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Injectivity radius of manifolds with a Lie structure at infinity

Quang-Tu Bui

Abstract

Using Lie groupoids, we prove that the injectivity radius of a manifold with a Lie structure at

infinity is positive.

Introduction

Manifolds with a Lie structure at infinity were introduced by Ammann, Lauter and Nistor in [1], forming
a class of non-compact complete Riemannian manifolds of infinite volume. In the same article, they con-
jectured that the injectivity radius of a (connected) manifold with Lie structure at infinity is positive. In
this paper, we give a proof of this conjecture using the associated groupoid given by [5] and [6]. Together
with the results from [1], this implies that manifolds with a Lie structure at infinity are of bounded
geometry. In particular, the hypothesis of injectivity radius in [2] is now automatically satisfied, as well
as in [3], where positivity of the injectivity radius is used to obtain uniform parabolic Schauder estimates.
Bounded geometry also yields uniform elliptic Schauder estimates, see [4] for a recent application in this
direction.
Acknowledgement. The author thanks his PhD advisor Frédéric Rochon for suggesting the problem
and the approach, and also wishes to thank Bernd Ammann, Claire Debord and Victor Nistor for helpful
discussions.

1 Preliminaries

Following [1] and [8], we recall some definitions and facts.

Definition 1.1. A groupoid is a small category G in which every morphism is invertible.

The objects of the category are also called units, and the set of units is denoted by G0. The set of
morphisms is denoted by G1. The range and domain maps are denoted respectively r, d : G1 → G0. The
multiplication operator µ is defined on the set of composable pairs of morphisms by:

µ : G2 = G1 ×G0 G1 = {(g, h) : d(g) = r(h)} → G1

The inversion operation is a bijection ι : g 7→ g−1 of G1. The identity morphisms give an inclusion
u : x 7→ idx of G0 into G1.

Definition 1.2. An almost differentiable groupoid G = (G0, G1, d, r, µ, u, ι) is a groupoid such that G0

and G1 are manifolds with corners ([7]), the structural maps d, r, µ, u, ι are differentiable, and the domain
map d is a submersion.

Consequently, for an almost differentiable groupoid, ι is a diffeomorphism, r = d ◦ ι is a submersion and
each fiber Gx = d−1(x) ⊂ G1 is a smooth manifold whose dimension n is constant on each connected
component of G0.
Following the convention in [5, p. 578], we require G0 and d−1(x) to be Hausdorff (for all x ∈ G0), but
not necessarily G1 to avoid excluding important cases.
From now on, Lie groupoid will stand for almost differentiable groupoid, manifold will stand for manifold
with corners and smooth manifold will stand for manifold wihout corners.
A Lie groupoid is called d-simply connected if its d-fibers Gx = d−1(x) are simply connected ([5]).

Definition 1.3. A Lie algebroid A over a manifold M is a vector bundle A over M , together with a Lie
algebra structure on the space Γ(A) of smooth sections of A and a bundle map ρ : A → TM , extended
to a map ρΓ : Γ(A) → Γ(TM) between sections of these bundles, such that

1. ρΓ([X,Y ]) = [ρΓ(X), ρΓ(Y )]
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2. [X, fY ] = f [X,Y ] + (ρΓ(X)f)Y

for any smooth sections X and Y of A and any smooth function f on M .

There is a Lie algebroid A(G) associated to a Lie groupoid G, constructed as follows: let TvertG =
kerd∗ = ∪x∈G1TGx ⊂ TG1 be the vertical bundle over G1. Then A(G) = TvertG|G0 is the structural
bundle of the Lie algebroid over G0. The anchor map is given by

r∗|A : A → TG0

([2]). The Lie bracket of Γ(A) is the Lie bracket of Γ(TvertG) restricted to right invariant sections.

Definition 1.4. A Lie algebroid A over a manifold M is said to be integrable if there exists a Lie
groupoid G such that G0 = M and A is isomorphic to the Lie algebroid associated to G. G is said to
integrate A.

Remark 1.5. There might be more than one Lie groupoid integrating a Lie algebroid. However, by [5,
Lie I], if a Lie algebroid over a smooth manifold is integrable, there is a unique d-simply connected Lie
groupoid integrating it.

Example 1.6. 1. Any Lie group is a Lie groupoid with the set of units being a singleton.

2. ([8, Example 4, Section 4]) Let M be a smooth manifold. Let M̃ be the universal covering of M .

Let H = (M̃ × M̃)/π1(M). Then H is naturally a d-simply connected Lie groupoid with the set of
units being M , and the associated Lie algebroid being id : TM → TM . It is called the homotopy
groupoid.

3. The space of continuous paths on a topological space modulo homotopy equivalence forms a
groupoid which is called the fundamental groupoid.

We recall the definitions and basic properties of manifolds with Lie structures at infinity. For details and
proofs, we refer to [1].

Definition 1.7. A structural Lie algebra of vector fields on a manifold M (possibly with corners) is a
subspace V ⊂ Γ(TM) of the real vector space of vector fields on M with the following properties:

1. V is closed under Lie brackets;

2. V is a finitely generated projective Γ(M)-module;

3. The vector fields in V are tangent to all faces in M .

Denote by Vb(M) ⊂ Γ(TM) the subspace of vector fields tangent to all faces in M . This is a structural
Lie algebra of vector fields, and any structural Lie algebra is a subspace of Vb(M) ([1, Example 2.5]).
By the Serre-Swan theorem, given a structural Lie algebra of vector fields V on M , there exists a vector
bundle A = AV → M such that V ≃ Γ(AV), and there exists a natural vector bundle map ρ : AV → TM
such that the induced map ρΓ : Γ(AV ) → Γ(TM) is identified with the inclusion map V ⊂ Γ(TM). The
vector bundle AV is then a Lie algebroid with anchor map ρ.

Definition 1.8. A Lie structure at infinity on a smooth manifold M0 is a pair (M,V), where

1. M is a compact manifold, possibly with corners, and M0 is the interior of M;

2. V is a structural Lie algebra of vector fields on M ;

3. ρ : AV → TM induces an isomorphism on M0, that is, ρ|M0
: A|M0

→ TM0 is an isomorphism of
vector bundles.

Definition 1.9. A Riemannian manifold with a Lie structure at infinity is a manifold with a Lie structure
at infinity (M,V) endowed with a bundle metric g on A = AV . In particular, g defines a Riemannian
metric on M0 via the anchor map.

A Riemannian manifold with a Lie structure at infinity has infinite volume ([1, Proposition 4.1]), bounded
curvature ([1, Corollary 4.3]) and is complete ([1, Corollary 4.9]). Sufficient conditions for the positivity
of the injectivity radius are given in [1, Theorem 4.14] and [1, Theorem 4.17].
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2 Injectivity radius of a manifold with Lie structure at infinity

The following theorem is due to Debord ([6, Theorem 2], see also [5, Corollary 5.9]).

Theorem 2.1 (Debord). Every almost injective Lie algebroid over a smooth manifold is integrable.

This has the following implication for Lie structures at infinity.

Theorem 2.2. Any Lie algebroid over a manifold with corners associated with a Lie structure at infinity
is integrable.

Proof. This extension of Theorem 2.1 to manifolds with corners is well-known to experts. However, since
no explicit proof seems to be available in the literature, we will provide one for the convenience of the
readers.
Let (M,V) be a Lie structure at infinity of M0 and A = AV be the corresponding structural vector bundle.
Taking two copies of M and gluing them along a maximal subset of disjoint boundary hypersurfaces,
we obtain a compact manifold with corners M1 with at least one hypersurface less. Repeating this
operation finitely many times, we obtain a closed manifold M̃ with a finite group Γ acting on M̃ such
that M̃/Γ ≃ M topologically. Now, by [7, Exercise 1.6.2], M is naturally an orbifold. Changing

the smooth structure on M̃ , one can in fact ensure that the quotient map q : M̃ → M is such that
q∗(C∞(M)) = C∞(M̃)Γ = {f ∈ C∞(M̃) : ∀g ∈ Γ, f ◦ g = f}. In a suitable local chart, q can be written
as (x1, . . . , xk, xk+1, . . . , xn) 7→ (x2

1, . . . , x
2
k, xk+1, . . . , xn) where k is the depth of the point (0, 0, . . . , 0).

Let Ṽ = C∞(M̃)⊗
C∞(M̃)Γ

q∗V ⊂ X(TM̃) be the pull-back of the structural vector fields. For instance, if

Vb(M) is the space of vector fields tangent to the faces of M , then Ṽb(M) is the space of vector fields on

M̃ which are tangent to q−1(∂M) (the union of some closed submanifolds of M̃).

Now, Ṽ is a finitely generated projective C∞(M̃)-module. To see this, it suffices to show that Ṽ is locally

free of rank k for some k. Given p ∈ M̃ , then since V is locally free of rank k for some k, there exist
v1, . . . , vk ∈ V which locally and freely span V near q(p). This means Ṽ is locally and freely spanned by

q∗v1, . . . , q
∗vn ∈ Ṽ near p, showing that Ṽ is locally free of rank k as claimed.

By the Serre-Swan theorem, we have a vector bundle A
Ṽ

over M̃ with the space of smooth sections

C∞(M̃,A
Ṽ
) = Ṽ . Clearly the inclusions Ṽ ⊂ Ṽb ⊂ C∞(M̃, T M̃) induce an anchor map, so that A

Ṽ

is naturally an almost injective Lie algebroid. By the Theorem 2.1 and the Remark 1.5, there exists
therefore a d-simply connected groupoid G̃ integrating A

Ṽ
. Each element g ∈ Γ induces an automorphism

ρ(g) : A
Ṽ

→ A
Ṽ

, and by Lie II, an automorphism on G̃. Hence we have an action of the group Γ over

G̃. The quotient G̃/Γ is then the desired d-simply connected Lie groupoid integrating (M,V).

Let M0 be a connected smooth manifold with a Lie structure at infinity (M,V). By Theorem 2.2, there
exists a d-simply connected groupoid G = (M,G1, d, r, µ, u, ι) with units M such that A(G) ≃ A as Lie
algebroids over M . Therefore A(G) is equipped with an inner product also noted g. The anchor map is
given by r∗ : A(G) → TM .
We have an isomorphism r∗A(G) ≃ TvertG where r∗A(G) is the pull-back of A(G) via the range map
r : G → M ([2, (19)]). Explicitly, for p ∈ G, (r∗A(G))p = A(G)r(p) = Tr(p)Gr(p). The vector bundle
r∗A(G) is equipped with a metric induced by the metric g on A(G), hence so is TvertG. Therefore each
Gx becomes a Riemannian manifold for all x ∈ M .
Let Gx

x = {g ∈ Gx : r(g) = x}. For x ∈ M0, G
x
x is a discrete group since TxG

x
x is of dimension 0 (being

the kernel of the map r∗ : A(G)x → TxM0).

Lemma 2.3. ([2, page 733]) If A → TM is the Lie algebroid associated with a Lie structure at infinity
and G is the corresponding d-simply connected Lie groupoid, then for all x ∈ M0, r : Gx → M0 is a
covering map with group Gx

x.

Proof. By [5, Proposition 1.1], for all x ∈ M0, r(Gx) ⊂ M0 (which is the leaf of the singular foliation
of A passing by x). On the other hand, G|M0

is the unique d-simply connected Lie groupoid which

integrates TM0, and therefore it isomorphic to the homotopy groupoid (M̃0×M̃0)/π1(M0). Consequently,
M0 = r(Gx) for all x ∈ M0.
Now, by definition of a Lie structure at infinity, r∗ : TyGx → Tr(y)M0 is an isomorphism. This means
that r : Gx → M0 is a local diffeomorphism. Moreover, g1, g2 ∈ Gx with r(g1) = r(g2) if and only if
there exists h = g−1

1 g2 ∈ Gx
x such that g2 = g1h. That is, r : Gx → M0 is a covering map with group

Gx
x.
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Theorem 2.4. Let M0 be a connected smooth manifold with a Lie structure at infinity (M,V). Then
for any Riemannian metric g on A, the injectivity radius of (M0, g) is positive.

Proof. We prove the theorem by contradiction. Suppose that the injectivity radius of (M0, g) is zero,
then, as the curvature is bounded, there is a sequence of geodesic loops ci : [0, ai] → M0, parametrized by
arc-length, with ai → 0. By compactness of M , we can suppose that ci(0) converges to a point p ∈ M .
We have p ∈ ∂M since the injectivity radius is positive in any compact region of M0.
Let U be a local chart of M containing p such that U is contractible.

Lemma 2.5. There exists a number N > 0 such that ∀n > N , the loop cn is contained in U .

Proof. Let (x1, . . . , xk, y1, . . . , yl) be a set of local coordinates centered at the point p with xi ≥ 0 for all

i and p = (0, . . . , 0). Let gb =
∑k

i=1
dx2

i

x2

i

+
∑l

i=1 dy
2
i be a local b-metric and g0 =

∑k

i=1 dx
2
i +

∑l

i=1 dy
2
i

be a local metric with boundary. Since the structural vector fields are tangential vector fields (V ⊂ Vb),
taking U smaller if needed, there exist constants C,K > 0 such that g ≥ Cgb ≥ CKg0 in U ∩M0. Let
lt(ci), l

t
b(ci), l

t
0(ci) denote the lengths of the segment [ci(0), ci(t)] (of the geodesic loop ci) with respect to

the metric g, the local b-metric gb and the local metric with boundary g0 respectively (suppose that the
segment is contained in U). Let ε > 0 be such that B0(p, ε) = {x ∈ R

k
+ × R

l : d0(x, p) < ε} ⊂ U (where
d0 is the distance with respect to the metric g0, well-defined on B0(p, ε)). Since ai → 0, there exists N1

such that ai < min( ε4 , CK ε
4 ) for all i > N1. Since ci(0) → p, there exists N2 such that d0(p, ci(0)) <

ε
4

for all i > N2. Let N = max(N1, N2).
Now let n be any number greater than N . Suppose that the loop cn is not contained in U . Then it is
not contained in B0(p,

ε
2 ). Thus there exists t ∈ [0, an] minimal such that d0(cn(t), p) = ε

2 . Then we
have d0(cn(0), cn(t)) ≥ |d0(cn(t), p) − d0(cn(0), p)| ≥

ε
4 , which implies ai = l(ci) ≥ lt(ci) ≥ CKlt0(ci) ≥

CKd0(cn(0), cn(t)) ≥ CK ε
4 , which is a contradiction. Therefore the loop cn is contained in U .

The lemma is proven.

Hence, without loss of generality, we can suppose that the loops are contained in U .
Denote by G = (M,G1, d, r, µ, u, ι) the d-simply connected groupoid integrating AV → TM . Since
U is contractible, the fundamental class of each loop ci is trivial, therefore by Lemma 2.3 we can lift
ci to a geodesic loop c̃i in Gci(0) (i.e. c̃i : [0, ai] → r−1(U) ∩ Gci(0)) such that the base points are
c̃i(0) = c̃i(ai) = ci(0) = ci(ai).
Let S(TvertG) = {x ∈ TvertG : ‖x‖ = 1}. We have a natural projection π : S(TvertG) → G1. On
S(TvertG) we have a flow Ψ which, over each d-fiber Gx of d : G1 → G0, corresponds to the geodesic
flow of Gx. The geodesic loops on Gx correspond to segments [Pi, Qi] of the flow Ψ on S(TGx) (with

Qi = Ψai
(Pi)). We have two sequences Pi = (c̃i(0), ˙̃ci(0)) and Qi = (c̃i(ai), ˙̃ci(ai)) in S(A) ⊂ S(TvertG).

By compactness of S(A) and M , there exists a subsequence such that Pi → P ∈ S(TGp) and Qi → Q ∈
S(TGp).

Since ai → 0, we have P = Q. In a local chart, we can write (Qi−Pi

ai

, ci(0)) → (w, p). Since ai → 0,

w = Ψ̇(P ). Since Pi, Qi ∈ (S(A))ci(0) for all i, w is tangent to the fiber S(A)p = S(TGp), which is a
contradiction (for Ψ is the geodesic flow over Gp).

Remark 2.6. In [1], a flow Φ is defined on S(A) extending the geodesic flow on S(TM0). However, Φ
itself is not quite a geodesic flow since typically it has fixed points at the boundary. Our approach does
not seem to work with this flow. Indeed, to each geodesic loop ci : [0; ai] → M0, we have a corresponding
segment Φi : [0; ai] → S(A). By considering a convergent subsequence, the limit of (ci(0), ċi(0)) is a
point v contained in ∂S(A) = S(A)|∂M . The limit of ci(0) is a point p = π(v) in ∂M . In the notations of
[1], we have (π#r∗)(Hv(v)) = 0 and r∗(v) = 0. In particular, the flow Φ at v is stationary: ∀t,Φt(v) = v.
This, however, is not sufficient to obtain a contradiction, since at the boundary, Φ may have some fixed
points as mentioned above.
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