) can be rewritten as

‖(Γx1)(t)− (Γx2)(t)‖X ≤
∫ t

0

‖x1(s)− x2(s)‖Xdβ(s), t ∈ I.(3.7)

It is clear from the definition of the measure µ, that β is a nonnegative, mono-
tone increasing function of bounded variation on I with β(0) = 0. Thus β
is differentiable almost everywhere with the derivative being measurable and
Lebesgue integrable with β̇(t) > 0, for a.e t ∈ I. Hence

0 <

∫ t

0

β̇(s)ds ≤ β(t+), t ∈ I,

and

0 <

∫ T

0

β̇(s)ds ≤ β(T )− β(0) = β(T ) <∞.

Define the set Λ as follows:

Λ ≡
{
f ∈ L+

1 (I) : f(t) > β̇(t) for a.e t ∈ I
}
.

Clearly, the set Λ 6= ∅ and so we can choose an element fo ∈ Λ such that

It(β̇) ≡
∫ t

0

β̇(s)ds ≤ β(t+) ≤
∫ t

0

fo(s)ds, ∀ t ∈ [0, T ](3.8)

with β(T+) = β(T ), and the function t −→ βo(t) ≡
∫ t

0
fo(s)ds, t ∈ I, is

continuous and differentiable almost everywhere on I. It is clear from this
construction that

β(t+) ≤ βo(t), t ∈ I; and β̇(t) < β̇o(t) for a.e. t ∈ I
and βo is continuous while β is only right continuous. It is the continuity
property of βo which is critical in the integration by parts used in the process
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of iteration as follows. Using the function βo, dominating the function β, in
the inequality (3.7) we obtain

‖(Γx1)(t)− (Γx2)(t)‖X ≤
∫ t

0

‖x1(s)− x2(s)‖Xdβ(s)

≤
∫ t

0

‖x1(s)− x2(s)‖Xdβo(s), t ∈ I.(3.9)

For any pair x1, x2 ∈ B∞(I,X) and t ∈ I, define

ρt(x1, x2) ≡ sup{‖x1(s)− x2(s)‖X , 0 ≤ s ≤ t}

and note that ρT (x1, x2) = ‖x1 − x2‖B∞(I,X). Using this notation it is not
difficult to verify that we can rewrite the inequality (3.9) as follows:

ρt(Γx1,Γx2) ≤
∫ t

0

ρs(x1, x2) dβo(s), t ∈ I.(3.10)

Considering the second iteration of the operator Γ (i.e., Γ2 ≡ Γ ◦ Γ), it follows
from the above expression, and the fact that t −→ ρt(x, y) is a nondecreasing
function of t ≥ 0, that, for each t ∈ I, we have

ρt(Γ
2(x1),Γ2(x2)) ≤

∫ t

0

ρs(Γ(x1),Γ(x2))dβo(s)

≤
∫ t

0

(∫ s

0

ρθ(x1, x2)dβo(θ)

)
dβo(s).

Hence it follows from the above inequality that

ρt(Γ
2(x1),Γ2(x2) ≤

∫ t

0

ρs(x1, x2)βo(s)dβo(s), t ∈ I(3.11)

and consequently it follows from integration by parts that

ρt(Γ
2(x1),Γ2(x2)) ≤ ρt(x1, x2)

(
β2
o(t)/2

)
, t ∈ I.(3.12)

Continuing this process of iterationm times we arrive at the following inequality

ρt(Γ
m(x1),Γm(x2)) ≤ ρt(x1, x2)

(
βmo (t)/m!

)
, t ∈ I.(3.13)

Thus, for t = T, we have

‖Γm(x1)− Γm(x2)‖B∞(I,X) ≤ αm‖x1 − x2‖B∞(I,X),(3.14)

where αm = ((βo(T ))m/m!). Since βo(T ) is finite it is clear that for m ∈ N
sufficiently large, αm < 1 and hence the m-th iterate of the operator Γ is a
contraction. Thus it follows from Banach fixed point theorem that Γm has a
unique fixed point xo ∈ B∞(I,X). Using this fact one can easily verify that xo

is also the unique fixed point of the operator Γ itself. This proves the existence
of a unique solution of the integral equation (2.2) and hence a unique mild
solution of the equation (2.1) in the Banach space B∞(I,X). �
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4. Existence of optimal controls

In this section we introduce the admissible set of controls and state the op-
timal control problem. LetMad ⊂Mbfa(AI , Y ) denote the class of admissible
control measures. Consider the system (2.1) with the admissible controlsMad

and the objective functional J(γ) given by

J(γ) ≡
∫ T

0

`(t, x(t))ν(dt) + Φ(x(T )),(4.1)

where ` and Φ are real valued Borel measurable functions from I ×X and X
to R0 = [0,∞) ∪ {∞} respectively, and x ∈ B∞(I,X) is the unique solution
of the equation (2.1) corresponding to the control measure γ ∈ Mad and ν ∈
M+

bfa(AI) is a measure associated with the set Mad to be discussed shortly.
The objective is to find a control γo ∈ Mad that minimizes the above cost
functional. In order to solve this problem we must characterize the admissible
set Mad in more details. This is given in the following Lemma.

Lemma 4.1 (Brooks and Dinculeanu). Let the Banach space Y and its dual Y ∗

satisfy the Radon-Nikodym property (RNP). Then a set Mad ⊂ Mbfa(AI , Y )
is relatively weakly compact if and only if it satisfies the following conditions:

(1) the set Mad is bounded (in variation norm),
(2) there exists a nonnegative finitely additive measure ν ∈ M+

bfa(AI) such
that the set Mad is uniformly ν continuous,that is, for every E ∈ AI ,

lim
ν(E)→0

|γ|(E) = 0

uniformly in γ ∈Mad,
(3) for each set E ∈ AI , the set {γ(E), γ ∈ Mad} is a relatively weakly

compact subset of Y.

Proof. See Diestel [8, Corollary 6, p. 106]. This is a generalization of a cele-
brated theorem due to Bartle-Dunford-Schwartz [8, Theorem 5, p. 105] from
countably additive vector measures to finitely additive vector measures. �

According to this result for any γ ∈Mad there exists a unique gγ ∈ L1(ν, Y )
such that for every σ ∈ AI , γ(σ) =

∫
σ
gγ(s)ν(ds).

Under the assumptions of Theorem 3.1, we show that the solution set is a
bounded subset of the Banach space B∞(I,X).

Corollary 4.2. Consider the system (2.1), suppose the assumptions of Theo-
rem 3.1 hold, and that the admissible setMad is a bounded subset ofMbfa(AI ,
Y ). Then the solution set

S ≡ {x ∈ B∞(I,X) : x = x(γ) for some γ ∈Mad}(4.2)

is a bounded subset of B∞(I,X).
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Proof. It follows from Theorem 3.1 that, for each γ ∈ Mad, the evolution
equation (2.1) has a unique mild solution x(γ) ∈ B∞(I,X). Thus x(γ) satisfies
the following integral equation

x(γ)(t) = S(t)x0 +

∫ t

0

S(t− s)F (s, x(γ)(s))ds

+

∫ t

0

∫
U

S(t− s)G(s, x(γ)(s))γ(ds), t ∈ I.(4.3)

By taking the norm on either side and using the assumptions (A1), (A2) and
(A3) it follows from triangle inequality that

‖x(γ)(t)‖ ≤ C(γ) +

∫ t

0

‖x(γ)(s)‖µγ(ds),(4.4)

where the measure µγ is given by

µγ(σ) ≡
∫
σ

{MKds+ML|γ|(ds)}, σ ∈ AI ,

and the constant C(γ) is given by

C(γ) ≡M(‖x0‖X +KT + L|γ|(I)).

Applying generalized Gronwall inequality [2, Lemma 5, p. 268] to (4.4) we
arrive at the following inequality

‖x(γ)‖B∞(I,X) ≡ sup
{
‖x(γ)(t)‖X , t ∈ I

}
≤ C(γ)

(
1 + µγ(I) expµγ(I)

)
.(4.5)

Since the admissible set Mad is a bounded subset of Mbfa(AI , Y ) it is clear
that

sup{µγ(I), γ ∈Mad} =

(
MKT +ML sup{|γ|(I) = ‖γ‖, γ ∈Mad}

)
<∞

and similarly the constant

sup{C(γ) ≡M(‖x0‖X +KT + L|γ|(I)), γ ∈Mad} <∞.

Thus it follows from (4.5) that there exists a constant 0 < b <∞ such that

sup{‖x(γ)‖B∞(I,X), γ ∈Mad} ≤ b <∞.

This proves that the solution set S is a bounded subset of B∞(I,X). �

Before we prove the existence of optimal control we need the following im-
portant result on continuity of the control to solution map γ → x(γ). This is
presented in the following theorem.
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Theorem 4.3. Consider the system (2.1) with the operator A being the gen-
erator of a compact C0-semigroup {S(t), t > 0} on X, and the assumptions of
Theorem 3.1 and Corollary 4.2 hold. Suppose the set of admissible controlsMad

is weakly closed satisfying the assumptions of Lemma 4.1 and that the measure
ν is nonatomic. Further suppose there exists a measure µ∗ ∈ M+

bfa(AI) such

that |γ|(σ) ≤ µ∗(σ) for each σ ∈ AI uniformly with respect to γ ∈ Mad. Then
the map γ −→ x(γ) from Mad to B∞(I,X) is continuous with respect to the
relative weak topology on Mad and the norm topology on B∞(I,X).

Proof. Let {γn, γo} ∈ Mad and suppose γn
w−→ γo. Let xn ≡ x(γn) and

xo ≡ x(γo) denote the unique mild solutions of equation (2.1) corresponding to
the same initial state, x(γn)(0) = x(γo)(0) = x0 and driving measures γn and
γo respectively. Clearly, this means that {xn, xo} satisfy the following integral
equations:

xn(t) = S(t)x0 +

∫ t

0

S(t− s)F (s, xn(s))ds

+

∫ t

0

S(t− s)G(s, xn(s))γn(ds), t ∈ I,(4.6)

xo(t) = S(t)x0 +

∫ t

0

S(t− s)F (s, xo(s))ds

+

∫ t

0

S(t− s)G(s, xo(s))γo(ds), t ∈ I,(4.7)

where {xn(t) ≡ x(γn)(t), xo(t) ≡ x(γo)(t), t ∈ I}. Subtracting the expression
(4.7) from (4.6) term by term and suitably rearranging terms we obtain the
following identity

xn(t)− xo(t) =

∫ t

0

S(t− s)[F (s, xn(s))− F (s, xo(s))]ds

+

∫ t

0

S(t− s)[G(s, xn(s))−G(s, xo(s))]γn(ds)

+

∫ t

0

S(t− s)G(s, xo(s))
(
γn − γo)(ds), t ∈ I.(4.8)

We denote the last term of the above expression by en giving

en(t) ≡
∫ t

0

S(t− s)G(s, xo(s))
(
γn − γo)(ds), t ∈ I.(4.9)

By virtue of Lemma 4.1, this can be written in the equivalent form

en(t) ≡
∫ t

0

S(t− s)G(s, xo(s))
(
gn(s)− go(s))ν(ds), t ∈ I,(4.10)

where γn(ds) = gn(s)ν(ds) and γo(ds) = go(s)ν(ds) with {gn, go} ∈ L1(ν, Y )
being the corresponding Radon-Nikodym derivatives. Computing the X norm
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of either side of the expression (4.8) and using the assumptions (A1), (A2) and
(A3) and triangle inequality we obtain the following inequality

‖xn(t)− xo(t)‖X ≤
∫ t

0

MK‖xn(s)− xo(s)‖Xds

+

∫ t

0

ML‖xn(s)− xo(s)‖X |γn|(ds) + ‖en(t)‖X , t ∈ I.(4.11)

Since by assumption the set Mad is set wise dominated by a finitely additive
bounded positive measure µ∗ it follows from the above inequality that

‖xn(t)− xo(t)‖X ≤ MK

∫ t

0

‖xn(s)− xo(s)‖Rnds

+ML

∫ t

0

‖xn(s)− xo(s)‖Xµ∗(ds) + ‖en(t)‖X , t ∈ I.(4.12)

Define the measure % by

%(E) ≡MK

∫
E

ds+ML

∫
E

µ∗(ds), E ⊂ I, E ∈ AI .

Since µ∗ is a finitely additive bounded positive measure, it follows from the
above expression that % is also a finitely additive bounded positive measure.
Using this measure we can rewrite the inequality (4.12) as follows:

‖xn(t)− xo(t)‖X ≤
∫ t

0

‖xn(s)− xo(s)‖X%(ds) + ‖en(t)‖X , t ∈ I.(4.13)

Defining ϕn(t) ≡ ‖xn(t) − xo(t)‖X , t ∈ I, again it follows from generalized
Gronwall inequality [2, Lemma 5, p. 268] that

ϕn(t) ≤ ‖en(t)‖X +

∫ t

0

exp
{∫ t

s

%(dθ)
}
‖en(s)‖X%(ds),

≤ ‖en(t)‖+ exp(%(I))

∫ t

0

‖en(s)‖X%(ds), t ∈ I.(4.14)

We show that en(t), given by the expression (4.10), converges to zero strongly
in X uniformly on I. Here we use the compactness of the semigroup S(t), t > 0,
nonatomicity of ν and the weak convergence of γn to γo. For any t ∈ I, and
any ε > 0 satisfying t ≥ ε, we can decompose the expression (4.10) into two
parts as

en(t) = e(1)
n (t) + e(2)

n (t), t ∈ I,
where the first term is given by

e(1)
n (t) ≡ S(ε)

(∫ t−ε

0

S(t− ε− s)G(s, xo(s))
(
γn − γo)(ds)

)
, t ∈ Iε ≡ [ε, T ].

The second term is given by

e(2)
n (t) =

∫ t

t−ε
S(t− s)G(s, xo(s))(γn − γo)(ds)
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=

∫ t

t−ε
S(t− s)G(s, xo(s))(gn(s)− go(s))ν(ds), t ∈ Iε,

where {gn, go} are the Radon-Nikodym derivatives of the measures {γn, γo}
with respect to the scalar measure ν. Referring to the first term, it follows from
weak convergence of γn to γo that the integral within the round bracket weakly
converges to zero. Since by assumption the semigroup is compact, the operator
S(ε) is compact and hence the first term converges strongly to zero uniformly
with respect to t ∈ Iε. In other words,

lim
n→∞

sup{‖e(1)
n (t)‖X , t ∈ Iε} = 0

for every ε > 0. By Lemma 4.1(2) the set of admissible controls Mad is uni-
formly ν-continuous, and by assumption γn weakly converges to γo, and ν is
nonatomic. Thus the second term converges to zero as ε ↓ 0 uniformly on I.

Hence ‖en‖B∞(I,X)
s−→ 0. Thus, by the Lebesgue bounded convergence theo-

rem, the expression on the right hand side of the inequality (4.14) converges
to zero uniformly with respect to t ∈ I. Hence ϕn(t) −→ 0 uniformly in t ∈ I.
In other words, xn −→ xo in the norm topology of B∞(I,X). This proves the
continuity of the map γ −→ x(γ) in the sense as stated in the theorem. �

Remark 4.4. In the preceding theorem we assumed that the measure ν ∈
M+

bfa(AI), which plays a crucial role in the characterization of weak com-
pactness of the set of admissible control measures Mad, is nonatomic. This
assumption can be relaxed (as stated in the following Proposition) by requir-
ing that the operator valued function Go(t) ≡ G(t, xo(t)), t ∈ I, takes values
in the Banach space of compact operators K(Y,X) ⊂ L(Y,X).

Proposition 4.5. Suppose the assumptions of Theorem 4.3 hold without the
nonatomicity condition for the measure ν ∈ M+

bfa(AI) with respect to which

Mad is uniformly absolutely continuous; and suppose Go(·) is an operator val-
ued function with values in K(Y,X). Then the control to solution map γ −→
x(γ) is continuous with respect to the weak topology onMad and strong (norm)
topology on B∞(I,X).

Proof. (Outline) Using the Lebesgue decomposition theorem we can write ν =
νc + νa where νc is absolutely continuous with respect to Lebesgue measure
λ(dt) = dt and νa is the purely atomic part. It suffices to verify that en
given by (4.10) converges to zero strongly in B∞(I,X). We can rewrite this
expression as

en(t) ≡
∫ t

0

S(t− s)Go(s)
(
gn(s)− go(s))ν(ds), t ∈ I

=

∫ t

0

S(t− s)Go(s)(
(
gn(s)− go(s))νc(ds)

+

∫ t

0

S(t− s)Go(s)(
(
gn(s)− go(s))νa(ds).(4.15)



1340 N. U. AHMED

By Theorem 4.3, the continuous part converges to zero strongly in B∞(I,X).
So we must verify that this is also true for the atomic part. Since our control
measures have bounded total variation there can be at most countably many
atoms which may be denoted by the set of singletons {θi} ⊂ I. Hence the
atomic part is given by the sum∫ t

0

S(t− s)Go(s)
(
gn(s)− go(s))νa(ds)

=
∑
θi≤t

S(t− θi)Go(θi)(gn(θi)− go(θi))νa({θi}), t ∈ I.(4.16)

Since gn converges weakly to go in L1(ν, Y ), and ν = νc+νa, it is clear that, at
the atoms {θi}, gn(θi) converges weakly to go(θi) in the Banach space Y. Thus
it follows from compactness of the operators Go(θi) ∈ K(Y,X) that, along a
subsequence if necessary, the sum in (4.16) converges strongly in X for all t ∈ I
(including the atoms {θi}). Hence it follows from the expression (4.15) that
en converges to zero in X uniformly on I. This completes the outline of our
proof. �

Next we consider the question of existence of optimal controls. This is
presented in the following theorem.

Theorem 4.6. Consider the system (1), suppose that the assumptions of The-
orem 4.3, Proposition 4.5 hold, and that the set of admissible control measures
Mad is a weakly compact subset of Mbfa(AI , Y ) and the objective functional
is given by

J(γ) ≡
∫
I

`(t, x(t))ν(dt) + Φ(x(T )),(4.17)

where x(t) ≡ x(γ)(t), t ∈ I, is the mild solution of the evolution equation (2.1)
corresponding to the control measure γ ∈Mad. Suppose the functions ` and Φ
satisfy the following assumptions:

(1) ` : I ×X −→ R is nonnegative, Borel measurable in all the arguments,
and lower semicontinuous in the second argument x ∈ X and ν-integrable on
bounded subsets of I ×X, the function Φ : X −→ R is nonnegative and lower
semicontinuous satisfying

(a1) `(t, x) ≤ α1(t)+α2‖x‖p1X for some p1 ∈ [1,∞), α1 ∈ L+
1 (ν) and α2 > 0,

(a2) Φ(x) ≤ α3 + α4‖x‖p2X for some p2 ∈ [1,∞), and α3, α4 > 0.
Then, there exists an optimal control measure at which J attains its minimum.

Proof. Since Mad is weakly compact, it suffices to prove that the map γ −→
J(γ) is weakly lower semicontinuous onMad. Let γn

w−→ γo inMad. It follows
from Theorem 4.3 and Proposition 4.5 that, (along a subsequence if necessary),

x(γn)
s−→ x(γo) in the Banach space B∞(I,X). Thus it follows from lower

semicontinuity of ` and Φ in x ∈ X that

`(t, xo(t)) ≤ lim `(t, xn(t)),(4.18)
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Φ(xo(T )) ≤ lim Φ(xn(T ))(4.19)

for almost all t ∈ I. By Corollary 4.2, the solution set S is a bounded subset of
B∞(I,X) and, since ` is ν-integrable on bounded subsets of I ×X, both sides
of the first inequality are ν-integrable. Hence it follows from the inequality
(4.18) that ∫

I

`(t, xo(t)) ν(dt) ≤
∫
I

lim `(t, xn(t)) ν(dt).(4.20)

Since ` is nonnegative and ν-integrable, it follows from Fatou’s Lemma and the
above inequality that∫

I

`(t, xo(t)) ν(dt) ≤ lim

∫
I

`(t, xn(t)) ν(dt).(4.21)

Summing (4.19) and (4.21) we conclude that J(γo) ≤ lim J(γn). This proves
that J is weakly lower semicontinuous on Mad and since Mad is weakly com-
pact we conclude that there exists a γo ∈Mad at which J attains its minimum.
This completes the proof. �

Remark 4.7. Theorem 4.6 can be easily extended to cover objective functionals
that include control cost in terms of total variation norm such as the following
functional

Je(γ) ≡
∫
I

`(t, x(t))ν(dt) + Φ(x(T )) + ‖γ‖v,

where ‖γ‖v denotes the total variation norm of the measure γ. Since the norm in
any Banach space is weakly lower semi continuous, under the given assumptions
of Theorem 4.6, the functional Je is weakly lower semi continuous on Mad.
Hence there exists a control in Mad that minimizes the functional Je under
the dynamic constraint of the evolution equation (2.1).

Remark 4.8. It follows from weak lower semicontinuity of J that the set of
optimal controls

Op ≡
{
γ ∈Mad : J(γ) = inf{J(%), % ∈Mad}

}
is a weakly closed subset of Mad and hence a weakly compact subset of Mad.

Remark 4.9. In Theorem 4.3, we assumed that the admissible set of control
measures Mad is set wise dominated by a measure µ∗ ∈ M+

bfa(AI). In fact,
in view of recent developments in the theory of integration with respect to
submeasures due to Gould [11], it suffices if µ∗ is only a submeasure of finite
variation. This is because bounded measurable functions are integrable in the
sense of Gould [10, Theorem 2.4]. The function η : AI −→ [0,∞], given by

η(E) ≡ sup{|γ|(E), γ ∈Mad} for E ∈ AI ,
is a nonnegative finitely subadditve set function having bounded total vari-
ation. It is easy to check that this is a submeasure having bounded total



1342 N. U. AHMED

variation. Since by Corollary 4.2 the solution set is bounded, the integrands
in the expression (4.12) related to µ∗ (third term on the righthand side) are
uniformly bounded. Thus the measure µ∗ in Theorem 4.3 can be replaced by
the submeasure η.

5. Necessary conditions of optimality

In this section we present necessary conditions of optimality whereby one
can determine optimal policies.

Theorem 5.1. Let X be a separable reflexive Banach space and suppose the
assumptions of Theorem 4.3 and Proposition 4.5 hold and the set Mad is a
weakly compact and convex subset of Mbfa(AI , Y ). Further, suppose the pair
{F,G} is once Gâteaux differentiable in the state variable with the Gâteaux
derivatives being continuous and bounded, and the functions {`,Φ} appearing
in the objective functional (4.17) are once continuously Gâteaux differentiable
with respect to the state variable satisfying `x(·, xo(·)) ∈ L1(ν,X∗) and Φx(·) ∈
X∗. Then, in order for the control state pair {γo, xo} ∈ Mad × B∞(I,X) to
be optimal, it is necessary that there exists a ψ ∈ B∞(I,X∗) such that the
triple {γo, xo, ψ} satisfies the following system of evolution equations, and the
inequality:

dxo(t) = Axodt+ F (t, xo(t))dt+G(t, xo(t))γo(dt), x(0) = x0,(5.1)

−dψ(t) = A∗ψdt+ (DF )∗(t, xo(t))ψ(t)dt+ (DG)∗(t, xo(t);ψ(t)) γo(dt)

+ `x(t, xo(t)) ν(dt), ψ(T ) = Φx(xo(T )),(5.2) ∫
I

〈ψ(t), G(t, xo(t))(γ − γo)(dt)〉X∗,X ≥ 0 ∀ γ ∈Mad.(5.3)

Proof. Let γo ∈ Mad denote the optimal control and γ ∈ Mad any arbitrary
element, and ε > 0. By convexity ofMad, it is clear that γε ≡ γo+ ε(γ−γo) ∈
Mad for all ε ∈ [0, 1]. Then, by optimality of γo, it is evident that

J(γε) ≥ J(γo) ∀γ ∈Mad, and ε ∈ [0, 1].

Hence

(1/ε)(J(γε)− J(γo)) ≥ 0 ∀γ ∈Mad and ε ∈ (0, 1].(5.4)

Let {xε, xo} ⊂ B∞(I,X) denote the mild solutions of the state equation (2.1)
corresponding to the control measures {γε, γo} respectively. In other words,
{xε, xo} satisfy the following integral equations

xε(t) = S(t)x0 +

∫ t

0

S(t− s)F (s, xε(s))ds

+

∫ t

0

S(t− s)G(s, xε(s))γε(ds), t ∈ I,(5.5)
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xo(t) = S(t)x0 +

∫ t

0

S(t− s)F (s, xo(s))ds

+

∫ t

0

S(t− s)G(s, xo(s))γo(ds), t ∈ I.(5.6)

It is evident that, as ε → 0, γε
w−→ γo. In fact it follows from the construc-

tion of γε that this convergence also holds in the total variation norm. In

any case, it follows from Theorem 4.3 and Proposition 4.5 that xε
s−→ xo in

B∞(I,X). Subtracting the equation (5.6) from the equation (5.5) term by term
and computing the difference quotient (1/ε)(xε(t) − xo(t)) and letting ε ↓ 0,
and denoting the limit by y, if one exists, we have

y(t) =

∫ t

0

S(t− s)DF (s, xo(s))y(s)ds

+

∫ t

0

S(t− s)DG(s, xo(s); y(s))γo(ds)

+

∫ t

0

S(t− s)G(s, xo(s))(γ(ds)− γo(ds)), t ∈ I.(5.7)

Hence one can easily verify that y satisfies the following evolution equation in
the mild sense

dy(t) = Aydt+DF (t, xo(t))y(t)dt+DG(t, xo(t); y(t))γo(dt)

+G(t, xo(t))(γ − γo)(dt), y(0) = 0, t ∈ I,(5.8)

where η −→ DG(t, xo(t); η) is a bounded linear map from X to L(Y,X). This
is a linear differential equation in y and can be written compactly as

dy = Aydt+B(t)y(t)dt+ C(t; y(t))γo(dt) + ϑγ(dt), y(0) = 0, t ∈ I,(5.9)

where B(t) ≡ DF (t, xo(t)), C(t; y(t)) ≡ DG(t, xo(t); y(t)), t ∈ I, and the mea-
sure ϑγ is given by

ϑγ(E) ≡
∫
E

G(t, xo(t))(γ − γo)(dt), E ∈ AI .

Since, under the given assumptions, both F and G are continuously Gâteaux
differentiable in the state variable with the Gâteaux derivatives being bounded
on bounded sets, and xo ∈ B∞(I,X), it is clear that both B and C are bounded
operator valued functions with values in L(X), and L(Y,X) respectively. Since
{γ, γo} ∈ Mad and the members of the set Mad are finitely additive having
bounded variation, it is clear from the above expression that ϑγ is finitely
additive having bounded variation and hence ϑγ ∈Mbfa(AI , X). Using Banach
fixed point theorem one can easily verify that, for each γ ∈Mad, equation (5.9)
has a unique mild solution y ∈ B∞(I,X) given by the solution of the linear
integral equation (5.7). Thus the map,

ϑγ −→ y,(5.10)
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fromMbfa(AI , X) to B∞(I,X), is a continuous linear map and hence bounded.
On the other hand, computing the difference quotient (5.4) and letting ε ↓ 0,
we obtain the Gâteaux differential (the directional derivative) of J at γo in the
direction γ − γo as follows:

dJ(γo; γ − γo) = lim
ε↓0

(1/ε)(J(γε)− J(γo))

=

∫
I

〈`x(t, xo(t)), y(t)〉X∗,Xν(dt) + 〈Φx(xo(T )), y(T )〉X∗,X .(5.11)

By optimality of γo, it follows from (5.4) that

dJ(γo; γ − γo) ≥ 0 ∀ γ ∈Mad.(5.12)

By assumption, `x(·, xo(·)) ∈ L1(ν,X∗) and Φx(xo(T )) ∈ X∗. Combining this
with the fact that equation (5.9) has a unique mild solution y ∈ B∞(I,X), we
conclude that the functional L, given by

L(y) ≡
∫
I

〈`x(t, xo(t)), y(t)〉X∗,Xν(dt) + 〈Φx(xo(T )), y(T )〉X∗,X ,(5.13)

is a well defined bounded linear functional on the Banach space B∞(I,X).
Thus y −→ L(y) is a continuous linear functional on B∞(I,X) and hence it
follows from (5.10) that the composition map

ϑγ −→ y −→ L(y) ≡ L̃(ϑγ)(5.14)

is a continuous linear functional on the Banach space Mbfa(AI , X). Hence
there exists a ψ ∈ (Mbfa(AI , X))∗ ≡M∗bfa(AI , X) such that

L̃(ϑγ) = 〈〈ψ, ϑγ〉〉M∗bfa(AI ,X),Mbfa(AI ,X) ≡
∫
I

〈ψ(t), ϑγ(dt)〉X∗,X ,(5.15)

where M∗bfa(AI , X) denotes the topological dual of the space Mbfa(AI , X).
Since by our assumption X is reflexive, under the canonical embedding of a
Banach space into its bidual, we have

B∞(I,X∗) ↪→M∗bfa(AI , X) =M∗bfa(AI , X∗∗).
It is known that a reflexive Banach space X is separable if and only if X∗ is
separable. Thus our assumption implies that X∗ is also separable. Hence, by
Pettis measurability theorem as seen in Dunford and Schwartz [9, Theorem
III.6.11, p. 149] the elements of B∞(I,X∗) are also strongly measurable func-
tions with values in X∗. So the duality pairing in (5.15) is also well defined
for ψ ∈ B∞(I,X∗). Later we show that actually ψ does belong to this smaller
space. Using the expression for ϑγ in the equation (5.15) we obtain

L̃(ϑγ) =

∫
I

〈ψ(t), G(t, xo(t))(γ − γo)(dt)〉X∗,X .(5.16)

It follows from (5.11)–(5.16) that∫
I

〈ψ(t), G(t, xo(t))(γ − γo)(dt)〉X∗,X ≥ 0 ∀ γ ∈Mad.(5.17)
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Thus we have proved the necessary condition (5.3). It remains to prove the
necessary condition given by (5.2). Using the variational equation (5.8) or
equivalently (5.9) in the above expression and integrating by parts, which can
be justified by use of Yosida approximation of the operator A as indicated in
[2, Theorem 4.1, p. 15], and using Fubini’s theorem one can derive the following
identity,

L̃(ϑγ) = 〈ψ(T ), y(T )〉X∗,X −
∫ T

0

〈y(t), dψ(t) +A∗ψ(t)dt〉X,X∗

−
∫ T

0

〈y(t), (DF )∗(t, xo(t))ψ(t)〉X,X∗dt

−
∫ T

0

〈y(t), (DG)∗(t, xo(t);ψ(t))γo(dt)〉X,X∗ ,(5.18)

where the operator valued function DG(t, xo(t); ·) is uniquely determined by
the following duality pairings,

〈DG(t, xo(t); η)ξ, x∗〉X,X∗ = 〈ξ, (DG)∗(t, xo(t); η)x∗〉Y,Y ∗
≡ 〈ξ,DG(t, xo(t);x∗)η〉Y,Y ∗

for all t ∈ I, η ∈ X, ξ ∈ Y and x∗ ∈ X∗. It is clear from the above pairings that
for each t ∈ I, (DG)∗(t, xo(t); ·) ∈ L(X,L(X∗, Y ∗)) while (DG)(t, xo(t); ·) ∈
L(X∗,L(X,Y ∗)). The dual of this operator, denoted by (DG)∗, has the prop-
erty (DG)∗(t, xo(t); ·) ∈ L(X∗,L(Y ∗∗, X∗)). As the elements of the set of ad-
missible controls Mad are Y -valued, it is clear that the restriction of (DG)∗

to Y gives (DG)∗(t, xo(t); ·) ∈ L(X∗,L(Y,X∗)). Hence the pairings in the ex-
pression (5.18) are all well defined. Since the identity (5.14), expressed by

L̃(ϑγ) = L(y), must hold it follows from the expression (5.18) that ψ must
satisfy the following equations:

ψ(T ) = Φx(xo(T )),(5.19)

dψ +A∗ψdt+ (DF )∗(t, xo(t))ψ(t)dt+ (DG)∗(t, xo(t);ψ(t))γo(dt)

= − `x(t, xo(t))ν(dt), t ∈ I.(5.20)

This is precisely the necessary condition given by the equation (5.2). The equa-
tion (5.1) is the given dynamic system with xo being the solution corresponding
to the optimal control measure γo and hence nothing to prove. To complete
the proof, it remains to show that the adjoint variable ψ, whose existence was
guaranteed by the duality pairing (see the equation (5.15)), is actually given
by the mild solution of the evolution equation (5.20) with the terminal con-
dition given (5.19). The equation (5.20), or equivalently (5.2), is a backward
linear evolution equation on the Banach space X∗ called the adjoint evolution
equation. This equation can be written in the compact form as follows,

−dψ = A∗ψ(t)dt+B∗(t)ψ(t)dt+ C∗(t;ψ(t))γo(dt) + Λν(dt),

ψ(T ) = Φx(xo(T )) ≡ ψo(T ), t ∈ I,(5.21)
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where A∗ is the conjugate (adjoint) of the semigroup generator A, B∗(t) ≡
(DF )∗(t, xo(t)), C∗(t;ψ(t)) ≡ (DG)∗(t, xo(t);ψ(t)) for all t ∈ I, and

Λν(σ) =

∫
σ

`x(t, xo(t))ν(dt) for each σ ∈ AI .

Since by our assumption `x(·, xo(·)) ∈ L1(ν,X∗), Λν is a bounded finitely addi-
tive (in this case countably additive) X∗ valued ν-continuous vector measure.
The mild solution of equation (5.21) is given by the solution of the following
linear integral equation on the Banach space X∗

ψ(t) = S∗(T − t)Φx(xo(T )) +

∫ T

t

S∗(s− t)B∗(s)ψ(s)ds

+

∫ T

t

S∗(s− t)C∗(s;ψ(s))γo(ds) +

∫ T

t

S∗(s− t)Λν(ds), t ∈ I.(5.22)

Existence and uniqueness of solution of this equation can be proved by use of
successive approximation technique. By reversal of the flow of time τ −→ T−τ
and defining ϕ(τ) = ψ(T − τ), the above backward integral equation can be
written as an equivalent forward integral equation

ϕ(τ) = S∗(τ)ϕ(0) +

∫ τ

0

S∗(τ − θ)B∗(T − θ)ϕ(θ)dθ

+

∫ τ

0

S∗(τ − θ)Λν,T (dθ)+

∫ τ

0

S∗(τ − θ)C∗(T − θ;ϕ(θ))γoT (dθ), τ ∈ I,(5.23)

where, ϕ(0) = Φx(xo(T )) ≡ ψo(T ) and both Λν,T and γoT are the time reversed
measures corresponding to the measures Λν and γo respectively in the sense
that for any σ = [t1, t2], t1, t2 ∈ [0, T ] ≡ I, Λν,T (σ) = Λν([T − t2, T − t1])
and similarly γoT (σ) = γo([T − t2, T − t1]). For convenience of notation let us
introduce the X∗-valued function h as follows

h(τ) ≡ S∗(τ)ϕ(0) +

∫ τ

0

S∗(τ − θ)Λν,T (dθ), τ ∈ I,(5.24)

and rewrite the integral equation (5.23) in the following compact form

ϕ(τ) = h(τ) +

∫ τ

0

S∗(τ − θ)B∗(T − θ)ϕ(θ)dθ

+

∫ τ

0

S∗(τ − θ)C∗(T − θ;ϕ(θ))γoT (dθ), τ ∈ I.(5.25)

We prove that this equation has a unique solution. Since `x(·, xo(·)) ∈ L1(ν,X∗)
and Φx(xo(T )) ∈ X∗ and ν is a bounded positive measure, it follows from tri-
angle inequality applied to (5.24) that

sup{‖h(τ)‖X∗ , τ ∈ I} ≤M‖Φx(xo(T ))‖X∗ +M‖`x‖L1(ν,X∗) <∞.
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Hence h ∈ B∞(I,X∗). We use successive approximation technique. Define
ϕ0 ≡ h and construct the sequence {ϕn} as follows:

ϕ1(t) = h(t) +

∫ t

0

S∗(t− θ)B∗(T − θ)ϕ0(θ)dθ

+

∫ t

0

S∗(t− θ)C∗(T − θ;ϕ0(θ))γoT (dθ), t ∈ I

ϕn+1(t) = h(t) +

∫ t

0

S∗(t− θ)B∗(T − θ)ϕn(θ)dθ

+

∫ t

0

S∗(t− θ)C∗(T − θ;ϕn(θ))γoT (dθ), t ∈ I,(5.26)

for all nonnegative integers n ∈ N0 ≡ {n ≥ 0}. Clearly, since the operator C∗
is linear in the second argument, for all n ≥ 1 we have

ϕn+1(t)− ϕn(t) =

∫ t

0

S∗(t− θ)B∗(T − θ)[ϕn(θ)− ϕn−1(θ)]dθ

+

∫ t

0

S∗(t− θ)C∗(T − θ; [ϕn(θ)− ϕn−1(θ)])γoT (dθ), t ∈ I.(5.27)

By assumption the Gâteaux derivatives of F and G are bounded and hence
there exist nonnegative constants {b, c} such that

‖ϕ1(t)− ϕ0(t)‖X∗ ≤Mb

∫ t

0

‖h(θ)‖X∗dθ +Mc

∫ t

0

‖h(θ)‖X∗ |γoT |(dθ),(5.28)

where |γoT |(·) denotes (as usual) the measure induced by its variation (on any
set in AI). Define the measure

µo(σ) ≡
∫
σ

{Mbdθ +Mc|γoT |(dθ)}, σ ∈ AI .

Clearly µo ∈ M+
bfa(AI) and hence the function β(t) ≡

∫ t
0
µo(ds), t ∈ I, is

a nonnegative monotone increasing function of bounded variation. Thus by
similar arguments as seen in the proof of Theorem 3.1, there exists a continuous
nonnegative monotone increasing function βo of bounded variation dominating
the function β in the sense that

β(t+) ≤ βo(t) for all t ∈ I, and β̇(t) < β̇o(t), for a.e t ∈ I.

Based on these facts, the inequality (5.28) can be written as

‖ϕ1(t)− ϕ0(t)‖X∗ ≤
∫ t

0

‖h(θ)‖X∗dβ(θ) ≤
∫ t

0

‖h(θ)‖X∗dβo(θ), t ∈ I.(5.29)

Similarly one can verify that

‖ϕ2(t)− ϕ1(t)‖X∗ ≤
∫ t

0

‖ϕ1(θ)− ϕ0(θ)‖X∗dβ(θ)
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≤
∫ t

0

‖ϕ1(θ)− ϕ0(θ)‖X∗dβo(θ)(5.30)

Using the inequality (5.29) in the expression (5.30) and using the fact that
h ∈ B∞(I,X∗) we find that

‖ϕ2(t)− ϕ1(t)‖X∗ ≤ ‖h‖B∞(I,X∗)(βo(t))
2/2, ∀ t ∈ I.(5.31)

Using the expression (5.27) and following similar steps we find that, for all
n ≥ 1,

‖ϕn(t)− ϕn−1(t)‖X∗ ≤ ‖h‖B∞(I,X∗)

(
(βo(t))

n/n!
)
, ∀ t ∈ I.(5.32)

Hence, for any p ≥ 1, one can easily verify that

‖ϕn+p(t)− ϕn(t)‖X∗

≤ ‖h‖B∞(I,X∗) exp{βo(t)}{(βo(t))n+1/(n+ 1)!}, t ∈ I.(5.33)

Since βo is a nonnegative monotone increasing function of bounded variation,
it follows from the above estimate that

‖ϕn+p − ϕn‖B∞(I,X∗)

≤ ‖h‖B∞(I,X∗) exp{βo(T )}{(βo(T ))n+1/(n+ 1)!}.(5.34)

Hence for any p ∈ N , letting n→∞ we arrive at the conclusion that {ϕn} is a
Cauchy sequence in the Banach space B∞(I,X∗). Thus there exists a unique

ϕo ∈ B∞(I,X∗) such that ϕn
s−→ ϕo in B∞(I,X∗). Letting n → ∞ in the

expression (5.26) we conclude that ϕo satisfies the integral equation (5.25). By
reversal of time once again, the function ψ(t) ≡ ϕo(T − t), t ∈ I, satisfies the
backward integral (5.22). This proves the existence of a unique mild solution
of the adjoint evolution equation (5.2) in the Banach space B∞(I,X∗). This
completes the proof of all the necessary conditions as stated. �

6. A convergence theorem

Using the necessary conditions of optimality one can develop a computa-
tional algorithm which can be used to obtain the optimal control. The question
whether or not the algorithm converges is important for applications. Here we
present a theorem that ensures convergence. Recall that Mad ⊂Mbfa(AI , Y )
is weakly compact. For simplicity, and only for the following theorem, we
assume that Y is also a reflexive Banach space.

Theorem 6.1. Consider the necessary conditions of optimality given by theo-
rem 5.1 and suppose Y is a reflexive Banach space. Then there exists a sequence
of control measures γn ∈Mad along which the cost functional J(γn) converges
(at least) to a local minimum.

Proof. In step 1, we choose an arbitrary element, say γ1 ∈ Mad, and solve
the state equation (5.1) giving x1 ∈ B∞(I,X). In step 2, we replace the pair
{γo, xo} with the pair {γ1, x1} in the adjoint equation (5.2) and solve it for
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ψ1 ∈ B∞(I,X∗). At this stage we have the triple {γ1, x1, ψ1}. We use this
triple in the inequality (5.3) replacing the triple {γo, xo, ψ}. This gives us the
inequality ∫

I

〈ψ1(t), G(t, x1(t))(γ − γ1)(dt)〉X∗,X ≥ 0, ∀ γ ∈Mad.(6.1)

If this inequality holds, γ1 is optimal. Instead of verifying this we proceed to
determine an element γ2 on the basis of the triple {γ1, x1, ψ1}. We rewrite the
expression on the left of the above inequality as follows:∫

I

〈ψ1(t), G(t, x1(t))(γ − γ1)(dt)〉X∗,X

=

∫
I

〈G∗(t, x1(t))ψ1(t), (γ − γ1)(dt)〉Y ∗,Y .(6.2)

At this stage we need the duality map. Let Ξ ≡ B∞(I, Y ∗), and let Ξ∗ ≡
Mbfa(AI , Y ∗∗) denote its topological dual. Since Y is a reflexive Banach space
Mbfa(AI , Y ∗∗) =Mbfa(AI , Y ). Define the duality map,

D(ξ) ≡ {η∗ ∈ Ξ∗ : 〈〈ξ, η∗〉〉 = ‖ξ‖2Ξ = ‖η‖2Ξ∗}.(6.3)

Note that, by virtue of Hahn-Banach theorem the set valued function D(ξ)
is nonempty. Letting ξ1(t) ≡ G∗(t, x1(t))ψ1(t), t ∈ I, and using the duality
map and the above expression we can rewrite the Gâteaux differential of J as
follows:

dJ(γ1; γ − γ1) =

∫
I

〈G∗(t, x1(t))ψ1(t), (γ − γ1)(dt)〉Y ∗,Y ∗∗

= 〈〈ξ1, γ − γ1〉〉Ξ,Ξ∗ .(6.4)

Taking any element η1 ∈ D(ξ1), and ε > 0 sufficiently small, we construct
γ2 ≡ γ1 − εη1 so that it is an element of the set Mad. Using γ2 in place of γ
in the above expression we obtain

dJ(γ1; γ2 − γ1) = 〈〈ξ1, γ2 − γ1〉〉Ξ,Ξ∗ = −ε‖ξ1‖2 = −ε‖η1‖2Ξ∗ .(6.5)

Using Lagrange formula we can express the cost functional J at γ2 in terms of
its value at γ1 giving

J(γ2) = J(γ1) + dJ(γ1; γ2 − γ1) + o(ε)

= J(γ1)− ε‖ξ1‖2Ξ + o(ε) = J(γ1)− ε‖η1‖2Ξ∗ + o(ε).(6.6)

Hence for ε > 0 sufficiently small, we have J(γ2) < J(γ1). Using this γ2 and
returning to step 1, and repeating the process, we construct a sequence of
controls {γn} satisfying

J(γ1) > J(γ2) > · · · > J(γn) > · · · .

Thus we have a sequence of controls along which the cost functional J decreases
monotonically. Under the assumptions of Theorem 4.6, J(γ) ≥ 0. Hence there
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exists a nonnegative number m0 such that J(γn) −→ m0. This completes the
proof. �

Remark 6.2. In the above convergence theorem we assumed Y to be reflexive.
It should be interesting to relax this assumption.

7. Purely impulsive controls

Purely impulsive controls, or purely atomic measures as controls used ex-
tensively in applications [7], are given by a series of Dirac measures. Let {αi}
be a sequence of nonnegative real numbers and define the scalar valued mea-
sure ν(dt) ≡

∑
i≥1 αiδti(dt). Clearly the total variation norm of ν is given by

|ν| =
∑
αi provided the series is convergent. We assume that α ≡ {αi} ∈ `1.

Let Y0 be a weakly compact convex subset of Y and letMδ denote the following
set of discrete vector measures:

Mδ ≡
{
γ ∈Mbfa(ΣI , Y ) :

γ(dt) =
∑
i≥1

αiyiδti(dt) : αi ≥ 0, (αi) ∈ `1 and yi ∈ Y0

}
,

where ti ∈ I0 ≡ {ti, i ∈ N, 0 < t1 < t2 < · · · < tκ < · · · < T}. It is
clear that the total variation norm of any element of this family is given by
‖γ‖ =

∑
i≥1 αi‖yi‖Y provided that {‖yi‖Y }i≥1 ∈ `∞. Since by assumption Y0

is weakly compact (so bounded) this is automatically satisfied. The reader
can easily verify that the family of measures Mδ satisfies all the conditions
of Lemma 4.1. Thus by Lemma 4.1, the set Mδ is a weakly compact subset
of Mbfa(AI , Y ). Let I0 ≡ {ti, i ∈ N}. In this case the system (2.1) can be
represented by the following pair of equations:

dx(t) = Ax(t)dt+ F (t, x(t))dt, x(0) = x0, t ∈ I \ I0,(7.1)

∆x(ti) = G(ti, x(ti))γ({ti}), ti ∈ I0,(7.2)

where ∆x(ti) denotes the jump at time ti. The cost functional is given by

J(γ) ≡
∫ T

0

`(t, x(t))ν(dt) + Φ(x(T ))

=
∑

αi`(ti, x(ti)) + Φ(x(T )).(7.3)

The necessary conditions of optimality corresponding to the admissible set
Mδ is given by the following corollary.

Corollary 7.1. Consider the system (7.1)-(7.2) with the cost functional (7.3).
In order that a control measure γo(≡

∑
αiy

o
i δti(dt) ∈Mδ) and the correspond-

ing solution xo ∈ B∞(I,X) (of equations (7.1)-(7.2)) be optimal, it is necessary
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that there exists a ψo ∈ B∞(I,X∗) such that the triple {γo, xo, ψo} satisfies the
following equations and inequalities:

dxo = Axodt+ F (t, xo(t))dt, x(0) = x0, t ∈ I \ I0,(7.4)

∆xo(ti) = αiG(ti, x
o(ti))y

o
i , i ∈ N, ti ∈ I0,(7.5)

−dψo = A∗ψodt+DF ∗(t, xo(t))ψo(t)dt,(7.6)

ψo(T ) = Φx(xo(T )), t ∈ I \ I0,
−∆ψo(ti) = αi(DG)(ti, x

o(ti);ψ
o(ti))y

o
i + αi`x(ti, x

o(ti)), i ∈ N,(7.7)

and ∑
i

αi〈ψo(ti), G(ti, x
o(ti))yi〉X∗,X

≥
∑
i

αi〈ψo(ti), G(ti, x
o(ti))y

o
i 〉X∗,X , ∀ yi ∈ Y0.(7.8)

Proof. Proof readily follows from Theorem 5.1 by choosing Mδ as the set of
admissible controls. �

Remark 7.2. It follows from the expression (7.8) that∑
i

αi〈ψo(ti), G(ti, x
o(ti))yi〉X∗,X

=
∑
i

αi〈G∗(ti, xo(ti))ψo(ti), yi〉Y ∗,Y ≡
∑
i

Li(yi).

It is clear that, for each index i, G∗(ti, x
o(ti))ψ

o(ti) ∈ Y ∗. Hence each Li is a
continuous linear functional on Y. Since by assumption Y0 is a weakly compact
subset of the Banach space Y, each Li attains its minimum on Y0. Thus the
existence of {yoi } minimizing the linear functional is obvious.

Remark 7.3. In the field of vector measures, the measure ν appearing in Lemma
4.1 is known as the Rybakov control [8] for the set Mad. This measure plays
an important role in the characterization of weak compactness of the setMad.
Practical implication is that, in the case of discrete measures, this determines
the temporal positions (distribution) of the impulses and the number of such
impulses in the set Mδ.

An Open Problem. Given a weakly compact setMad ⊂Mbfa(AI , Y ), does
there exist a µ∗ ∈ M+

bfa(AI) that dominates the family Mad set wise. The
author is not aware of any such result. However we have seen that one can
construct a dominating submeasure.
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