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AN EXOTIC GROUP AS LIMIT OF FINITE SPECIAL
LINEAR GROUPS

by Alessandro CARDERI & Andreas THOM

Abstract. — We consider the Polish group obtained as the rank-completion of
an inductive limit of finite special linear groups. This Polish group is topologically
simple modulo its center, it is extremely amenable and has no non-trivial strongly
continuous unitary representation on a Hilbert space.
Résumé. — Nous étudions un groupe polonais obtenu comme complétion de

la limite inductive de groupes linéaires spéciaux finis munis de la distance induite
par le rang. Ce groupe polonais est topologiquement simple modulo son centre,
extrêmement moyennable et n’a pas de représentations fortement continues non
triviales sur un espace de Hilbert.

Introduction

Let Fq be a finite field with q = ph elements and let SLn(q) be the
special linear group over Fq. We denote by r(k) the rank of a matrix k ∈
Mn(Fq). We equip the groups SLn(q) with the (normalized) rank-distance,
d(g, h) := 1

n r(g − h) ∈ [0, 1]. Note that d is a bi-invariant metric, which
means that it is a metric such that d(gh, gk) = d(h, k) = d(hg, kg) for every
g, h, k ∈ SLn(q). For every n ∈ N, we consider the diagonal embedding

ϕn : SL2n(q)→ SL2n+1(q), defined by ϕn(g) :=
(
g 0
0 g

)
.

Observe that for every n, ϕn is an isometric homomorphism. We denote
by A0(q) the countable group arising as the inductive limit of the family
{(SL2n(q), ϕn)}n and observe that we can extend the rank-metric d canon-
ically to A0(q). Let A(q) be the metric-completion of A0(q) with respect

Keywords: Polish groups, von Neumann regular rings, extreme amenability and repre-
sentation theory.
2010 Mathematics Subject Classification: 54H11, 16E50, 43A07, 43A65.



258 Alessandro CARDERI & Andreas THOM

to d, i.e., A(q) is a Polish group and the natural extension of the rank-
metric is complete and bi-invariant. The purpose of this note is to study
the topological group A(q).
In many ways one can think of A(q) as a finite characteristic analogue

of the unitary group of the hyperfinite II1-factor, which arises as a certain
metric inductive limit of the sequence of unitary groups U(2) ⊂ U(4) ⊂
U(8) ⊂ . . . , analogous to the construction above. However, the group A(q)
reflects at the same time in an intrinsic way asymptotic properties of the
sequence of finite groups SLn(q), in particular of the interplay of group
structure, normalized counting measure, and normalized rank-metric. In
this note we want to develop this analogy and prove various results that
show similarities but also differences to the II1-factor case. Some of the
techniques that we are using are inspired by the theory of von Neumann
algebras whereas others are completely independent.
Our main result is the following theorem.

Theorem. — The Polish group A(q) has the following properties:
• every strongly continuous unitary representation of A(q) on a
Hilbert space is trivial,

• the group A(q) is extremely amenable,
• the center of A(q) is isomorphic to F×q and the quotient by its center
is topologically simple,

• it contains every countable amenable group and, in case q is odd,
the free group on two generators as discrete subgroups.

Before we start recalling some of the concepts that are used in the state-
ment of the theorem, let us make some further remarks. In a similar way,
one can form an inductive limit of unital rings

Fq ⊂M2(Fq) ⊂M4(Fq) ⊂ · · · ⊂M0(Fq) ,

where again, the normalized rank-metric allows to complete M0(Fq) to a
complete von Neumann regular ring M(Fq). Following von Neumann, we
can view M(Fq) as the coordinatization of a continuous geometry, see [26]
for more details. The unit group of this ring is naturally isomorphic to A(q).
Indeed, any invertible element in M(Fq) must be the limit of invertible
elements and a rank-one perturbation takes care of the determinant. Note
that the algebraM(Fq) does not depend on the special choice of inclusions.
Indeed, Halperin showed in [18] that (in complete analogy to the II1-factor
situation) any choice whatsoever yields the same algebra. We thank Gábor
Elek for pointing out Halperin’s work.
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AN EXOTIC GROUP AS LIMIT OF FINITE SPECIAL LINEAR GROUPS 259

Unitary representability

We recall that a group is unitarily representable if it embeds in the
unitary group of a Hilbert space as a topological group and it is exotic
if every continuous unitary representation on a Hilbert space is trivial,
see [3]. While all second countable locally compact groups are unitarily
representable (via the regular representation) there are several examples
of Polish groups that are not unitarily representable. For example, the
Banach space `p is unitarily representable if and only if 1 6 p 6 2, [24], see
also [11, 12]. The first example of an exotic group was found by Herer and
Christensen in [19] and a surprising result of Megrelishvili, [25], states that
the group of orientation preserving homeomorphisms of the interval has no
non-trivial unitary representation (not even a representation on a reflexive
Banach space). However, most of the known examples of exotic groups are
either abelian or do not have a compatible bi-invariant metric.

Amenability and extreme amenability

A topological group is said to be amenable if there exists an invariant
mean on the commutative C∗-algebra of left-uniformly continuous complex-
valued functions on the group. It is a standard fact that any topological
group that admits a dense locally finite subgroup is amenable. In particular,
the group A(q) is amenable for any prime-power q. See [4, Appendix G] for
more details.
A topological group is said to be extremely amenable if each continuous

action of the group on a compact topological space admits a fixed point.
See [28] for more details. Let us remark that every amenable exotic group
is extremely amenable. Indeed, by amenability, any action on a compact
space preserves a probability measure; since the Koopman representation
of the action is by hypothesis trivial, the measure has to be a Dirac mea-
sure. The first example of an extremely amenable group was found by Herer
and Christensen and they proved extreme amenability exactly by showing
that the group is amenable and exotic. Nowadays, several examples of ex-
tremely amenable groups are known, for example the unitary group of a
separable Hilbert space [17], the automorphism group of a standard proba-
bility space [13], and the full group of a hyperfinite equivalence relation [14].
However as for the previous property, most of the known examples do not
have a compatible bi-invariant metric.
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260 Alessandro CARDERI & Andreas THOM

Generalizations and Open problems

The proof of the theorem is robust and can be generalized to other (in-
ductive) sequences of non-abelian finite (quasi-)simple groups of increasing
rank. Let us finish the introduction by listing a number of open problems
that we find interesting and challenging.

• Is A(q) contractible?
• Is A(q)/F×q simple?
• Does it have a unique Polish group topology?
• More generally, is every homomorphism from A(q) to another Polish
group automatically continuous?

• Does it have (isometric) representations on a reflexive Banach
space?

• Does A(q)/F×q have the bounded normal generation property,
see [5]?

The first question has a positive answer in the case of the hyperfinite II1-
factors by work of Popa–Takesaki [30], but we were unable to generalize the
methods to our setting. A more detailed study of the more basic properties
of the algebrasM(Fq) and their unit groups A(q) will be subject of another
study.

1. No non-trivial unitary representations

In this first section, we will prove that A(q) has no non-trivial continuous
representation on a Hilbert space, that is we will show that A(q) is exotic.

Definition 1.1. — A complex continuous function ψ on a Polish group
G is positive definite if ψ(1G) = 1 and for every a1, . . . , an ∈ C and all
g1, . . . , gn ∈ G, we have

n∑
i,j=1

aiājψ(g−1
j gi) > 0 .

A positive definite function χ is a character if it is conjugation invariant,
that is for every g, h ∈ G, we have χ(hgh−1) = χ(g).

We will use some easy facts about positive definite functions which are
covered in the Appendix C of [4]. For example the Cauchy–Schwarz in-
equality for positive functions implies that such functions have their maxi-
mal value at the identity so that any positive definite function is bounded
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AN EXOTIC GROUP AS LIMIT OF FINITE SPECIAL LINEAR GROUPS 261

in absolute value by 1. We say that a positive definite function is trivial if
ψ(g) = 1 for every g ∈ G. Every positive definite function ψ also satisfies the
following standard inequality, which can be found in [4, Proposition C.4.2]:

(?) |ψ(g)− ψ(h)|2 6 2(1−Re(ψ(g−1h))) .

There is an important relation between positive definite functions and
unitary representations: the GNS construction; any positive definite func-
tion gives rise to a unitary representation and the diagonal matrix co-
efficients of any unitary representation are positive definite functions. In
particular, a group without any non-trivial continuous positive definite
function has no non-trivial strongly continuous unitary representation on
a Hilbert space, see [4, Appendix C] for more informations.

The following useful proposition will be needed in the course of the proof.

Proposition 1.2. — Let n,m ∈ N. The canonical inclusion SL2n(q) ↪→
A0(q) extends to an isometric homomorphism SL2n(q2m) ↪→ A0(q).

Proof. — For every k, the field F
q2k+1 is an algebraic extension of de-

gree 2 of F
q2k , hence there exists σk ∈ F

q2k+1 such that {1, σk} is a F
q2k -

base of F
q2k+1 and there are αk, βk ∈ F

q2k such that σ2
k = αkσk + βk. For

every k, and for every g ∈ SL2n(q2k+1) there are g0, g1 ∈ M2n(F
q2k ) such

that g = g0 + σkg1. We define

In,k : M2n

(
q2k+1

)
→M2n+1

(
q2k
)
, as In,k(g) :=

(
g0 βkg1
g1 g0 + αkg1

)
.

It is a straightforward computation to show that for every g, h ∈
M2n(F

q2k+1 ), we have that In,k(gh) = In,k(g)In,k(h). Moreover, if g ∈
SL2n(q), then det(In,k(g)) = 1:

det
(
g0 βkg1
g1 g0 + αkg1

)
= det

(
g0 + σkg1 σkg0 + (αkσk + βk)g1

g1 g0 + αkg1

)
= det

(
g0 + σkg1 0

g1 g0 + (αk − σk)g1

)
by hypothesis det(g0 + σkg1) = 1 and αk − σk is the Galois-conjugate of
σk, hence det(g0 + (αk −σk)g1) = 1. This proves that In,k : SL2n(q2k+1)→
SL2n+1(q2k ) is a well-defined group homomorphism. The homomorphism
In,k is also isometric, in fact v = v0 +σkv1 ∈ ker(g) if and only if (v0, v1) ∈
ker(In,k(g)). Composing the maps

Im+n−1,0 ◦ · · · ◦ In+1,m−2 ◦ In,m−1 : SL2n(q2m

)→ SL2n+m(q)
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262 Alessandro CARDERI & Andreas THOM

we obtain an inclusion SL2n(q2m) ↪→ A0(q) that extends the standard in-
clusion SL2n(q) ↪→ A0(q). This finishes the proof. �

Remark 1.3. — Using the idea in the proof of Proposition 1.2, one can
even show that the inclusion SL2n(q) ↪→ A0(q) extends to SL2n(q2∞) :=
∪n SL2n(q2m), a special linear group over an infinite field. The characters
of the group SL2n(q2∞) were completely classified by Kirillov [20] for n > 1
and by the work of Peterson and the second author [29] for n = 1. Any
non-trivial irreducible character of SL2n(q∞) is induced by its center, that
is, χ(g) = χ(h) for every non-central g, h ∈ SL2n(q∞). This can be used
in a straightforward way to show that the group A(q) has no non-trivial
continuous character. Note that Alt(2n) ⊂ SL2n(q) and that also the work
of Dudko and Medynets [7] can be invoked to study characters on A(q).
Now, Theorem 2.22 of [1] states that any amenable Polish group which

admits a complete bi-invariant metric is unitary representable if and only
if its characters separate the points. Whence, our observation from above
implies readily that A(q) cannot be embedded into any unitary group of a
Hilbert space as a topological group. Note that only recently, non-amenable
polish groups with a complete bi-invariant metric were found, which are
unitarily representable but fail to have sufficiently many characters, see [2].

In order to show that A(q) does not have any unitary representation on a
Hilbert space, we will show that every continuous positive definite function
is trivial. For this, we need the following lemma.

Lemma 1.4. — Let q be a prime power and let ψ : SLn(q) → C be a
positive definite function. If there exists a non-central element g ∈ SLn(q)
such that |1 − ψ(x−1gx)| < ε for some ε ∈ (0, 1) and for all x ∈ SLn(q),
then

|1− ψ(h)| < 9(2ε+ 16/q)1/2, ∀ h ∈ SLn(q) .

Proof. — We set

χ(h) := 1
|SLn(q)|

∑
x∈SLn(q)

ψ(x−1hx)

and note that χ : SLn(q)→ C is a character. Hence, we can write

χ(h) = λ+
∑
π

λπχπ(h) , h ∈ SLn(q) ,

where π runs through the non-trivial irreducible representations π of
SLn(q), χπ denotes the normalized character of π, and λ +

∑
π λπ = 1,

λ > 0 and λπ > 0 for all π. By a result of Gluck ([15, Theorem 3.4 and
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Theorem 5.3]), for every non-central element h ∈ SLn(q) and every non-
trivial, normalized, and irreducible character χπ we have |χπ(h)| < 8/q. By
our assumption |1− χ(g)| < ε and thus

λ = χ(g)−
∑
π

λπχπ(g) > 1− ε− 8/q .

We conclude that

|1− χ(h)| 6 |χ(h)− λ|+ (1− λ) 6 2(1− λ) < 2ε+ 16/q , ∀ h ∈ SLn(q) .

For fixed h, the preceding inequality, Markov’s inequality and the fact that
ϕ is bounded in absolute value by 1 imply that∣∣{x ∈ SLn(q)

∣∣ |1− ψ(x−1hx)| > 3(2ε+ 16/q)
}∣∣ 6 |SLn(q)|

3
and hence that at least 2/3 of all elements in the conjugacy class of h satisfy

|1− ψ(k)| < 3(2ε+ 16/q) .

Since this holds for all conjugacy classes, we can set

A := {k ∈ SLn(q) | |1− ψ(k)| < 3(2ε+ 16/q)}

and conclude that |A| > 2/3 · |SLn(q)|. Therefore for any h ∈ SLn(q), the
set A ∩ hA−1 6= ∅ and thus there exist k1, k2 ∈ A such that h = k1k2. So
the inequality (?) yields

|ψ(k1)− ψ(h)|2 6 2(1−Re(ψ(k2))) 6 6(2ε+ 16/q)

and hence

|1− ψ(h)| 6|ψ(1)− ψ(k1)|+ |ψ(k1)− ψ(h)|

63(2ε+ 16/q) + (6(2ε+ 16/q))1/2 6 9(2ε+ 16/q)1/2 .

This proves the claim. �

Let us now fix a positive definite function ψ : A(q) → C. Let ε > 0
and choose δ > 0 such that d(1A(q), x) < δ implies |1 − ψ(x)| < ε. For n
large enough, the group SL2n(q) will contain a non-central element g with
d(1A(q), g) < δ. By conjugation invariance of the metric, we conclude that
|1 − ψ(xgx−1)| < ε for all x ∈ A(q). Moreover, SL2n(q) ⊂ SL2n(qm) ⊂
A(q) as explained in Proposition 1.2. So applying the previous lemma to
SL2n(qm), we get that the restriction of ψ to SL2n(q) satisfies

|1− ψ(h)| < 9(2ε+ 16/qm)1/2 , ∀ h ∈ SL2n(q) .

Since this holds for any m ∈ N, we conclude that |1− ψ(h)| 6 9(2ε)1/2 for
all h ∈ SL2n(q) and n large enough. Since ε > 0 was arbitrary, we must
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264 Alessandro CARDERI & Andreas THOM

have that the restriction of ψ to any SL2n(q) is trivial, and hence by density
of A0(q) in A(q) we can conclude the proof.

Remark 1.5. — For the proof of our main theorem, it is not necessary to
apply Gluck’s concrete estimates. Indeed, it follows already from Kirillov’s
work on characters of SLn(k) for infinite fields k [20] that character values
of non-central elements in SLn(q) have to be uniformly small as q tends to
infinity. This is enough to conclude the proof. One can see the existence
of small uniform bounds either by going through the techniques in Kir-
illov’s proof (see also [29, proof of Theorem 2.4]) or by applying Kirillov’s
character rigidity to a suitable ultra-product of finite groups SLn(q) (for n
fixed and q variable) which can be identified with SLn(k), where k is the
associated ultraproduct of finite fields, which is itself an infinite field.

2. A second route to extreme amenability

2.1. Lévy groups

As outlined in the beginning, every amenable and exotic group is ex-
tremely amenable. However, there is a different route to extreme amenabil-
ity using the phenomenon of measure-concentration. In this section, we
want to show that A(q) is a Lévy group and hence extremely amenable.
See [28] for more background on this topic. A similar approach was recently
carried out in [6] to give a direct proof that the unitary group of the hyperfi-
nite II1-factor is extremely amenable. As a by-product, we can give explicit
bounds on the concentration function that are useful to give quantitative
bounds in various non-commutative Ramsey theoretic applications.

Definition 2.1. — A metric measure space (X,d, µ) consists in a set X
equipped with a distance d and measure µ which is Borel for the topology
induced by the metric, see [28]. In the following we will always assume that
µ is a probability measure. Given a subset A ⊂ X we will denote by Nr(A)
the r-neighbourhood of A, i.e., Nr(A) := {x ∈ X | ∃y ∈ A,d(x, y) < r}.
The concentration function of (X,d, µ) is defined as

α(X,d,µ)(r) := sup
{

1− µ(Nr(A))
∣∣∣∣A ⊂ X, µ(A) > 1

2

}
, r > 0 .(2.1)
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AN EXOTIC GROUP AS LIMIT OF FINITE SPECIAL LINEAR GROUPS 265

Definition 2.2. — A sequence of metric measure spaces (Xn,dn, µn)
with diameter constant equal to 1, is a Lévy family if for every r > 0,

α(Xn,dn,µn)(r)→ 0 .

A Polish group G (with compatible metrid d) is called a Lévy group if there
exists a sequence (Gn)n of compact subgroups of G equipped with their
normalized Haar measure µn, such that (Gn,d |Gn

, µn) is a Lévy family. If
this is the case, we say that the measure concentrates along the sequence
of subgroups.

The relationship with extreme amenability is given by the following the-
orem which can be found in [28, Theorem 4.1.3].

Theorem 2.3. — Every Lévy group is extremely amenable.

Our second route to extreme amenability is therefore to show that
(SL2n(q))n is a Lev́y family with respect to the normalized counting mea-
sure and the normalized rank-metric.

Theorem 2.4. — The normalized counting measure on the groups
SL2n(q) concentrates with respect to the rank-metric. In particular, A(q)
is a Lévy group and hence extremely amenable.

The proof of the theorem is a straightforward application of the fol-
lowing theorem, whose proof can be found in [28, Theorem 4.5.3] or [21,
Theorem 4.4]

Theorem 2.5. — Let G be a compact metric group, metrized by a bi-
invariant metric d, and let

{1} = H0 < H1 < H2 < · · · < Hn = G

be a chain of subgroups. Denote by ai the diameter of the homogenous
space Hi/Hi−1, i = 1, . . . , n, with regard to the factor metric. Then the
concentration function of the metric-measure space (G,d, µ), where µ is
the normalized Haar measure, satisfies

αG(r) 6 2 exp
(
− r2

16
∑n
i=1 a

2
i

)
.

Proof of Theorem 2.4. — Let us fix a base {e1, . . . , en} of Fnq . Let H <

SLn(q) be the subgroup isomorphic to SLn−1(q) of matrices (hij)ij such
that hin = hni = 0 for every i 6= n and hnn = 1. Using the previous
theorem, it is enough to show that the diameter of SLn(q)/H is smaller
than 3

n . For this, it is enough to show that for every g ∈ SLn(q), there
exists h ∈ H, such that r(g − h) 6 3. Let V be a 2-dimensional vector
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266 Alessandro CARDERI & Andreas THOM

space containing en and g−1en and let V ′ be a complement. There exists
h′ ∈ SL(V ) with g(h′(en)) = en. Hence, g(h′ ⊕ 1V ′)en = en and we have
that

d(g, (h′ ⊕ 1V ′)g) = 1
n
r(g − (h′ ⊕ 1V ′)g) = 1

n
r((h′ − 1V )⊕ 0V ′) 6 2

n
.

Finally we can consider the matrix h whose coefficients hij are the same
of (h′ ⊕ 1V ′)g for j 6= n, hnj := 0 for j 6 n and hnn = 1. Since
d(h, (h′ ⊕ 1V ′)g) 6 1 and h ∈ H the claim is proved. �

2.2. Ramsey theory

The crucial concept behind the strategy in the previous proof is the
notion of length of a metric measure space, which is bounded by the value
(
∑
i a

2
i )1/2 as above and essentially the infimum over these quantities. The

formal definition is quite technical and we invite the interested reader to
check Definition 4.3.16 in [28]. The following lemma is immediate from our
computation.

Lemma 2.6. — The length of the metric measure space (SLn(q), d, µn)
is at most 2n−1/2.

Any estimate on the length of a metric measure space can be used di-
rectly to get explicit bounds on the concentration phenomena, such as in
the following standard lemma, whose proof is inspired by the proof of The-
orem 4.3.18 in [28].

Lemma 2.7. — Let (G, d, µ) be a metric measure space of length L and
let ε be a positive real. Then for any measurable subset A ⊂ G satisfying
µ(A) > 2e−ε2/L2 we have

µ(N4ε(A)) > 1− 2e−ε
2/L2

.

Proof. — Consider the function dA : G → R defined by dA(x) :=
d(A, x) = inf{d(a, x) | a ∈ A} and set λ :=

∫
µ
dA. Since dA is 1-Lipschitz,

Lemma 4.3.17 in [28] implies that

µ ({x ∈ G | |dA(x)− λ| > 2ε}) 6 2e−ε
2/L2

.

If λ > 2ε, then for every x ∈ A we have that |dA(x) − λ| = λ > 2ε and
the above inequality would give us a contradiction. Therefore we must have
that λ 6 2ε and

1− µ(N4ε(A)) =µ ({x ∈ G | dA(x) > 4ε})

6µ ({x ∈ G | |dA(x)− λ| > 2ε}) 6 2e−ε
2/L2

. �
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AN EXOTIC GROUP AS LIMIT OF FINITE SPECIAL LINEAR GROUPS 267

Let us finish this section by applying the previously obtained bounds
to deduce an explicit metric Ramsey theoretic result for the finite groups
SLn(q).
As usual, we say that a covering U of a metric space X has Lebesgue

number ε > 0, if for every point x ∈ X there exists an element of the cover
U ∈ U such that the ε-neighborhood of x is contained in U . A covering
that admits a positive Lebesgue number ε will be called a uniform cover-
ing or ε-covering. Uniform coverings have been studied in the context of
amenability, extreme amenability, and Ramsey theory in [31, 32]. Our main
result in this section is a quantitative form of the metric Ramsey property
that is satisfied by the finite groups SLn(q), resembling the fact the A(q)
is extremely amenable.

Theorem 2.8. — Let ε > 0, q be a prime power, and k,m ∈ N. If we
set

N := 64ε−2 max{log(2k), log(2m)}
then for any n > N and any ε-cover U of SLn(q) of cardinality at most m
the following holds: for every subset F ⊂ SLn(q) of cardinality at most k,
there exists g ∈ SLn(q) and U ∈ U such that gF ⊂ U .

In order to illustrate the result, consider the case k = 3,m = 2. We may
think of a covering by two sets as a coloring of SLn(q) with two colors,
where some group elements get both colors. This covering is uniform if
for every element g ∈ SLn(q) the ε-neighborhood of g can be colored by
one of the two colors. Now, if n > 128 · ε−2, any subset of three elements
{a, b, c} ⊂ SLn(q) has a translate {ga, gb, gc} colored in the same color.
This is in contrast to (R/Z,+) equipped with its usual metric, since it is
easy to see that this group does not admit any uniform covering.
Proof of Theorem 2.8. — Let U be the covering and for every U ∈ U

we set U0 := {x ∈ SLn(q) | B(x, ε) ⊂ U}. By assumption, the collection
V := {U0 | U ∈ U} still forms a covering of X. If the cardinality of the
covering is at most m, there must be one element V ∈ V in the new
covering with µn(V ) > 1

m . Take U ∈ U such that U0 = V and observe that
the ε-neighborhood of V is also contained in U . If n > 64 log(2m)ε−2 then
1/m > 2e−ε2n/64 and hence Lemma 2.7 implies that

µ(U) > µ(Nε(V )) > 1− 2e−
ε2

16L2 = 1− 2e− ε2n
64 .

For a subset F ⊂ SLn(q) we have

{g ∈ SLn(q) | gF ⊂ U} =
⋂
h∈F

{g ∈ SLn(q) | gh ⊂ U} =
⋂
h∈F

Uh−1
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and thus if |F | 6 k, we get that µ({g ∈ SLn(q) | gF ⊂ U}) > 1 −
2k exp(−ε2n/64). Hence, some element g ∈ SLn(q) as desired will exist as
soon as n > 64ε−2 max{log(2k), log(2m)}. �

3. Topological simplicity of the central quotient

In this last section, we will determine the center of A(q) and we will
prove that A(q) is topologically simple modulo its center.

As we remarked in the introduction A(q) is isomorphic to the group of
invertible elements of M(Fq). Therefore for every α ∈ F×q the “diagonal
matrix” whose non-zero entries are equal to α is an element of A(q) and it
is in the center. Let us denote by Z ⊂ A(q) the group of diagonal matrices
with constant values, Z ∼= F×q . We claim that Z is actually the center
of A(q) and that A(q)/Z is topologically simple. Note that the quotient
A(q)/Z can be understood as the completion of the metric inductive limit
of the corresponding projective linear groups with respect to the projective
rank-metric as studied in [34].

To prove the claim, we will need the following theorem of Liebeck and
Shalev which follows from [22, Lemma 5.4], see also [34] for a discussion of
the results of Liebeck–Shalev in the context of length functions on quasi-
simple groups.

Theorem 3.1 (Liebeck–Shalev). — There exists c ∈ N such that for
every n ∈ N and for every g ∈ SLn(q) with δ := min{d(g, z) | z ∈ F×q } > 0,
we have CSLn(q)(g)dc/δe = SLn(q).

For an element g of the group H, we denote by CH(g) its conjugacy class.
As a corollary of this theorem we obtain the following.

Proposition 3.2. — For every g ∈ A(q) such that δ = min{d(g, z) |
z ∈ F×q } > 0, the set CA(q)(g)dc/δe ⊂ A(q) is dense.

Before proving the propostion, let us remark that the proposition implies
our claim. Let N < A(q) be a closed normal subgroup which contains
strictly Z and take x ∈ N \ Z. By the previous proposition, there exists
m ∈ N such that CA(q)(x)m is dense, which implies that N is dense and
therefore N = A(q).
Proof of Proposition 3.2. — For every ε < δ/2, we consider an element

g′ ∈ A0(q) with d(g, g′) 6 ε. Let n0 be such that g′ ∈ SL2n0 (q). By Theo-
rem 3.1 for every n > n0 we have CSL2n (q)(g′)m = SL2n(q) for m := dc/δe,
whence

CA(q)(g′)m ⊃ A0(q) .
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This means that for any element k ∈ A(q), there exist h1, . . . , hm ∈ A(q)
such that

d(h1g
′h−1

1 . . . hmg
′h−1
m , k) 6 ε.

Since the rank-metric is bi-invariant we obtain that

d(h1g
′h−1

1 . . . hmg
′h−1
m , h1gh

−1
1 . . . hmgh

−1
m ) 6 m d(g, g′) ,

which implies that d(CA(q)(g)m, k) 6 (m+ 1)ε. �

Remark 3.3. — Since the center of A(q) is Z = F×q , we can conclude
that A(q) is isomorphic to A(q′) if and only if q = q′. One could ask also if
the quotient group A(q)/Z depends on q. The question seems harder, but
one can study centralizer of elements in A(q)/Z as in [36] to deduce that
this group depends at least on the characteristic of the field.

4. On 1-discrete subgroups of A(q)

In this section we want to study discrete subgroups of A(q). In fact, we
will focus on subgroups Γ ⊂ A(q) so that d(1, g) = 1 for all non-identity
elements of Γ. We call such a subgroup 1-discrete in the metric group
(A(q),d). Since the diameter of (A(q),d) is equal to 1, 1-discrete subgroups
should play a special role in the study of the metric group (A(q),d). Let
us start with amenable groups.

Proposition 4.1. — Every countable amenable group is isomorphic to
a 1-discrete subgroup of A(q).

Proof. — Let Γ be a countable amenable group and suppose at first that
there is a sequence of Følner sets (Fn) such that Fn+1 = FnDn where
Dn ⊂ Γ is a finite subset, so that the family {Fnc | c ∈ Dn} consists of
pairwise disjoint subsets. For every h ∈ Γ and n ∈ N, we define Lhn :=
{g ∈ Fn | hg ⊂ Fn} and we observe that for every ε > 0 and h ∈ Γ,
there exists N ∈ N such that for every n > N , we have |Lhn| > (1− ε)|Fn|.
We define elements hn ∈ M|Fn|(Fq) as the usual action by permutation
on the left on Lhn and 0 on the complement. It is now easy to observe
that (hn)n is a Cauchy sequence for every h ∈ Γ and hence we can define
a maximal discrete embedding of Γ into the group of invertible elements
of the completion of the inductive limit of matrices of size |Fn|, which as
explained in the introduction, by the result of Halperin [18], is isomorphic
to A(q).

For a general countable amenable group we will use Ornstein–Weiss the-
ory [27]. In fact the proposition follows from a similar argument using as
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Følner sets which are quasi-tiling [27, Theorem 6, p. 24]. Or one can also
observe that A(q) contains the inductive limit of symmetric groups which is
the full group of the hyperfinite equivalence relation, which by [27], contains
any amenable group as maximal discrete subgroup. �

The aim of this section is to show the following theorem.

Theorem 4.2. — If q is odd, A(q) contains a non-abelian free group as
a 1-discrete subgroup.

Theorem 4.2 follows form Elek’s work [9] and [10]. In fact, Elek showed
that any amenable skew-field embeds as a discrete sub-algebra of M(Fq)
and by [16], there exist amenable skew-fields with free subgroups. However
we do not need the full strength of Elek’s results and we will construct an
explicit embedding of a skew-field containing a free group into M(Fq).

Note that the analogous result is not true in the setting of II1-factors,
i.e., the free group on two generators is not a 1-discrete (which in this case
should mean that different group elements are orthogonal with respect
to the trace) subgroup of the unitary group of the hyperfinite II1-factor.
Moreover, the preceding result seems to yield the first example of a discrete
non-amenable subgroup of an amenable Polish group, whose topology is
given by a bi-invariant metric. It is an open problem, if the free group
on two generators (or in fact any discrete non-amenable group) can be a
discrete subgroup of the unitary group of the hyperfinite II1-factor or the
topological full group of the hyperfinite equivalence relation.
The proof of Theorem 4.2 is based on the following lemma, which is

inspired by Elek’s canonical rank function (see [8]).

Lemma 4.3. — Let Γ be a finitely generated amenable group and sup-
pose that there is a sequence of Følner sets (Fn) such that Fn+1 = FnDn

where Dn ⊂ Γ is a finite subset. Consider the embedding Φ : Γ → M(Fq)
given in Proposition 4.1. Then for every element a of the group algebra
FqΓ which is not a zero-divisor, the element Φ(a) ∈M(Fq) is invertible.

Proof. — Let us fix a non zero-divisor a ∈ FqΓ. Let us denote by S ⊂ Γ
the support of a. For every n, as in Proposition 4.1, we define Lan := {g ∈
Fn | Sg ⊂ Fn} and we observe that for every ε, there exists N ∈ N such
that for every n > N , we have |Lan| > (1−ε)|Fn|. Observe also that a is the
limit of the elements an which acts on Lan as left translation. We claim that
the vectors {ang}g∈La

n
are linearly independent. In fact if g1, . . . , gk ∈ Lan

and α1, . . . , αk ∈ Fq are such that
∑
i a(αigi) = 0 then a(

∑
i αigi) = 0 and

whence a is a zero-divisor in FqΓ. So the rank of an is at least 1 − ε and
hence the rank of a is 1 and therefore it is invertible. �
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Proof of Theorem 4.2. — Let Γ be an elementary amenable, torsion free
group which satisfies the hypothesis of Lemma 4.3. By [23, Theorem 2.3],
every non-zero element of the group algebra FqΓ is a not a zero-divisor. By
Tamari [35, Example 8.16], we know that group rings of amenable groups
which do not contain zero-divisors satisfy the Ore condition, for more about
the Ore localization see [33]. Hence the Ore completion of FqΓ, denoted by
Q(FqΓ) is a skew-field. Consider the embedding Φ : Γ→M(Fq) defined in
Proposition 4.1 and extend it to FqΓ. Observe that by the universality of
the Ore completion and by Lemma 4.3, Φ extends to a map Φ : Q(FqΓ)→
M(Fq). When Γ is also nilpotent, for example when Γ is the Heisenberg
group, Q(FqΓ) has free subgroups by Theorem 5 of [16]. This concludes the
proof. �

It is plausible that for every maximal discrete embedding of a non ame-
nable group into M(Fq) the conclusion of Lemma 4.3 cannot hold.
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