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ABSTRACT The kinetics, longevity, and breadth of antibodies to influenza virus
neuraminidase (NA) in archival, sequential serum/plasma samples from influenza A
virus (IAV) H5N1 infection survivors and from patients infected with the 2009 pan-
demic IAV (H1N1) virus were determined using an enzyme-linked lectin-based assay.
The reverse-genetics-derived H4N1 viruses harboring a hemagglutinin (HA) segment
from A/duck/Shan Tou/461/2000 (H4N9) and an NA segment derived from either IAV
H5N1 clade 1, IAV H5N1 clade 2.3.4, the 2009 pandemic IAV (H1N1) (H1N1pdm), or
A/Puerto Rico/8/1934 (H1N1) virus were used as the test antigens. These serum/
plasma samples were also investigated by microneutralization (MN) and/or hemag-
glutination inhibition (HI) assays. Neuraminidase-inhibiting (NI) antibodies against N1
NA of both homologous and heterologous viruses were observed in H5N1 survivors
and H1N1pdm patients. H5N1 survivors who were never exposed to H1N1pdm virus
developed NI antibodies to H1N1pdm NA. Seroconversion of NI antibodies was ob-
served in 65% of the H1N1pdm patients at day 7 after disease onset, but an in-
crease in titer was not observed in serum samples obtained late in infection. On the
other hand, an increase in seroconversion rate with the HI assay was observed in
the follow-up series of sera obtained on days 7, 14, 28, and 90 after infection. The
study also showed that NI antibodies are broadly reactive, while MN and HI antibod-
ies are more strain specific.
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Influenza is a major public health problem worldwide. The disease is mainly caused by
influenza type A and type B viruses, although influenza type A virus causes a more

severe disease and is the only type that has caused pandemics in the past (1). Currently,
influenza type A virus is further classified into 18 HA and 11 NA subtypes. Of these
identified type A subtypes, only H1N1 and H3N2 are the major circulating viruses
causing human influenza. There are 16 H and 9 N subtypes that cause infections in
aquatic birds, and recently discovered H17N10 and H18N11 are bat influenza-like
viruses (2–4). Many avian influenza viruses spread and cause large-scale outbreaks
among domestic poultry and even cross the species barrier to infect humans (5).
Among the avian viruses reported, the highly pathogenic avian influenza (HPAI) H5N1
virus is the most virulent. The first outbreak of H5N1 HPAI virus in humans was reported
in Hong Kong in 1997 and had a mortality rate of about 30% (6). A new strain of H5N1
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HPAI virus with higher virulence reemerged in late 2003. The virus spread globally and
infected humans in 16 countries with a mortality rate of about 53% (7). Thailand
reported a total of 25 human cases with 17 deaths between January 2004 and July
2006. The kinetics and longevity of the antibody response for some of these patients
as determined by hemagglutination inhibition (HI), microneutralization (MN) (8), and
indirect immunofluorescence (IF) assays (9) have been previously reported.

The antihemagglutinin (anti-HA) antibodies play a dominant role in protection
against HA-matched influenza virus, while anti-NA antibodies may also be protective in
the case of mismatched HA (10–16). HA antibodies block viral attachment to the target
cell surface, and if the virus enters into the endolysosome, these antibodies also block
viral uncoating and release of the nucleoprotein into cytoplasm. On the other hand,
neuraminidase (NA)-inhibiting (NI) antibodies inhibit viral release, preventing viral
spread from infected cells and viral invasion (17). To study the antibody responses to
natural influenza infection or influenza vaccination, most investigators have employed
HI and MN assays that are strain specific. However, to help improve vaccine potency, it
is useful for anti-NA antibodies to be measured as well, although there are fewer
reports of the antibody response against NA than against HA. This study therefore
explored the kinetics and longevity of NI antibodies in archival serum samples from
H5N1 infection survivors and H1N1pdm patients. Moreover, cross-reactive antibodies to
N1 NA from heterologous viruses were also determined. To accomplish this aim,
reverse-genetics-derived H4N1 viruses with N1 genomic segments from various origins
(rgH4N1 viruses) were constructed and used as test antigens for NI antibody measure-
ment in an enzyme-linked lectin assay (ELLA).

RESULTS
Detection of NI antibody in H5N1 infection survivors. NI antibodies against

rgH4N1 viruses carrying homologous NA from HPAI H5N1 A/Thailand/1(KAN-1)/04
(KAN-1 NA) or heterologous NA from A/Laos/Nong Khai 1/2007 (H5N1) (NK-1 NA),
A/Thailand/104/2009 (H1N1) (pdm NA), or A/Puerto Rico/8/1934 (H1N1) (PR8 NA) were
determined by ELLA in 26 sequential serum samples collected from 4 H5N1 survivors
over the period 2005 to 2008. The results of MN and HI assays of these sera have been
previously reported (8). This study found that 3 of the H5N1 survivors had mounted an
NI antibody response against the homologous and all of the heterologous NAs used
(Table 1). Survivor 1 developed a 64-fold increase in NI antibody titer in the serum
samples collected at 2 years 3 months and 2 years 9 months after onset of disease,
while the MN antibody titer was relatively stable in both serum samples. Survivor 2 had
a high NI antibody titer as well as high MN and HI antibody titers in all serum samples
tested. Survivor 3 had no MN antibody in the first blood sample collected at 10 days
after onset of disease, while this sample contained high NI antibody titers against all of
the NAs investigated, suggesting that these might be preexisting NI antibodies that
developed in response to seasonal influenza A (H1N1) viruses. Survivor 4 did not
develop NI antibodies at all, even though the patient produced high and persistent
levels of MN and HI antibodies to KAN-1 virus over the 3 years of follow-up. This set of
H5N1 sera demonstrated broad reactivity of NI antibodies across homologous and
heterologous NAs belonging to the same NA subtype, while HA antibodies are more
specific than NI antibodies (18).

Detection of NI and HI antibodies in H1N1pdm patients. Determination of NI
antibodies against 3 rgH4N1 viruses with pdm NA, KAN-1 NA, or PR8 NA was carried out
in sequential serum samples collected at days 0, 7, 14, 28, and 90 from 20 H1N1pdm
patients. A 4-fold or greater rise in NI antibody titer to these rgH4N1 viruses was
observed at day 7 (the seroconversion rate ranged from 55 to 65%), rose to a peak at
day 14 or 28 (the seroconversion rate ranged from 60 to 65%), and then declined as
observed at day 90 (Fig. 1A, B, and C and Table 2). The levels of NI antibodies against
rgH4N1 viruses with pdm NA (homologous NA) were significantly higher than those against
KAN-1 NA and PR8 NA (heterologous NA) (analysis of variance [ANOVA], P � 0.05) (Fig. 1D).
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The geometric mean titers (GMTs) and 95% confidence interval of NI antibodies against the
rgH4N1 viruses are shown in Fig. 1D.

The results of the NI antibody assays were different from those of HI assays in that
a gradual increase in HI antibody titers was observed over time. The seroconversion rate
of HI antibodies to wild-type H1N1pdm virus increased from 50 to 65 to 75 and to 100%
at days 7, 14, 28, and 90, respectively (Fig. 1A and Table 2). However, no HI antibody
titers against rgH5N1 and rgPR8 viruses were observed in any of the serum samples
tested (Fig. 1B and C). Taken together, the results show that HI antibodies were strain
specific, while NI antibody broadly reacted across homologous and heterologous NA
belonging to the N1 subtype. Nevertheless, homologous NA yielded significantly higher
NI antibody titers than the heterologous NA.

Conservation of amino acid residues involved in the NI antibody assay. Amino
acid sequences of various influenza viruses belonging to subtype N1 were aligned for
residues in the NA catalytic site as follows, using N1 numbering (with N2 numbering
shown in parentheses), as previously reported (19): R118, D151, R152, R225 (224), E277
(276), R293 (292), R368 (371), and Y402 (406); for the framework, the residues were
E119, R156, W179 (178), S180 (179), D199 (198), I223 (222), E228 (227), H275 (274), E278
(277), and E425. An analysis shows that the catalytic site and framework of all NAs
belonging to subtype N1 are 100% identical. These residues did not change over time
as observed with N1 NA of the influenza virus strains circulating in 1934, 1999, 2004,
2006, and 2009 (Fig. 2). In other words, the catalytic site and framework of the NA
proteins of influenza viruses belonging to the same NA subtype are extremely con-
served.

DISCUSSION

Several lines of direct and indirect evidence support an important role for anti-NA
antibodies in protecting against influenza. Levels of NI antibodies induced by virus-

TABLE 1 MN, HI, and NI antibody titers in H5N1 survivors

Subject no.
(gender/age in yr)

Time of collection after
disease onset

Antibody titer to KAN-1
virus by:a NI antibody titer to rgH4N1 carrying:

MN assay HI assay KAN-1 NA NK-1 NA pdm NA PR8 NA

1 (male/2) 2 yr 3 mo 80 80 80 40 40 �10
2 yr 9 mo 160 80 5,120 1,280 2,560 320
3 yr 3 mo 80 80 1,280 640 1,280 160
3 yr 11 mo 80 80 640 320 640 80
4 yr 5 mo 40 40 640 320 640 80
4 yr 11 mo 40 40 640 320 640 40

2 (male/29) 2 yr 2 mo 160 80 640 160 160 40
2 yr 8 mo 160 80 640 160 160 40
3 yr 2 mo 160 80 640 160 160 40
3 yr 10 mo 160 80 640 160 160 40
4 yr 3 mo 80 80 320 80 160 40
4 yr 10 mo 80 80 640 160 160 40

3 (female/32) 10 days �5 20 2,560 640 640 640
1 yr 6 mo 160 80 320 640 320 1,280
2 yr 160 80 320 320 320 1,280
2 yr 6 mo 160 80 320 640 320 1,280
3 yr 3 mo 80 80 320 320 320 1,280
3 yr 8 mo 80 80 320 320 320 1,280
4 yr 2 mo 80 80 320 320 160 1,280

4 (male/7) 20 days 640 160 �10 �10 �10 �10
5 mo 80 80 �10 �10 �10 �10
11 mo 80 80 10 10 10 �10
1 yr 5 mo 40 80 �10 �10 �10 �10
2 yr 2 mo 40 40 �10 �10 �10 �10
2 yr 7 mo 40 40 �10 �10 �10 �10
3 yr 1 mo 40 40 �10 �10 �10 �10

aPreviously reported by Kitphati et al. (8).
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FIG 1 (A to C) Kinetics and longevity of HI and NI antibodies in 20 H1N1pdm patients against rgH4N1 viruses with pdm NA (A), KAN-1 NA (B), and PR8 NA (C).
(D) Geometric mean titers (GMT) of NI antibody against rgH4N1 with pdm NA, KAN-1 NA, and PR8 NA are significantly different (ANOVA, P � 0.05); CI, confidence
interval.
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like-particles (VLPs) containing H1N1pdm NA were found to correlate with protection
against H1N1pdm virus infection (20). Evidence that anti-NA antibodies might exert
protective immunity had been presented in our previous study, which showed that
antisera from mice immunized with recombinant vaccinia virus carrying an NA gene
insert derived from an H1N1pdm virus could inhibit H1N1pdm NA enzymatic activity as
well as reduce plaque formation and virus replication (21).

On the surface of the influenza virion, the level of HA molecules is 4 to 5 times
higher than that of NA molecules. Binding of anti-HA antibodies to the HA antigen on
the virion surface may cause steric hindrance, which prevents anti-NA antibodies from
getting access to the NA antigen in ELLA for detection of NI antibodies. To avoid this
interference effect, the rg-viruses carrying the HA genomic segment of nonhuman
influenza virus were constructed and used as the test antigen in the NI antibody assay.
This study chose Shan Tou virus from duck as the H4 HA gene donor, while the HA6 HA
gene was chosen to construct the rg-viruses used as the test antigen in the other
studies (22, 23). Nevertheless, our rgH4N1 viruses with the NA genomic segment
derived from KAN-1 (H5N1 clade 1), NK-1 (H5N1 clade 2.3.4), H1N1pdm, or PR8 virus
grew well in MDCK cells.

The present study showed that all sequential serum samples from all 4 influenza A
virus (IAV) H5N1 survivors who were infected with H5N1 clade 1 virus developed MN
and HI antibodies to KAN-1 virus, while 3 (75%) of them were positive for NI antibodies
against all rg-viruses with NA from KAN-1, NK-1, H1N1pdm, or PR8 virus. The result
showed that IAV H5N1 survivors had anti-NI antibodies that reacted with PR8 NA and
pdm NA, even though they had never been exposed to these two viruses, suggesting
that NI antibodies are broadly reactive. However, it cannot be excluded that the
cross-reactivity could be due to previous infections by other seasonal influenza viruses.
Subject 3 had a cross-reactive NI antibody against rgH4N1 PR8 NA in high titers, which
could be a result of recent infection with a seasonal influenza A H1N1 virus. When the
patient got infected with H5N1 virus, the antibody response to viral NA was boosted
and resulted in a high titer of NI antibody. Interestingly, one survivor did not mount an
anti-NA antibody response to any of the rg-viruses investigated. Cross-reactive NI
antibodies to H1N1pdm virus have been detected in individuals who were immu-
nized with a live-attenuated seasonal influenza vaccine (24). Cross-reactivity between
NI antibodies against H1N1pdm and H5N1 viruses has also been reported (21, 25–30).
NI antibodies to seasonal influenza H1N1 virus provided immunity to mice against
H5N1 virus challenge (12). Moreover, immunity mounted in mice immunized with
seasonal influenza virus H1N1 strains from the 2006 and 2007 seasons contributed to
protection against H1N1pdm virus challenge (31). This suggests that at the time of an
influenza outbreak, preexisting NA antibodies might contribute to partial protection in
the absence of homologous HA antibodies (13). NA antibodies might directly exert
protective activity through binding with the catalytic site or framework of NA and then
block the NA enzymatic activity and the progeny viral release. On the other hand, it

TABLE 2 Seroconversion rates by HI versus NI antibody assays in H1N1pdm patients at
various time points

Assay and test virus

No. (%) of serum samples with seroconversion
(n � 20) on day:

7 14 28 90

HI
A/Thailand/104/2009 (H1N1) 10 (50) 13 (65) 15 (75) 20 (100)
rgH5N1 0
rgPR8 0

NI
rgH4N1 (pdm NA) 13 (65) 13 (65) 13 (65) 12 (60)
rgH4N1 (KAN-1 NA) 11 (55) 11 (55) 12 (60) 9 (45)
rgH4N1 (PR8 NA) 12 (60) 13 (65) 13 (65) 12 (60)
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might be possible that NA antibodies bind the antigenic sites on NA and form
antigen-antibody complexes, which cause a steric hindrance effect to block the cata-
lytic site of NA from accessing the sialic acid receptor.

The study in H1N1pdm patients demonstrated that seroconversion of NI antibodies
could be observed at day 7. Levels of NI antibodies to rgH4N1 viruses with various NAs
rose to peaks at days 7 to 28 and had declined by day 90. The NI titer against rg-virus
with pdm NA (homologous strain) was significantly higher than those against KAN-1 NA
and PR8 NA (heterologous strains). Nevertheless, only 60 to 65% of the patients
developed NI antibody. In contrast, the levels of HI antibody titers gradually increased
over time and resulted in seroconversion rates of 50, 65, 75, and 100% at days 7, 14, 30,
and 90, respectively. This result suggests that the kinetics of NA antibody development
is different from the HA antibody response by showing faster peaking time and shorter
duration in H1N1pdm-infected patients. Our study results were in line with previous
reports that showed lower seroconversion rates for NI antibodies than for HI antibodies
in the vaccinees who received trivalent inactivated influenza vaccines (23, 32). This
could result from antigenic competition between the HA and NA proteins when both

FIG 2 Alignment of NA amino acid sequences of influenza virus subtype N1. Analysis shows that the catalytic site (boxed) and framework (highlighted) of NA
proteins of H1N1pdm, HPAI H5N1, and seasonal H1N1 viruses are 100% identical. The viruses included in the alignment are A/California/07/2009 (H1N1),
A/Thailand/104/2009 (H1N1), A/Viet Nam/1203/2004 (H5N1), A/Thailand/1(KAN-1)/2004 (H5N1), A/Laos/Nong Khai 1/2007 (H5N1), A/Puerto Rico/8/1934 (H1N1),
A/New Caledonia/20/1999 (H1N1), A/Solomon Islands/3/2006 (H1N1), and A/Brisbane/59/2007 (H1N1) viruses (GenBank accession numbers GQ377078,
GQ169381, HM006761, AY555151, EU499378, NC002018, CY033624, EU124136, and CY058489, respectively).
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antigens are presented together, as the HA protein is more abundant than the NA
protein on the viral surface (33, 34). It is possible that the anti-NA antibody response
might be increased if the HA and NA proteins were administered separately (35). Our
previous reports showed that BALB/c mice immunized with recombinant vaccinia virus
harboring an NA genomic segment derived from A/Thailand/1(KAN-1)/04 (H5N1),
pandemic A/Thailand/104/2009 (H1N1), or A/Anhui/1/2013 (H7N9) virus contained NI
antibodies and also neutralizing antibody activities against wild-type virus or reverse-
genetics-derived viruses carrying the same NA subtype (21, 36).

Immunity mediated by anti-NA antibodies is a promising area for development, but
the problem is to develop a procedure for eliciting a strong NI antibody response. The
amount of NA protein content in vaccines varies by production lot, and thus the degree
of NA antibody response may be affected (34, 37, 38). The data on the kinetics and
longevity of the NI antibody response from this study provide useful information for
future vaccine design, in which a standard level of NA protein content is an integral
component.

MATERIALS AND METHODS
Ethical issues. This study was approved by the Institutional Review Board at the Faculty of Medicine

Siriraj Hospital, Mahidol University, and also at the Ministry of Public Health, Thailand. Subjects or parents
gave consent to participate in the follow-up blood collection.

Viruses. The viruses used in this study included highly pathogenic avian influenza virus A/Thailand/
1(KAN-1)/04 (H5N1) clade 1 (KAN-1 virus), A/Laos/Nong Khai 1/2007 (H5N1) clade 2.3.4 (NK-1 virus),
pandemic A/Thailand/104/2009 (H1N1) (H1N1pdm virus), and A/duck/Shan Tou/461/2000 (H4N9) (Shan
Tou virus), kindly provided by Robert G. Webster, St. Jude Children Research Hospital, Memphis, TN. Shan
Tou virus was grown in embryonic chicken eggs, while the other viruses were propagated in Madin-
Darby canine kidney (MDCK) cell monolayers maintained in viral growth medium (VGM) containing
minimal essential medium (MEM) (Gibco, Thermo Fisher Scientific, Waltham, MA) without fetal bovine
serum supplement. The VGM for propagation of human virus also contained tosyl phenylalanyl chlo-
romethyl ketone (TPCK)-trypsin (Sigma-Aldrich, St. Louis, MO), while the VGM for HPAI viruses did not.
Experiments related to HPAI viruses were conducted in a biosafety level 3 facility.

Subjects. The subjects in this study comprised 4 H5N1 survivors and 20 H1N1pdm influenza patients.
The 4 survivors, aged 2, 29, 32, and 7 years, were infected with the H5N1 HPAI virus in 2004 and 2005.
A total of 26 sequential serum or plasma samples were collected from these subjects at approximately
6-month intervals. Serum/plasma samples were aliquoted and kept frozen at �20°C until tested. These
samples were previously investigated by HI and microNT assays using KAN-1 virus as the test antigen,
and the results were reported (8). Archival serum samples were obtained from 20 H1N1pdm-infected
patients with a median age of 20 years (range, 18 to 42 years). These samples were collected at 0, 7, 14,
28, and 90 days after onset of disease from patients who were diagnosed with H1N1pdm infection
in 2011.

Reverse-genetics-derived influenza viruses. In this study, 4 rgH4N1 viruses, including a reassorted
PR8 virus (control), were constructed. The rg-viruses harbored an H4 HA genomic segment from Shan
Tou virus and an N1 NA segment from KAN-1, NK-1, or H1N1pdm virus in the backbone of the PR8 virus.
The pHW-2000 recombinant plasmids with inserts derived from each of the eight genomic segments of
PR8 virus were kindly provided by Robert G. Webster, and the reverse genetics was undertaken as
described by Hoffmann and colleagues (39). Briefly, complete HA and NA segments were amplified by
PCR using universal primers (40). Thereafter, the amplified DNA products were cloned into the pGEM-T
easy vector (Promega Corporation, Fitchburg, WI) and subcloned into the pHW-2000 plasmids. Subse-
quently, the recombinant plasmids with the HA and NA segments together with the other 6 internal
segments from the PR8 virus in TransLT solution (MirusBio, Madison, WI) were used to transfect MDCK
and HEK-293T cocultures (39) maintained in Opti-MEM (Gibco). The inoculated cell monolayers were
incubated at 37°C in a CO2 incubator and observed daily for cytopathic effects. The recovered rg-viruses
were propagated in MDCK cell monolayers maintained in VGM containing TPCK-trypsin.

Microneutralization assay. An enzyme-linked immunosorbent microneutralization assay was con-
ducted for detection of neutralizing antibodies to H5N1 virus in H5N1 survivors, using a test protocol
previously described (8, 41). The assay was performed in duplicate in MDCK cell monolayers using the
test virus at a concentration of 100 50% tissue culture infective doses (TCID50) per reaction mixture.
Influenza virus infection in MDCK cells was detected by indirect enzyme-linked immunosorbent assay
(ELISA) using a mouse monoclonal antibody specific to influenza A viral nucleoprotein (Merck Millipore,
Billerica, MA) and a goat anti-mouse immunoglobulin conjugated with horseradish peroxidase (Southern
Biotech Associates, Birmingham, AL) as the secondary antibody. The antibody titer was defined as the
reciprocal of the highest serum dilution that gave �50% neutralization of the test virus.

Hemagglutination inhibition assay. A hemagglutination inhibition (HI) assay was performed using a
previously described protocol (8). Briefly, the test serum was treated with receptor-destroying enzyme (Denka
Seiken, Japan) for removal of nonspecific serum inhibitors and adsorbed with packed goose red blood cells
(RBC) for removal of nonspecific agglutinators. A/Thailand/104/2009 (H1N1) at a concentration of 4 HA units
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was used as the test virus. The assay was performed in duplicate. The HI antibody titer was defined as the
reciprocal of the highest serum dilution that gave complete inhibition of hemagglutination.

Enzyme-linked lectin assay. An enzyme-linked lectin assay (ELLA) was undertaken to determine the
presence of neuraminidase-inhibiting (NI) antibodies that block the enzymatic activity of influenza virus
NA using a previously described protocol (21, 22, 25). Briefly, the optimal concentration of the test virus
(rgH4N1 virus) was determined by NA assay prior to performing ELLA. For the NA assay, the rgH4N1
virus was serially 2-fold diluted with the sample diluent containing 1% bovine serum albumin and 0.5%
Tween 20 in phosphate-buffered saline, and then 50 �l of each virus dilution was added into a well of
a 96-well microtiter plate precoated with fetuin (Sigma-Aldrich) in duplicate. The reaction plate was
incubated for 16 to 18 h at 37°C to allow the viral NA to cleave the sialic acid side chains of fetuin and
yield the carbohydrate moieties, which were subsequently detected by horseradish peroxidase
conjugated-peanut lectin (PNA) using o-phenylenediamine dihydrochloride (OPD) as the chromogenic
substrate. The reaction plate was read under a spectrophotometer at a wavelength of 492 nm. Each virus
dilution was plotted against its optical density (OD) value to establish a titration curve. An OD value of
about 2.0 was extrapolated against the titration curve to determine the working virus dilution for further
use in ELLA. In this study, the working concentrations of H4N1pdm, H4N1 H5 KAN-1, H4N1 H5 NK-1, and
H4N1 PR8 NA in NI assay were equivalent to approximately 0.5, 2.3, 1.6, and 0.6 HA units, respectively.
To determine the NI antibody titer, the test serum/plasma was pretreated with receptor-destroying
enzyme (Denka Seiken) at 37°C for 18 h, followed by heat inactivation at 56°C for 45 min. The treated
serum/plasma sample at a dilution of 1:10 was 2-fold serially diluted with sample diluent, and then a
50-�l volume was added into a fetuin-coated plate in duplicate, together with 50 �l of the test virus at
the working concentration. After overnight incubation, the amount of carbohydrate moieties remaining
after viral NA digestion of sialic acid was determined as described above for the NA assay. Each
experiment included at least 4 wells of the virus control and 4 wells of the sample diluent as the
background control. The mean OD value of the test wells was subtracted from the mean OD value of the
background control wells in order to obtain the corrected OD value of the test serum/plasma.
The corrected OD value of the virus control was similarly obtained. The NI antibody titer was defined as
the highest serum/plasma dilution that yielded a 50% reduction of the corrected OD value compared
with the virus controls.
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