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Abstract
We propose a unified pricing framework based on continuous-time Markov chain 
(CTMC) approximation for autocallable structured products. Our method is applica-
ble to a variety of asset price models, including one-dimensional Markov jump-dif-
fusions (the coefficients can be time dependent), regime-switching models, and sto-
chastic local volatility (SLV) models. For SLV models, we develop a hybrid Markov 
chain approximation scheme that significantly improves the existing CTMC approx-
imation method. We test our pricing method under various popular models and 
show that it is computationally efficient. To hedge autocallable products, we con-
sider a dynamic hedging approach in the presence of transaction costs. To address 
the problem that the product’s delta can become too large near the barriers, we apply 
payoff modification and barrier shifting techniques. We determine the optimal size 
of adjustments that minimize conditional value-at-risk (CVaR) of the hedging loss 
using stochastic gradient descent. Empirical experiments demonstrate the effective-
ness of our approach in reducing CVaR of the hedging loss.
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1  Introduction

Autocallable notes are a type of structured product that link the principle and cou-
pon payments to the evolution of one or multiple asset prices, providing investors 
with features of both coupon bonds and equity investment. The first autocallable 
notes were introduced by BNP Paribas in 2003 and their market volume has grown 
substantially over the past two decades (Kim & Lim, 2019; Paletta & Tunaru, 2022). 
Autocallable products are popular because they allow investors to earn a higher 
return than plain bonds by participating in the underlying asset while also providing 
principle protection to some extent. This feature makes them particularly appealing 
in a low interest rate environment. The yield enhancement in autocallable products 
is achieved through several typical provisions (Guillaume, 2015b).

•	 Autocall: At each monitoring date prior to maturity, an autocallable note is 
redeemed if the underlying asset price is above a predetermined level (autocall 
barrier), resulting in the investor receiving the principle and coupon. Addi-
tionally, if the asset price surpasses a higher level, the investor receives the 
return of this asset, which leads to a greater amount than the initial principle. 
The autocall mechanism provides investors with an opportunity to reach a tar-
get rate of return or higher in a shorter time period.

•	 Snowball effect: Coupon payments are ignored if the underlying asset price 
falls below a predetermined level (coupon barrier) at a monitoring date. How-
ever, any missed coupons are subsequently recouped and disbursed to the 
investor once the underlying asset price rises above the coupon barrier on a 
subsequent monitoring date.

•	 Down-and-out American barrier: The coupon payment on a monitoring date is 
made only if the price of the underlying asset remains above a predetermined 
level continuously for a specified duration from the previous monitoring date.

Due to their complex structure and path dependency, autocallable products pose 
significant challenges for pricing and risk management. Various methods have been 
proposed to deal with them. Guillaume (2015b) derive an explicit pricing formula 
for autocallable products under the Black–Scholes model and Guillaume (2015a) 
obtain an analytical pricing formula under Merton’s jump-diffusion model for the 
equity with the interest rate following the Ho–Lee model. Deng et al. (2011) pro-
pose a finite difference approach for pricing autocallables, while Lee and Hong 
(2021); Fries and Joshi (2011), and Koster and Rehmet (2018) use Brownian bridge 
and payoff smoothing methods to reduce variance in Monte Carlo simulation. Pal-
etta and Tunaru (2022) introduce a Bayesian approach to deal with parameter uncer-
tainty in the pricing model. Kim and Lim (2019) propose a recursive approach for 
the static replication of autocallables with vanilla options, which simplifies the pric-
ing and hedging of these products. Empirical studies on autocallables have been 
conducted by Deng et al. (2015) and Albuquerque et al. (2015).

In this paper, we propose a unified pricing framework based on continuous-
time Markov chain (CTMC) approximation for autocallables with all the major 
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features mentioned above. The basic idea of CTMC approximation is to con-
struct a continuous-time discrete state Markov process to approximate the orig-
inal Markov model whose state space is continuous and then do computations 
under the approximating CTMC model, which is often tractable. This method has 
been applied to a wide range of financial models including general one-dimen-
sional (1D) jump-diffusions (Mijatović & Pistorius, 2013), regime-switching 
Markov models (Cai et  al., 2019), stochastic local volatility models (Cui et  al., 
2018), skew diffusions (Ding et  al., 2021), and sticky diffusions (Meier et  al., 
2021, 2023). It has also proved to be computationally efficient for pricing a large 
class of derivatives, especially for path-dependent ones. Applications include 
European and barrier options (Mijatović & Pistorius, 2013), Asian options (Cai 
et  al., 2015), lookback options (Zhang & Li, 2021), Parisian options (Zhang & 
Li, 2023a), drawdown options (Zhang et al., 2021; Li et al., 2024; Zhang & Li, 
2023), equity swaps and caps/floors (Kirkby, 2023). Results about convergence 
rates can be found in Mijatović and Pistorius (2013); Li and Zhang (2018), and 
Zhang and Li (2019, 2022).

Our paper contributes to two strands of literature on autocallable products and 
CTMC approximation for derivatives pricing. The contributions are threefold and 
can be summarized as follows.

First, we develop a general pricing method for autocallables that is computation-
ally efficient. We derive pricing recursions for autocallables over different monitor-
ing dates, which are computed using matrix exponentiation under CTMC approxi-
mation. In contrast to previous research on autocallables, our approach is applicable 
to a broad range of models with diverse characteristics, including jumps with finite 
or infinite activity, regime-switching, local and stochastic volatility, and time 
dependence. The versatility of our approach is particularly useful for autocallables, 
as these products often require sophisticated stochastic models of the underlying 
asset for pricing. An important but tricky issue in applying CTMC approximation 
is grid design. As the autocallable payoff has many discontinuities, convergence of 
CTMC approximation can be slow if the grid is not designed properly. We solve this 
problem for autocallables based on the theoretical results of Zhang and Li (2019) to 
achieve stable and fast convergence. We test our pricing algorithm in various popu-
lar financial models including Black-Scholes (BS), CEV, SABR, Heston, Kou, and 
Variance Gamma (VG). In all the cases, we obtain highly accurate results with small 
computation time.

Second, we propose a hybrid Markov chain approximation method for stochas-
tic local volatility (SLV) models that significantly improves the original two-layer 
CTMC approximation algorithm developed in Cui et  al. (2018). In their algo-
rithm, the underlying asset price is transformed to decorrelate the two Brown-
ian motions in the model. This transformed process is then approximated by a 
double-layer continuous-time Markov chain that is embedded into a single-layer 
CTMC on a long grid where each point is a pair of the transformed price and 
volatility. This construction creates two issues. The first one is that the size of 
the generator matrix of the resulting CTMC can become too large for efficient 
computations. The other one is that it may be difficult to ensure that all the price 
barriers in the autocallable lie in appropriate locations on the asset price grid. To 
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overcome these difficulties, we approximate the variance process using a discrete-
time Markov chain (DTMC) and properly adjust the grid design for the trans-
formed asset price. Compared with the original algorithm in Cui et  al. (2018), 
our method achieves stable convergence and substantial reduction in computation 
time for payoffs with discontinuities.

Third, we introduce a systematic approach to improve dynamic hedging of 
autocallables in the presence of transaction costs. Kim and Lim (2019) develop 
an interesting static hedging strategy for two types of autocallables by trading 
vanilla options with different maturities and strikes. However, static hedging may 
be difficult to implement in practice due to the illiquidity of some instruments. 
Furthermore, static replication may no longer be possible if the structured prod-
uct has more exotic features. We study dynamic hedging in this paper and show 
that the delta of an autocallable product can vary rapidly near the barriers, mak-
ing delta hedging costly to implement. To address this issue, we implement bar-
rier shifting and payoff modification methods as suggested by Chan et al. (2019) 
to adjust delta. An important question is how to determine the size of these 
adjustments, which has not been studied before. To answer it, we minimize the 
conditional value-at-risk (CVaR) of the hedging loss at maturity with the adjusted 
quantities as decision variables. We solve the optimization problem using sto-
chastic gradient descent and show that with proper adjustments we can achieve 
significant reduction in the CVaR.

Remark 1  Discontinuities in the autocallable payoffs can render CTMC approxima-
tion to converge slowly. To address this issue, we show how to design the CTMC 
grid properly in this paper. An alternative solution is applying the payoff smoothing 
technique, where the discontinuous payoff is first approximated by a smooth func-
tion and the smoothed payoff is then used in the CTMC approximation algorithm; 
see e.g., Li and Zhang (2018); Yang et al. (2019); Zhang and Li (2022), and Bayer 
et al. (2023) for discussions of this type of technique. Both proper grid design and 
payoff smoothing can help CTMC approximation achieve second-order conver-
gence with discontinuous payoffs. However, while the former can remove conver-
gence oscillations to make Richardson extrapolation applicable, the latter may not as 
shown in Li and Zhang (2018).

The rest of this paper is organized as follows. In Sect. 2, we introduce the auto-
callable structures considered in this study and derive recursive pricing formulas for 
them. In Sect. 3, we review the construction of CTMC approximation, discuss the 
grid design issue, and present pricing algorithms for various types of models: 1D 
time-homogeneous Markov models, regime-switching models, 1D time-inhomoge-
neous Markov models, and SLV models. In Sect. 4, we demonstrate the performance 
of the pricing algorithm for various popular models. In Sect. 5, we discuss the issues 
in delta hedging and show how to solve the dynamic hedging problem. Finally, we 
conclude in Sect. 6. Appendix A contains pseudocodes of the algorithms presented 
in this paper. All the experiments in the paper were conducted in Matlab on a work-
station with Intel Xeon CPU E5-2687W and 64GB of memory.
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2 � Autocallable structures and pricing recursions

Autocallables are over-the-counter products, which are flexible in design and 
can have various structures. In this section, we introduce two common autocall-
able structures. We also show how to price them recursively to deal with the path 
dependency in their payoffs.

The autocallable we consider is written on one risky asset whose price at time 
t is denoted by St . The product has a notional value N (which is the investor’s 
initial capital), matures at time T, and is observed on dates t1, t2,… , tn = T  after 
time 0 (we set t0 = 0 ). Some autocallables allow the holder to recover lost cou-
pons from earlier observation dates when the asset price is in a certain range, 
which is known as the snowball effect.

2.1 � Structure I

Structure I is considered in Guillaume (2015b). At each observation date ti 
(1 ≤ i ≤ n) , there are three barriers Ci < Di < Ui , and two additional barriers 
B < Cn and H < Dn at tn . The payoff from the autocallable at ti depends on where 
Sti lies. Below we describe the payoff at ti for 1 ≤ i < n.

•	 If Sti < Ci , no regular coupon is paid to the investor and the autocallable con-
tinues to the next observation date.

•	 If Ci ≤ Sti < Di , a regular coupon N × zi is paid to the investor, all previously 
lost coupons are recovered if the snowball effect is applied, and the autocall-
able continues to the next observation date.

•	 If Di ≤ Sti < Ui , the autocallable terminates, a final prespecified coupon N × yi 
is paid to the investor, all previously lost coupons are recovered if the snow-
ball effect is applied, and the investor’s initial capital is fully redeemed.

•	 If Sti ≥ Ui , the autocallable terminates, N × Sti∕S0 is paid to the investor, and 
all previously lost coupons are recovered if the snowball effect is applied. Note 
that Ui > S0.

The payoff at tn is given below.

•	 If Stn < B , only Stn∕S0 of the investor’s initial capital is redeemed and no other 
payments is received.

•	 If B ≤ Stn < Cn , the investor’s initial capital is fully redeemed and no other 
payments are received.

•	 If Cn ≤ Stn < Dn or if Dn ≤ Stn < Un and inft∈(tn−1,tn] St ≤ H , the investor’s initial 
capital is fully redeemed and all previously lost coupons are recovered if the 
snowball effect is applied.
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•	 If Dn ≤ Stn < Un and inft∈(tn−1,tn] St > H , a final prespecified coupon N × yn is 
paid to the investor, all previously lost coupons are recovered if the snowball 
effect is applied, and the investor’s initial capital is fully redeemed.

•	 If Stn ≥ Un , N × Stn∕S0 is paid to the investor, and all previously lost coupons are 
recovered if the snowball effect is applied. Note that Un > S0.

Pricing an autocallable is complex because its payoff is highly path dependent. 
Backward induction is the standard approach to deal with path-dependent products; 
see e.g., Li and Linetsky (2015) for discretely monitored barrier options. We follow 
this approach and present the pricing recursion for autocallables. Here, we assume 
the asset price process (St)t≥0 is a time-homogeneous Markov process and for nota-
tional simplicity, the observation dates are equally distanced with time step h. We 
also assume that the risk-free rate is a constant and denote it by r. We need to con-
sider mt ∶= infu∈[0,t] Su , which is the minimum asset price from time 0 to t. The price 
of the autocallable at time 0 is a function of the initial asset price variable x, which 
we denote by V(x). All pricing is done under a chosen risk-neutral measure.

Pricing recursion for structure I without snowball effect. When there is no snow-
ball effect, any lost coupon cannot be recovered later. Let Vi(x) denote the price of 
the autocallable at time ti = ih given Sti = x for i = 1, ..., n − 1 . The value function at 
tn equals the payoff, which depends on both ST and the minimum price of the under-
lying asset between tn−1 and tn . Thus, we write this value function as Vn(x, x) , where 
ST = x and the minimum price between tn−1 and tn equals x . By repeatedly condi-
tioning and using the Markov property, we obtain the following backward recursion 
starting from time tn:

where Ex[f (Sh)] = E[f (Sh)|S0 = x] . Calculating V(x) requires evaluating

The first expectation can be expressed as

where �H ∶= inf{t ≥ 0 ∶ St ≤ H} , and

Vn(x, x) = 1[B,Un)
(x)N + 1[Dn,Un)

(x)1(H,∞)(x)Nyn

+ 1[Un,∞)(x)Nx∕S0 + 1[0,B)(x)Nx∕S0,

Vn−1(x) = 1[0,Dn−1)
(x)e−rhEx

[
Vn

(
Sh,mh

)]
+ 1[Cn−1,Dn−1)

(x)Nzn−1

+ 1[Dn−1,Un−1)
(x)N(1 + yn−1)

+ 1[Un−1,∞)(x)Nx∕S0,

Vi(x) = 1[0,Di)
(x)e−rhEx

[
Vi+1(Sh)

]
+ 1[Ci,Di)

(x)Nzi

+ 1[Di,Ui)
(x)N(1 + yi)

+ 1[Ui,∞)(x)Nx∕S0, i = n − 2, ..., 1,

V(x) = e−rhEx

[
V1(Sh)

]
,

Ex

[
Vn

(
Sh,mh

)]
, Ex

[
Vi+1(Sh)

]
for i = 0, ..., n − 2.

Ex

[
Vn

(
Sh,mh

)]
= Ex

[
𝜙(Sh)

]
+ Ex

[
𝜐(Sh)1{𝜏H>h}

]
,
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Pricing recursion for structure I with snowball effect. The snowball effect brings 
more challenge to the pricing problem. To deal with it, we introduce an additional 
state variable that tracks the number of missed coupons. Let Qi be the number of 
missed coupons by ti for i = 0, 1, ..., n − 1 . We have

At ti , if Sti is below Ci , the coupon at ti is missed and hence increasing the number of 
missed coupons by one. However, if Sti is above Ci , all the previously missed cou-
pons are recovered, thus making the number of missed coupons zero. We have Qi 
taking value from {0, 1..., i}.

Let Vi(x, q) denote the value of the autocallble product at time ti = ih for 
i = 1, 2, ..., n − 1 given Sti = x and Qi−1 = q . For the value at tn , we write it as Vn(x, x, q) 
because it also depends on the minimum price of the underlying asset between tn−1 and 
tn . The backward recursion is given by

To obtain V(x), we need to calculate

For q = 0, 1, ..., n − 1 , set

(1)
�(x) =1[Dn,Un)

(x)Nyn, �(x) = 1[B,Un)
(x)N

+ 1[Un,∞)(x)Nx∕S0 + 1[0,B)(x)Nx∕S0.

Q0 = 0, Qi = 1{Sti<Ci}
(Qi−1 + 1), i = 1, ..., n − 1.

Vn(x, x, q) = 1[B,Un)
(x)N + 1[Dn,Un)

(x)1(H,∞)(x)Nyn + 1[Un,∞)(x)Nx∕S0

+ 1[Cn,∞)(x)N

n−1∑
m=n−q

zm + 1[0,B)(x)Nx∕S0,

Vn−1(x, q) = 1[0,Cn−1)
(x)e−rhEx

[
Vn

(
Sh,mh, q + 1

)]

+ 1[Cn−1,Dn−1)
(x)

(
Nzn−1 + e−rhEx

[
Vn

(
Sh,mh, 0

)])

+ 1[Dn−1,Un−1)
(x)N(1 + yn−1) + 1[Un−1,∞)(x)Nx∕S0

+ 1[Cn−1,∞)(x)N

n−2∑
m=n−1−q

zm,

Vi(x, q) = 1[0,Ci)
(x)e−rhEx

[
Vi+1(Sh, q + 1)

]

+ 1[Ci,Di)
(x)

(
Nzi + e−rhEx

[
Vi+1(Sh, 0)

])

+ 1[Di,Ui)
(x)N(1 + yi) + 1[Ui,∞)(x)Nx∕S0

+ 1[Ci,∞)(x)N

i−1∑
m=i−q

zm, i = n − 2, ..., 1,

V(x) = e−rhEx

[
V1(Sh, 0)

]
.

{
Ex

[
Vn

(
Sh,mh, q

)]
, q = 0, 1, ..., n − 1

}
,{

Ex

[
Vi+1(Sh, q)

]
∶ q = 0, 1, ..., i

}
for i = 0, ..., n − 2.
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Then, we have

2.2 � Structure II

We consider another autocallable structure following Kim and Lim (2019), which 
applies to two popular autocallable products: autocallable barrier reverse convertible 
notes (ABRCN) and stepdown knock-in equity-linked securities (ELS). The former 
is sold and managed by securities from Europe and US and the latter stands for the 
autocallable note in the ELS market of South Korea.

At each ti for i = 1,⋯ , n − 1 , there is only one barrier Di . A regular coupon N × zi 
is always paid if the product has not terminated. If Sti ≥ Di , the product terminates 
and returns the initial capital N plus a prespecified coupon N × yi to the investor. 
Thus, we can write the payoff at ti as

where the product 
∏0

j=1
⋅ = 1 by convention.

At the maturity time tn , in addition to Dn , there is another barrier B, which 
is monitored during [0,  T]. Typically, we have B < Di for i = 1,⋯ , n . Let 
�B = inf{t ≥ 0 ∶ St ≤ B} . The payoff at tn is given by

If the asset price has hit or fallen below B during [0, T] and ST < Dn , it is possible 
that the investor cannot get back the full amount of the initial capital.

Pricing recursion for structure II. We introduce a state variable to keep track of 
whether B has been breached. The value function at time ti for i = 1,⋯ , n is written 
as Vi(x, IB) , where IB = 1 indicates that the asset price remains above B by time ti . 
We obtain the following backward recursion:

�q(x) =1[B,Un)
(x)N + 1[Un,∞)(x)Nx∕S0 + 1[Cn,∞)(x)N

n−1∑
m=n−q

zm

+ 1[0,B)(x)Nx∕S0.

Ex

[
Vn

(
Sh,mh, q

)]
= Ex

[
𝜙q(Sh)

]
+ Ex

[
𝜐(Sh)1{𝜏H>h}

]
.

i−1∏
j=1

1{
Stj

<Dj

}N
((

1 + ym
)
1{

Sti
≥Di

} + zm

)

n−1∏
j=1

1{Sj<Dj}N

{((
1 + yn

)
1{ST≥Dn} +

ST

S0
1{ST<Dn}

)
1{𝜏B≤tn} +

(
1 + yn

)
1{𝜏B>tn} + zn

}
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To obtain V(x), we need to evaluate

Let

We have

and for i = n − 2,⋯ , 1,

3 � Markov chain approximation for pricing autocallables

3.1 � Basics of CTMC approximation

We review some basic results for using CTMC approximation to calculate expecta-
tions for 1D time-homogeneous Markov processes with continuous state spaces. The 
asset price St is Markov and takes value from [0,∞) and its infinitesimal generator is 
given by

Vn(x, IB) = N

{
(1 − IB)

(
(1 + yn)1[Dn,∞) +

x

S0
1[0,Dn)

)
+ IB(1 + yn) + zn

}
,

Vi(x, IB) = Nzm + 1[0,Di)
e−rhEx

[
Vi+1(Sh, IB1{𝜏B>h})

]

+ 1[Di,∞)N(1 + ym), i = n − 1, ..., 1,

V(x) = e−rhEx

[
V1(Sh, 1{𝜏B>h})

]
.

Ex

[
Vi+1(Sh, IB1{𝜏B>h})

]
for IB = 0 or 1, i = 0, ..., n − 1.

�(x) = 1[0,Dn)
(x)N(1 + yn − x∕S0), �(x) = N(1 + yn)1[Dn,∞) + Nx∕S01[0,Dn)

+ Nzn.

Ex

[
Vn

(
Sh, IB1{𝜏B>h}

)]
= Ex

[
N(1 + yn)1[Dn,∞) + N

Sh

S0
1[0,Dn)

(Sh) + Nzn

]

+ IBEx

[
1{𝜏B>h}

N

(
1 + yn −

Sh

S0

)
1[0,Dn)

(Sh)

]

= Ex

[
𝜓(Sh)

]
+ IBEx

[
𝜑(Sh)1{𝜏B>h}

]
,

Ex

[
Vi+1(Sh, IB1{𝜏B>h})

]
=Ex

[
Vi+1(Sh, 0)

]

+ IBEx

[(
Vi+1(Sh, 1) − Vi+1(Sh, 0)

)
1{𝜏B>h}

]
.

Gf (x) =�(x)f �(x) +
1

2
�2(x)f ��(x)

+

∞

�
−x

(
f (x + y) − f (x) − yf �(x)1{|y|≤1}

)
J(x, dy),
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for f ∈ C2
c
(ℝ+) , where �(x) , �(x) , and �(x, dy) are the drift, volatility, and jump 

intensity measure of X, respectively. In general, J  is state-dependent and satisfies 
∫|y|≤1 y2J(x, dy) < ∞ for all x ∈ ℝ

+.
For the asset price, we assume that ∞ is inaccessible and 0 is either inaccessi-

ble or absorbing if accessible. We approximate St by a CTMC Xt with a finite state 
space � = {x1, ..., xM} and generator matrix G ∈ ℝ

M×M . The details of how to con-
struct G can be found in Mijatović and Pistorius (2013) and Zhang and Li (2021). 
We impose absorbing behavior for the boundary states x1 and xM of the CTMC, i.e., 
the CTMC cannot move to other states once it arrives at x1 or xM , which would lead 
to convergence.

We need to compute two forms of expectations for St

where �B is the first time the process hits or falls below a generic barrier B. These 
expectations are approximated by the corresponding expectations for the CTMC Xt , 
which are

Expressions for these expectations are derived in Mijatović and Pistorius (2013) and 
they are given by

where the vector F contains the values of the payoff function f evaluated at the points 
in � , F̂ is the restriction of F to those grid points greater than B, and

and the size of matrix Ĝ is M̂ × M̂ , where M̂ is the number of grid points greater 
than B. There exist various algorithms to calculate the matrix exponential exp(A) for 
a square matrix A. A popular choice is the scaling and squaring algorithm (Higham, 
2005) and other computationally efficient choices for matrices with certain struc-
tures can be found in Li and Zhang (2016) and Meier et al. (2021).

Now, to price autocallables, the expectations in the pricing recursions can be 
approximated using formulas (2) and (3).

3.2 � Grid design

The convergence behavior of CTMC approximation is strongly affected by the 
design of the grid for the CTMC. Financial payoffs typically lack smoothness, 
e.g., the payoff or its derivative is discontinuous, which can make convergence 

Ex

[
f (St)

]
, Ex

[
f (St)1{𝜏B>h}

]
,

Ex

[
f (Xt)

]
, Ex

[
f (Xt)1{𝜏X

B
>h}

]

(2)Ex

[
f
(
Xt

)]
= (exp(Gt)F)(x) for x ∈ �,

(3)Ex

[
f (Xt)1{𝜏X

B
>h}

]
= (exp(�Gt)�F)(x) for x ∈ � ∩ (B,∞),

Ĝ(x, y) ∶= G(x, y) x, y ∈ � ∩ (B,∞)
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slow (see Li and Zhang (2018)). Zhang and Li (2019) studied the grid design 
problem for pricing continuously monitored barrier options by CTMC approxi-
mation for diffusion models. They derived two conditions that are sufficient 
and necessary to ensure second-order convergence for diffusion models without 
noticeable oscillations so that Richardson extrapolation can be applied to obtain 
even faster convergence. First, there must be a grid point at each barrier. Second, 
the strike of the payoff must be placed exactly midway between two adjacent grid 
points. Although these results were developed from theoretical analysis under dif-
fusion models, they can still be applied to achieve fast convergence in commonly 
used Markov models with jumps in finance as shown in Zhang and Li (2019).

The payoffs of autocallables are discontinuous at the barriers, and thus 
the CTMC grid must be designed with care to obtain nice convergence behav-
ior. We apply the results in Zhang and Li (2019). In our problem, the discretely 
monitored barrier is the “strike” in Zhang and Li (2019) and the continuously 
monitored barrier is the “barrier” in Zhang and Li (2019). Take structure I as an 
example. There are many “strikes” {B,Ci,Di,Ui ∶ i = 1, ..., n} and one “barrier” 
H. Let � = {�1, ..., �d} = {B,Ci,Di,Ui ∶ i = 1, ..., n} be the set of all non-repeated 
“strikes” and 𝜉1 < ⋯ < 𝜉d . We assume H ∉ � and H ∈ (�l, �l+1) for some l. To 
achieve second-order convergence for calculating all the expectations in the pric-
ing recursion, we propose a grid to satisfy the two requirements in Zhang and Li 
(2019).

We use a piecewise uniform structure for the grid � . Let e1 and e2 be the smallest 
and largest states, respectively. We construct � as

where

The integer ni specifies the number of sub-intervals in �i for i = 0, 1,⋯ , d + 1 . All 
the points in � are exactly in the middle of two adjacent grid points and H is on the 
grid. We observe that when the snowball effect is present, the value of q does not 
affect the positions of the “strikes” and “barrier”. Therefore, for all the expectations 
in the pricing recursions for structure A, the CTMC approximation converges in sec-
ond order. Furthermore, convergence is smooth, enabling us to apply Richardson 
extrapolation to achieve higher-order convergence.

(4)� =

d+1⋃
i=0

�i

�0 = {e1} ∪ {e1 + (0.5 + j)h0 ∶ 0 ≤ j < n0}, h0 = (𝜉1 − e1)∕n0,

�i = {𝜉i + 0.5hi−1 + (0.5 + j)hi ∶ 0 ≤ j < ni},

hi = (𝜉i+1 − 𝜉i − 0.5hi−1)∕ni, 1 ≤ i < l,

�l = {𝜉l + 0.5hl−1 + jhl ∶ 0 ≤ j < nl}, hl = (H − 𝜉l − 0.5hl−1)∕nl,

�l+1 = {H} ∪ {H + (0.5 + j)hl+1 ∶ 0 ≤ j < nl+1}, hl+1 = (𝜉l+1 − H)∕nl+1,

�i = {𝜉i−1 + 0.5hi−1 + (0.5 + j)hi ∶ 0 ≤ j < ni},

hi = (𝜉i − 𝜉i−1 − 0.5hi−1)∕ni, l + 2 ≤ i < d + 1,

�d+1 = {𝜉d + 0.5hd + jhd+1 ∶ 0 ≤ j ≤ nd+1}, hd+1 = (e2 − 𝜉d − 0.5hd)∕nd+1.
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For structure B, the grid is designed in the same way with {Di, i = 1, ..., n} as the 
“strikes” and B as the “barrier”.

Remark 2  For structure A, if H ∈ � , it is impossible to fulfill the two requirements 
simultaneously. In this case, we first design a grid �0 that places H on the grid so 
that the approximation for Ex[𝜐(Xh)1{𝜏H>h}] achieves second-order smooth conver-
gence. We then design another grid �1 that places H midway between two adjacent 
grid points, thus guaranteeing second-order smooth convergence for all other expec-
tations. To implement the recursion, we need to obtain the values of Ex[𝜐(Xh)1{𝜏H>h}] 
for x ∈ �1 , which can be achieved by interpolating its values on �0 . With an appro-
priate interpolation scheme, the error of interpolation is of a higher convergence 
order than CTMC approximation error (see Zhang and Li (2019)). Thus, the overall 
approximation error would remain second order. For structure B, if B equals some 
“strike”, we can do the same.

Remark 3  If we have multiple autocallables with different barriers, using the piece-
wise uniform structure we can design a grid that places the barriers of all the prod-
ucts in appropriate locations to satisfy the requirements in Zhang and Li (2019). 
Using this grid, all the products share the same matrix exponential in the CTMC 
algorithm.

3.3 � Pricing under 1D time‑homogeneous Markov models

We present the algorithms for computing V(x) in three cases when St is a 1D time-
homogeneous Markov process. We have approximated St by a CTMC Xt with state 
space � and generator matrix G.

Algorithm for structure I without snowball effect. For any x ∈ � , let

Our algorithm calculates h(i, x) recursively in two steps. 

Step 1:	� Let mH denote the index such that xmH−1
= H . Set Ĝ = GmH∶M,mH∶M

 . Cal-
culate matrix exponentials A = exp(Gh) and Â = exp(Ĝh) . Recall that the 
payoff of autocallable I at tn is the sum of � and � defined in (1), where � 
is the payoff without the need for monitoring H and � gives the payoff paid 
to the investor only when H has not been down-crossed during [tn−1, tn] . 
Compute 

 Then compute 

h(i, x) ∶= Ex[V
i(Xh)], i = 1, ..., n − 1,

h(n, x) ∶= Ex[V
n(Xh,m

X
h
)].

Exm
[𝜐(Xh)1{𝜏X

H
>h}] = (Â𝜐)(xm), for m = mH , ...,M,

Exm
[𝜙(Xh)] = (A𝜙)(xm), for m = 1, ...,M.
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 This step costs O(M2) plus the cost of computing two matrix exponentials.

Step 2:	� Do the following for i running backward from n − 1 to 1: first compute 

 where h(i + 1, xm) has been calculated from the previous iteration and Vi is an 
M-dimensional vector whose mth component is Vi(xm) . Then compute 

 Finally, if the initial asset price x is a grid point, set V(x) = e−rhh(1, x) . Otherwise, 
V(x) can be estimated by interpolating the values on the grid. The cost of calculating 
{h(i, xm) ∶ m = 1, ...,M} for all i is O(nM2).

Combining the two steps, the total cost is O(nM2) plus the cost of computing two 
matrix exponentials.

Algorithm for structure I with snowball effect. For any x ∈ � , let

Our algorithm calculates h(i, x, q) recursively in two steps. 

Step 1:	� Let mH denote the index such that xmH−1
= H . Set Ĝ = GmH∶M,mH∶M

 . Calcu-
late matrix exponentials A = exp(Gh) and Â = exp(Ĝh) . Compute 

 Then compute 

 This step costs O(nM2) plus the cost of computing two matrix exponentials.

Step 2:	� Do the following for i running backward from n − 1 to 1: first compute 

h(n, xm) = (Â𝜐)(xm)1{m≥mH}
+ (A𝜙)(xm), for m = 1, ...,M.

Vi(xm) = Nzi1{Ci≤xm<Di}
+ N(1 + yi)1{Di≤xm<Ui}

+ Nxm∕S01{xm≥Ui}

+ e−rhh(i + 1, xm)1{xm<Di}
, for m = 1, ...,M,

h(i, xm) = (AVi)(xm), for m = 1, ...,M.

h(i, x, q) ∶= Ex[V
i(Xh, q)], q = 0, 1, ..., i − 1, i = 1, ..., n − 1,

h(n, x, q) ∶= Ex[V
n(Xh,m

X
h
, q)], q = 0, 1, ..., n − 1.

Exm
[𝜐(Xh)1{𝜏X

H
>h}] = (Â𝜐)(xm), for m = mH , ...,M,

Exm
[𝜙q(Xh)] = (A𝜙q)(xm), for m = 1, ...,M and q = 0, 1, ..., n − 1.

h(n, xm, q) =(Â𝜐)(xm)1{m≥mH}
+ (A𝜙q)(xm),

for m = 1, ...,M and q = 0, 1, ..., n − 1.
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 where h(i + 1, xm, q + 1) and h(i + 1, xm, 0) have been calculated from previous 
iteration and Vi

q
 is a M-dimensional vector whose mth component is Vi

q
(xm) . Then 

compute 

 Finally, if the initial asset price x is a grid point, V(x) = e−rhh(1, x, 0) . Otherwise, 
V(x) can be estimated by interpolating the values on the grid. The cost of calculating 
{h(i, xm, q) ∶ m = 1, ...,M, q = 0, 1, ..., i − 1} for all i is O(n2M2).

Combining the two steps, the total cost is O(n2M2) plus the cost of computing 
two matrix exponentials.

Algorithm for structure II. For any x ∈ � , let

Our algorithm calculates h(i, x, IB) recursively in two steps. 

Step 1:	� Let mB denote the index such that xmB−1
= B . Set Ḡ = GmB∶M,mB∶M

 . Calcu-
late matrix exponentials A = exp(Gh) and Ā = exp(Ḡh) . Compute 

 Then compute 

 This step costs O(M2) plus the cost of computing two matrix exponentials.

Step 2:	� Do the following for i running backward from n − 2 to 0: first compute 

 where {h(i + 1, xm, IB) ∶ IB = 0, 1} has been calculated from previous iteration and 
Vi+1(⋅, IB) is an M-dimensional vector whose mth component is Vi+1(xm, IB) . Then 
compute 

Vi
q
(xm) = Nzi1{Ci≤xm<Di}

+ N(1 + yi)1{Di≤xm<Ui}
+ Nxm∕S01{xm≥Ui}

+ e−rhh(i + 1, xm, 0)1{Ci≤xm<Di}
+ e−rhh(i + 1, xm, q + 1)1{xm<Ci}

+ N

i−1∑
k=i−q

zk1{xm≥Ci}
, m = 1, ...,M; q = 0, 1, ..., i − 1,

h(i, xm, q) = (AVi
q
)(xm), for m = 1, ...,M and q = 0, 1, ..., i − 1.

h(i, x, IB) ∶= Ex[V
i+1(Xh, IB1{𝜏X

B
>h})], i = 0, ..., n − 1, IB = 0, 1.

Exm
[𝜑(Xh)1{𝜏X

B
>h}] = (Ā𝜑)(xm), for m = mB, ...,M,

Exm
[𝜓(Xh)] = (A𝜓)(xm), for m = 1, ...,M.

h(n − 1, xm, IB) =(A𝜓)(xm) + IB(Ā𝜑)(xm)1{m≥mB}
,

for m = 1, ...,M and IB = 0, 1.

Vi+1(xm, IB) = Nzi + N(1 + yi)1{xm≥Di}

+ e−rhh(i + 1, xm, IB)1{xm<Di}
, m = 1, ...,M, IB = 0, 1,
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 Finally, if the initial asset price x is a grid point, set V(x) = e−rhh(0, x;1) . Otherwise, 
V(x) can be estimated by interpolating the values on the grid. The cost of calculating 
{h(i, xm;IB) ∶ m = 1, ...,M, IB = 0, 1} for all i is O(nM2).
 Combining the two steps, the total cost is O(nM2) plus the cost of computing two 
matrix exponentials.

We provide the pseudocodes of these pricing algorithms in the appendix. As the 
algorithm is largely similar for different types of autocallables, we only present the 
algorithm for autocallable structure A without snowball effect for the other classes 
of models in the following. Changes to the algorithm can be easily made for the 
other two autocallables.

3.4 � Pricing under regime‑switching Markov models

Consider a regime-switching model where the drift, volatility, and jump intensity 
measure of St depends on the regime vt , i.e., they can be written as �(x, v) , �(x, v) , 
and J(x, v, dy) . We assume that vt follows a CTMC with state space �v = {v1, ..., vL} 
and transition rate matrix Λ ∈ ℝ

L×L , and it is independent of the random sources 
driving St . For each regime vj ( j = 1,⋯ , L ), we construct a CTMC with state space 
� = {x1, ..., xM} and generator matrix Gvj

∈ ℝ
M×M to approximate St if vt = vj . Thus, 

the pair (St, vt) is approximated by the regime-switching CTMC (Xt, vt) where X 
moves on � with transition rate matrix Gv when vt = v for v ∈ �v and vt evolves 
according to transition rate matrix Λ.

Cai et  al. (2019) showed that the bivariate regime-switching CTMC (Xt, vt) is 
converted into a univariate CTMC Yt with state space 𝔾Y ∈ ℝ

ML given by

and transition rate matrix

where IM is the M ×M identity matrix. As the payoffs of an autocallable can also 
be viewed as functions of Yt , its price can be approximated by the algorithms in 
Sect. 3.3.

3.5 � Pricing under 1D time‑inhomogeneous Markov models

In a time-inhomogenous Markov model, the drift, volatility, and jump inten-
sity measure are also functions of time and they are written as �(t, x) , �(t, x) , and 
J(t, x, dy).

h(i, xm, IB) =(AV
i+1(⋅, 0))(xm) + IB

(
Ā
(
Vi+1(⋅, 1) − Vi+1(⋅, 0)

))
(xm),

m =1, ...,M, IB = 0, 1.

�Y = {(x1, v1), ..., (xM , v1), (x1, v2), ..., (xM , v2), ..., (x1, vL), ..., (xM , vL)},

GY =

⎛⎜⎜⎜⎝

Λ11IM + Gv1
Λ12IM ⋯ Λ1LIM

Λ21IM Λ22IM + Gv2
⋯ Λ2LIM

⋮ ⋮ ⋱ ⋮

ΛL1IM ΛL2IM ⋯ ΛLLIM + GvL

⎞⎟⎟⎟⎠
,
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We divide the time interval [0,  h) into K equal segments: 
{[k�, (k + 1)�) ∶ k = 0, ...,K − 1} , where � = h∕K . Over [k�, (k + 1)�) , we approxi-
mate St by a time-homogeneous Markov process with drift �(k�, St) , volatility 
�(k�, St) , and jump intensity measure J(k�, St, dy) , which is in turn approximated by a 
CTMC X with state space � whose cardinality is M, i.e., |�| = M , and generator matrix 
Gk� ∈ ℝ

M×M.
Consider pricing autocallable I without snowball effect. The algorithm is largely 

similar to the time-homogeneous case, but we must also calculate the value function at 
intermediate time points within any monitoring interval of length h for the autocallable, 
which is different. Furthermore, distinct generator matrices are used for different time 
segments, leading to more computations of matrix exponentials.

For any x ∈ � and k = 0, 1, ...,K , let

In addition, for i = 1, ..., n , k = 0, 1, ...,K , and x ∈ � , let

Our pricing algorithm calculates h(i, k, x) recursively in two steps: 

Step 1:	� Let mH denote the index such that xmH−1
= H . Set Ĝk𝛿 = (Gk𝛿)mH∶M,mH∶M

 
for k = 0, 1, ..., nK − 1 . Calculate matrix exponential Ak� = exp(Gk��) 
and Âk𝛿 = exp(Ĝk𝛿𝛿) for k = 0, 1, ..., nK − 1 . Set f (0, xm) = �(xm) and 
f (0, xm) = �(xm) for m = 1, ...,M . Compute the following for k from 1 to 
K: 

 Then compute 

 This step costs O(M2K) plus the cost of computing nK matrix exponentials.

Step 2:	� Do the following for i running backward from n − 1 to 1: (1) Calculate 

 where h(i + 1,K, xm) has been calculated from the previous iteration. 

f (k, x) ∶= E[𝜙(Xnh)|Xnh−k𝛿 = x],

g(k, x) ∶= E[𝜐(Xnh)1{𝜏X
H
>k𝛿}|Xnh−k𝛿 = x].

h(i, k, x) ∶= E[Vi(Xih)|Xih−k� = x].

f (k, xm) = (Anh−k𝛿f (k − 1, ⋅))(xm),

for m = 1, ...,M,

g(k, xm) = (Ânh−k𝛿g(k − 1, ⋅))(xm),

for m = mH , ...,M.

h(n,K, xm) = f (K, xm) + g(K, xm), for m = 1, ...,M.

h(i, 0, xm) = Nzi1{Ci≤xm<Di}
+ N(1 + yi)1{Di≤xm<Ui}

+ Nxm∕S01{xm≥Ui}

+ e−rhh(i + 1,K, xm)1{xm<Di}
, for m = 1, ...,M,



275Pricing and hedging autocallable products by Markov chain…

	� (2) For k from 1 to K, compute: 

 where h(i, k − 1, ⋅) is an M-dimensional vector whose mth component is 
h(i, k − 1, xm) . Finally, if the initial asset price x is a grid point, V(x) = e−rhh(1,K, x) . 
Otherwise, V(x) can be estimated by interpolating the values on the grid. The cost of 
calculating {h(i, k, xm) ∶ m = 1, ...,M;k = 0, ...,K} for all i is O(nM2K).

Combining the two steps, the total cost is O(nM2K) plus the cost of computing 
nK matrix exponentials. Compared with the time-homogeneous case, the computa-
tional cost scales with K as time discretization is needed.

3.6 � Pricing under SLV models

We consider a general SLV model defined by

where 
[
W (1),W (2)

]
t
= �t with � ∈ [−1, 1] . Cui et al. (2018) show how to construct a 

CTMC to approximate (St, vt) . They define a transformed process Zt = �
(
St
)
− ��

(
vt
)
 

with �(x) = ∫ x

.

1

Γ(u)
du and �(x) = ∫ x

.

m(u)

�(u)
du and it follows that

where W∗ is a standard Brownian motion independent of W (2) and,

with �(z, v) = �−1(z + ��(v)) and h(x) = �(x)
m(x)

�(x)
+

1

2

(
�(x)m�(x) − ��(x)m(x)

)
 . The 

asset price St can be recovered as St = �(Zt, vt) . Then, they construct a two-layer 
regime-switching CTMC (Xt, ṽt) with M states for Xt and L states for ṽt to approxi-
mate (Zt, vt) . Specifically, ṽt is first constructed using the SDE of vt . Then, Zt is 
approximated by Z̃t that follows

which is a regime-switching diffusion. A regime-switching CTMC (Xt, ṽt) is con-
structed to approximate (Z̃t, ṽt) , which also approximates (Zt, vt) . To calculate expec-
tations of the regime-switching CTMC, Cui et al. (2018) convert it to a univariate 
CTMC as in Sect. 3.4 with ML states using the result in Cai et al. (2019). They con-
struct a nonuniform grid for ṽt denoted by �v with L points. To design the grid of Xt 
denoted by �X , they start with a grid of St denoted by �S with M points and then set 
�X = {�(s) − ��(v0) ∶ s ∈ �S} . Details of the grid design can be found in Cui et al. 
(2018). Hereafter, we refer to their method as CKN.

h(i, k, xm) =
(
Aih−k�h(i, k − 1, ⋅)

)
(xm), for m = 1, ...,M,

(5)
{

dSt = �
(
St, vt

)
dt + m

(
vt
)
Γ
(
St
)
dW

(1)
t ,

dvt = �
(
vt
)
dt + �

(
vt
)
dW

(2)
t ,

dZt = �
�
Zt, vt

�
dt +

√
1 − �2m

�
vt
�
dW∗

t
,

�(z, v) =

(
�(�(z, v), v)

Γ(�(z, v))
−

Γ�(�(z, v))

2
m2(v) − �h(v)

)
,

(6)dZ̃t = 𝜃
�
Z̃t, ṽt

�
dt +

√
1 − 𝜌2m

�
ṽt
�
dW∗

t
,
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However, there are two potential issues when employing the CKN method for 
pricing some products. First, we need to calculate a matrix exponential with dimen-
sion ML, which is time consuming when ML is large. Second, if the product’s payoff 
is discontinuous (like the digital payoff), convergence of the method is oscillatory. 
Thus, we cannot apply Richardson extrapolation to accelerate convergence.

To illustrate these two problems, we carry out a simple numerical experiment, 
where we consider the SABR model with its parameters given in Section 4.2.2 in 
Cui et al. (2018). However, instead of pricing a European call option as in Cui et al. 
(2018), we price a digital call option with payoff 1{ST≥K̂} as the autocallable payoff 
contains many such indicators. The grid design exactly follows Cui et al. (2018) and 
S0 = 0.05, T = 1 and K̂ = 0.052 . We price the digital call under two settings: (1) fix-
ing L = 25 and 50, and varying M from 70 to 370 (see Fig. 1a); 2) fixing M = 130 
and 370, and varying L from 15 to 50 (see Fig. 1b). We also price the digital call 
using the Monte Carlo method with 109 replications and 2500 time steps, and the 
result is stable in the first four decimal places. We use it as a benchmark for CTMC 
approximation. In both settings, we can see that the CKN method exhibits oscil-
lations, making Richardson extrapolation inapplicable. We also display its running 
time in Table 1a, from which we observe sharp increase in the computation time as 
either M or L increases.

To address the computational issue, we propose a two-layer hybrid Markov chain 
approximation scheme as a remedy, and sometimes we simply call it Hybrid. We 
approximate (Zt, vt) by (Xt, ṽt) , which are constructed as follows. First, we divide the 
time interval [0, h) into K small equal segments {[k�, (k + 1)�) ∶ k = 0, 1, ...,K − 1} 
with � = h∕K , and set ṽt constant over each segment. Given �v = {v1, ..., vL} as the 
grid of ṽt , the transition from ṽk𝛿 to ṽ(k+1)𝛿 follows a discrete-time Markov chain 
(DTMC) with state space �v and transition probability matrix Av = exp(Λ�) ∈ ℝ

L×L 
where Λ ∈ ℝ

L×L is the generator matrix of the CTMC approximation for vt with state 
space �v . Given �X = {x1, ..., xM} as the state space of Xt , on each time segment 
[k�, (k + 1)�) , if ṽk𝛿 = vl ∈ �v , Xt is a CTMC with generator matrix Gvl

∈ ℝ
M×M , 

which is constructed by approximating the generator of the SDE (6).

Fig. 1   Approximations of P(S
T
≥ K̂) under SABR
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Compared with CKN, in our scheme the volatility state vt is approximated by a 
DTMC ṽt instead of a CTMC. As ṽt stays constant on t ∈ [k�, (k + 1)�) , we only 
need to consider the transition of Xt on this time interval. In contrast, if ṽt is a CTMC 
as in CKN, its state can change on [k�, (k + 1)�) and thus we must consider the joint 
transition of (Xt, ṽt) . As a result, CKN requires computing the matrix exponential of 
an ML ×ML matrix, but our method only needs to compute the matrix exponentials 
of an L × L matrix and L2 matrices of size M ×M , which can be substantially faster 
when ML is large (see Table 1).

Convergence. We show that by increasing the number of time steps, K, to infin-
ity, the Markov chain in our Hybrid scheme converges weakly to the two-layer 
CTMC constructed in Cui et  al. (2018). Let (X(M,L)

t , ṽ
(L)
t ) be the CTMC living on 

the grid �(M,L) ∶= �X × �v in the CKN method with fixed M, L. The time grid is 
given by {0, �K , 2�K ,⋯} where �K → 0 as K → ∞ . Consider the Markov chain in the 
Hybrid scheme, {(X(M,L,K)

t , ṽ
(L,K)
t ), t = 0, 𝛿K ,⋯} . Let J ∶= {f ∶ 𝔾

(M,L)
→ ℝ} be the 

space of functions defined on the grid �(M,L) , which are all bounded because they are 
defined on a finite number of points.

Proposition 1  For any f ∈ J and for all t ≥ 0 , we have for any (x, v) ∈ �
(M,L),

The proof is provided in Appendix  B. The proposition implies that with suffi-
ciently small time steps the results from the Hybrid scheme are very close to those 
from CKN. It is shown in Proposition 4 of Cui et al. (2018) that (X(M,L)

t , ṽ
(L)
t ) weakly 

converges to the original process (Zt, vt) as M, L → ∞ under suitable conditions. 
Thus, combining these results, we see that our hybrid scheme can achieve accurate 
approximations by choosing large values for M, L, K.

To address the issue of convergence oscillations, we allow the grid of Xt to 
depend on the volatility state in our implementation. This creates another difference 
from CKN, where the grid of Xt is independent from the volatility state. We consider 
this flexibility for grid design because we want to utilize the results in Zhang and Li 
(2019) to remove oscillations. Below we describe how the grids are constructed.

(7)Ex,v

�
f
�
X
(M,L,K)

⌊t∕𝛿K⌋𝛿K , ṽ
(L,K)

⌊t∕𝛿K⌋𝛿K

��
→ Ex,v

�
f
�
X
(M,L)
t , ṽ

(L)
t

��
, as K → ∞.

Table 1   Running times 
(seconds) of two Markov 
chain approximation schemes 
for calculating P(S

T
≥ K̂) . In 

(b), the first and second times 
are for K = 100 and K = 10 , 
respectively

M

90 190 270 370

(a) CKN
L 25 1 52 113 257

40 18 200 582 1327
50 29 403 1100 2584

(b) Hybrid, K = 100, 10.
L 25 2, 1 8, 6 19, 15 35, 34

40 6, 2 22, 14 44, 34 82, 74
50 11, 3 37, 21 73, 53 144, 115
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As St = �(Zt, vt) , we can view (S̃t ∶= 𝜁(Xt, ṽt), ṽt) as a Markov chain that approxi-
mates (St, vt) . Note that the payoff is only a function of the stock price St . Thus, to 
ensure second-order convergence and remove oscillations, we only need the grid of S̃t 
to satisfy the design principles laid out in Zhang and Li (2019). We construct a piece-
wise uniform grid �S for S̃t by (4), which satisfies the grid design principles. We also 
construct a piecewise uniform grid for ṽt as

where n1 = ⌊L(v0 − v1)∕(vL − v1)⌋ , n2 = L − n1 − 1 , h1 = (v0 − v1)∕n1 and 
h2 = (vL − v0)∕n2 . This design makes v0 on the grid. For both �S and �v , the small-
est and largest grid points are chosen sufficiently small and large. As S̃t = 𝜁(Xt, ṽt) 
implies Xt = 𝜉(S̃t) − 𝜌𝜂(ṽt) , we can obtain the grid for Xt given ṽt = vl from �S as

Thus, the grid of Xt depends on the value ṽt takes.
We apply the hybrid Markov chain method to price the product with digital payoff 

1ST≥K̃ using our grid design under the SABR parameters specified in Section 4.2.2 of 
Cui et al. (2018). The results demonstrate that our method achieves stable convergence, 
as illustrated in Fig. 1. Moreover, Table 1 show that our method enhances computa-
tional efficiency considerably. We have tried two values of K, and clearly the choice of 
K brings a tradeoff between accuracy and computational efficiency. Reducing K from 
100 to 10, the running time decreases in Table 1b, but the accuracy becomes slightly 
worse in Fig. 1.

Remark 4  One advantage of the CKN method is that it does not discretize time. By 
using a DTMC instead of a CTMC to approximate vt , we introduce time discretiza-
tion error. However, our numerical experiment shows that this error is insignificant 
compared with other sources of error if K is chosen properly. As can be seen from 
Table 1, even if K is quite large, such as 100, our scheme still takes much less time 
than CKN.

Autocallable pricing. We present our pricing algorithm for autocallable I without 
the snowball effect under the SLV model (the algorithms for the other cases can be 
developed in a similar way). For any x ∈ �

(l)

X
 and vl ∈ �v , let

where h(i, k, x, vl) represents the value of the autocallable at time ih + k� with state 
(x, vl) . Then by the law of iterated expectations, it satisfies that for any i = 0, ..., n − 2 
and k = 0, 1, ...,K − 1,

�v = {v1 + jh1 ∶ 0 ≤ j ≤ n1} ∪ {v0 + jh2 ∶ 1 ≤ j ≤ n2},

�
(l)

X
= {�(S) − ��(vl) ∶ S ∈ �S}, .

h(i, k, x, vl) ∶= Ex,vl
[Vi+1(𝜁(Xh−k𝛿 , ṽh−k𝛿))], i = 0, ..., n − 2;k = 0, 1, ...,K,

h(n − 1, k, x, vl) ∶= Ex,vl
[Vn(𝜁(Xh−k𝛿 , ṽh−k𝛿),m

X
h−k𝛿

)], k = 0, 1, ...,K,
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Let

For x ∈ �
(s)

X
 , we have

For any vs ∈ �v , we apply interpolation to the values of h̃(i, k + 1, x, vl, vs) on the 
grid �(s)

X
 to obtain the value of h̃(i, k + 1, x, vl, vs) for x ∈ �

(l)

X
 . Then, for any x ∈ �

(l)

X
 , 

we obtain

Thus, h(i, 0, x, v) can be computed recursively. Recall that the payoff of autocallable 
I at tn is the summation of � and � defined in (1), where � is the payoff without the 
need for monitoring H and � gives the payoff paid to the investor only when H has 
not been down-crossed during [tn−1, tn] . For any x ∈ �

(l)

X
 and vl ∈ �v , let

where f (k, x, vl) represents the value of the autocallable payoff without the need for 
monitoring H at time (n − 1)h + k� with state (x, vl) . Similarly, by the law of iterated 
expectations, it satisfies that for any k = 0, 1, ...,K − 1,

Let

For x ∈ �
(s)

X
 , we have

For any vs ∈ �v , we apply interpolation to the values of f̃ (k + 1, x, vl, vs) on the grid 
�

(s)

X
 to obtain the value of f̃ (k + 1, x, vl, vs) for x ∈ �

(l)

X
 . Then, for any x ∈ �

(l)

X
 , we 

obtain

Thus, f (k, x, vl) can also be computed recursively. Let m
(l)

H
= {1 ≤ m ≤ M ∶

𝜁(x(l)
m
, v

l
) > H} denote the index of �(l)

X
 such that the associated approximated asset 

price is larger than continuous barrier H. For any x ∈ �
(l)

X
 and vl ∈ �v , let

h(i, k, x, vl) = Ex,vl

[
h(i, k + 1,X𝛿 , ṽ𝛿)

]

= Ex,vl

[
E
[
h(i, k + 1,X𝛿 , ṽ𝛿)|ṽ𝛿 ,X0 = x, ṽ0 = vl

]]
,

h̃(i, k + 1, x, vl, vs) ∶= E
[
h(i, k + 1,X𝛿 , ṽ𝛿)|ṽ𝛿 = vs,X0 = x, ṽ0 = vl

]
.

h̃(i, k + 1, x, vl, vs) = (exp(G(s)
vl
𝛿)h(i, k + 1, ⋅, vs))(x).

h(i, k, x, vl) = (Avh̃(i, k + 1, x, vl, ⋅))(vl).

f (k, x, vl) ∶= Ex,vl
[𝜙(𝜁(Xh−k𝛿 , ṽh−k𝛿))], k = 0, 1, ...,K,

f (k, x, vl) = Ex,vl

[
E
[
f (k + 1,X𝛿 , ṽ𝛿)|ṽ𝛿 ,X0 = x, ṽ0 = vl

]]
.

f̃ (k + 1, x, vl, vs) ∶= E
[
f (k + 1,X𝛿 , ṽ𝛿)|ṽ𝛿 = vs,X0 = x, ṽ0 = vl

]
.

f̃ (k + 1, x, vl, vs) = (exp(G(s)
vl
𝛿)f (k + 1, ⋅, vs))(x).

f (k, x, vl) = (Avf̃ (k + 1, x, vl, ⋅))(vl).
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where g(k, x, vl) represents the value of autocallable payoff with the need for moni-
toring H at time (n − 1)h + k� with state (x, vl) . By the law of iterated expectations, 
we have for any k = 0, 1, ...,K − 1,

Let

For m ∈ m
(s)

H
 , we have

with Ĝ
(s)

vl
= (G(s)

vl
)
m

(s)

H
,m

(s)

H

 . For any vs ∈ �v , we apply interpolation to the values of 
g̃(k + 1, x, vl, vs) on the grid �(s)

X
 to obtain the value of f̃ (k + 1, x, vl, vs) for x ∈ �

(l)

X
 . 

Then, we obtain

Thus, g(k, x, vl) can also be computed recursively. Then our algorithm calculates 
h(i, k, x, v) recursively in two steps: 

Step 1:	� For every l = 1, ..., L , let m(l)

H
 denote the set {m ∶ 𝜁(x(l)

m
, vl) > H, xm ∈ �

(l)

X
} 

and set Ĝ
(s)

vl
= (G(s)

vl
)
m

(s)

H
,m

(s)

H

 . Calculate matrix exponential Av = exp(Λ�) , 
A
(s)

l
= exp(G(s)

vl
�) and Â

(s)

l
= exp(Ĝ

(s)

vl
𝛿) for l, s = 1, ..., L . 

f (K, x, v) = �(� (x, v)) and g(K, x, v) = �(�(x, v)) . Compute the following 
for k from K − 1 to 0: 

 Set g̃(k + 1, x(s)
m
, vl, vs) = 0 for m ∉ m

(s)

H
 and l, s = 1, ..., L . For every l, s = 1, ..., L , 

f̃ (k + 1, x, vl, vs) and g̃(k + 1, x, vl, vs) are available for x ∈ �
(s)

X
 and we use interpola-

tion to obtain f̃ (k + 1, x, vl, vs) and g̃(k + 1, x, vl, vs) for x ∈ �
(l)

X
 . Compute 

 Set g(k, x(l)
m
, vl) = 0 for m ∉ m

(l)

H
 and l = 1, ..., L . Then compute 

g(k, x, vl) ∶= Ex,vl

[
𝜐(𝜁(Xh−k𝛿 , ṽh−k𝛿))1{𝜏X

H
>h−k𝛿}

]
, k = 0, 1, ...,K,

g
(
k, x, vl

)
= Ex,vl

[
E

[
g(k + 1,X𝛿 , ṽ𝛿)1{𝜏X

H
>𝛿}|ṽ𝛿 = vs,X0 = x, ṽ0 = vl

]]
.

g̃(k + 1, x, vl, vs) ∶= E
[
g(k + 1,X𝛿 , ṽ𝛿)|ṽ𝛿 = vs,X0 = x, ṽ0 = vl

]
.

g̃(k + 1, x(s)
m
, vl, vs) =

{
(exp(Ĝ

(s)

vl
𝛿)g(k + 1, ⋅, vs))(x), m ∈ m

(s)

H

0, m ∉ m
(s)

H

,

g(k, x(l)
m
, vl) =

{
(Avg̃(k + 1, x(l)

m
, vl, ⋅))(vl), m ∈ m

(l)

H

0, m ∉ m
(l)

H

.

f̃ (k + 1, x(s)
m
, vl, vs) = (A

(s)

l
f (k + 1, ⋅, vs))(x

(s)
m
), for m = 1, ...,M and l, s = 1, ..., L,

g̃(k + 1, x(s)
m
, vl, vs) = (Â

(s)

l
g(k + 1, ⋅, vs))(x

(s)
m
), for m ∈ m

(s)

H
and l, s = 1, ..., L,

f (k, x(l)
m
, vl) = (Avf̃ (k + 1, x(l)

m
, vl, ⋅))(vl), for m = 1, ...,M and l = 1, ..., L,

g(k, x(l)
m
, vl) = (Avg̃(k + 1, x(l)

m
, vl, ⋅))(vl), for m ∈ m

(l)

H
and l = 1, ..., L.
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 This step costs O(M2L2K) + O(ML2K) = O(M2L2K) plus the cost of computing the 
2L2 + 1 matrix exponentials.

Step 2:	� Do the following for i running backward from n − 2 to 0: (1) Calculate 

 where h(i + 1, 0, ⋅, ⋅) has been calculated from previous iteration. 

	� (2) For k from K − 1 to 0, recursively compute the following: 

 For every l, s = 1, ..., L , h̃(i, k + 1, x, vl, vs) are available for x ∈ �
(s)

X
 and we use 

interpolation to obtain h̃(i, k + 1, x, vl, vs) for x ∈ �
(l)

X
 . Compute 

 Finally, if the initial asset price and volatility (x,  v) is a grid point, 
V(x) = e−rhh(0, 0, x, v) . Otherwise, V(x) can be estimated by interpolating the values on 
the grid. The cost of calculating {h(i, k, xm, vl) ∶ m = 1, ...,M;k = 0, ...,K;l = 1, ..., L} 
for all i is O(nM2L2K) + O(nML2K) = O(nM2L2K).

Combining the two steps, the total cost is O(nM2L2K) plus the cost of computing 
2L2 + 1 matrix exponentials.

4 � Numerical results

We evaluate the convergence behavior, efficiency, and accuracy of our method under 
various representative models. In all the examples, we set the risk-free interest rate 
r = 0.025 , the dividend yield d = 0 , and the initial asset price S0 = 100 . We set the 
model parameters by referencing other papers in the literature.

•	 The BS model: dSt = (r − d)Stdt + �StdWt, t ≥ 0 , where W is a standard 1D 
Brownian motion. We set � = 0.3.

•	 A regime-switching BS (RSBS) model with three regimes: 
dSt = (r − d)Stdt + �vtStdWt, t ≥ 0 , where vt is a CTMC with state space 
{1, 2, 3} , and its transition rate matrix is given by 

h(n − 1, 0, x(l)
m
, vl) = f (0, x(l)

m
, vl) + g(0, x(l)

m
, vl), for m = 1, ...,M and l = 1, ..., L.

h(i,K, x(l)
m
, vl) = Nzi1{Ci≤𝜁 (x(l)m ,vl)<Di}

+ N(1 + yi)1{Di≤𝜁 (x(l)m ,vl)<Ui}

+ N𝜁(x(l)
m
, vl)∕S01{𝜁 (x(l)m ,vl)≥Ui}

+ e−rhh(i + 1, 0, x(l)
m
, vl)1{𝜁 (x(l)m ,vl)<Di}

,

m = 1, ...,M and l = 1, ..., L,

h̃(i, k + 1, x(s)
m
, vl, vs) =(A

(s)

l
h(i, k + 1, ⋅, vs))(x

(s)
m
),

for m = 1, ...,M and l, s = 1, ..., L.

h(i, k, x(l)
m
, vl) =

(
Avh̃(i, k + 1, x(l)

m
, vl, ⋅)

)
(vl),

for m = 1, ...,M and l = 1, ..., L.
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 We set � = 0.2, 0.3, 0.4 in the first, second, and third regime, respectively.
•	 A time-inhomogeneous BS (TIBS) model: dSt = (r − d)Stdt + �(t)StdWt, t ≥ 0 , 

where �(t) = 0.6| sin(�∕6 + t)|.
•	 The CEV model (Davydov & Linetsky, 2001): 

dSt = (r − d)Stdt + �S
1+�
t dWt, t ≥ 0 . We set � = 300 and � = −1.5.

•	 Kou’s double-exponential jump-diffusion model (Kou, 2002): 

 where Nt is a Poisson process with arrival rate � , 
{
Vi, i ≥ 1

}
 is a sequence of 

i.i.d. random variables with the density of lnVi given by 
flnVi

(y) = p+𝜂+e−𝜂
+y1{y≥0} + p−𝜂−e𝜂

−y1{y<0} , and 
� = E

[
Vi

]
− 1 =

p+�+

�+−1
+

p−�−

�−+1
− 1 . We set � = 0.3, p+ = p− = 0.5, �+ = �− = 10 , 

and � = 3.0.
•	 The VG model (Madan et al., 1998): 

 where Zt = ��t(1;�) + �W�t(1;�)
,� = ln

(
1 − �� − �2�∕2

)
∕� , and �t(1;�) is 

an independent Gamma process with mean rate 1 and variance rate � . We set 
� = 0, � = 0.3 , and � = 0.006.

•	 The SABR model (Hagan et al., 2002): 

 where W (1) and W (2) are two 1D standard Brownian motions with correlation � . 
We set � = − 0.25 , � = 0.2 , � = 0.5 , and v0 = 3 . In this case, �(x) = x1−�∕(1 − �) , 
�(x) = x∕� , and the auxiliary state Zt follows 

 where W∗ is a 1D standard Brownian motion independent of W (2).
•	 The Heston model (Heston, 1993): 

Λ =

⎛
⎜⎜⎝

−0.75 0.75 0

0.25 −0.5 0.25

0 0.75 −0.75

⎞
⎟⎟⎠
.

dSt

St−
= (r − d − �� )dt + �dWt + d

(
Nt∑
i=1

(
Vi − 1

))
,

St = S0 exp
(
(r − d)t + Zt + �t

)
,

{
dSt = (r − d)Stdt + vtS

�
t dW

(1)
t ,

dvt = �vtdW
(2)
t ,

dZt =

�
(r − d)(1 − �)

�
Zt + �

vt

�

�
−

�

2(1 − �)

v2
t

Zt + �
vt

�

�
dt +

√
1 − �2vtdW

∗
t
,

(8)

�
dSt = (r − d)Stdt +

√
vtStdW

(1)
t ,

dvt = �(� − vt)dt + �v
√
vtdW

(2)
t ,
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 where W (1) and W (2) are two 1D standard Brownian motions with correlation � . 
We set � = − 0.75 , � = 4 , � = 0.09 , �v = 0.15 , and v0 = 0.09 . Under this model, 
�(x) = log(x) , �(x) = x∕�v , and the auxiliary state Zt follows 

 where W∗ is a 1D standard Brownian motion independent of W (2).
The BS and CEV models serve as two examples of diffusions. The Kou model rep-
resents jump-diffusions with finite jump activity while the VG model is a popular 
pure-jump model with infinite jump activity. For these 1D Markov models, the grid 
design follows Sect. 3.2 with n1 = n2 = ⋯ = nd and n0 = nd+1 = 4n1 . For SLV mod-
els, we consider SABR and Heston, which are two popular choices. We construct the 
grids for the volatility state and auxillary state following Sect. 3.6.

4.1 � Autocallable I

We consider a 4-year contract with

We use our method to price it with and without the snowball effect.
Figure 2 shows the convergence behavior of our method under six models: BS, 

Kou, CEV, VG, RSBS, and TIBS. In each model, the benchmark for calculating the 
error is obtained by running our method with a large number of grid points until no 
change is observed in the fourth decimal place. In each plot, we draw triangles with 
slopes − 1 and − 2 in the lower left corner as a reference for the convergence rate. As 
a comparison, we also try the grid design in Mijatović and Pistorius (2013), which 
will be simply called the MP grid, under the BS model. MP makes the grid around 
several selected critical points dense. In our problem, they are given by the “strikes”, 
“barrier”, and the initial asset price S0 . The denseness around the critical points is 
controlled by a parameter � , whose value can have a significant influence on the 
error. We have tried various values of � and plot the result of � = 10−5 in Fig. 2a, 
which is the most accurate.

Figure 2a illustrates the importance of grid design for the convergence rate. While 
convergence is only first order using the MP grid, it becomes second order with our 
grid design. Second-order convergence is also observed in all the other models using 
our grid design except VG.

Figure 3 shows the convergence behavior of our method for pricing the autocall-
able under the SABR model. In each plot of 3c to 3e, we fix two of the three param-
eters M, L, and K, and check convergence in the remaining one. The benchmark for 
calculating the error is obtained by increasing the parameter under analysis until no 
change is observed in the fifth decimal place. Convergence with respect to M and L 

dZt =

�
r − d −

vt

2
−

��(� − vt)

�v

�
dt +

√
1 − �2

√
vtdW

∗
t
,

S0 = 100, n = 4, h = 1,D1 = D2 = D3 = D4 = 100,U1 = U2 = U3 = U4 = 115,

C1 = C2 = C3 = C4 = 90,B = 75,H = 80, y1 = y2 = y3 = y4 = 8%,

z1 = z2 = z3 = z4 = 5%.
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is at least second order while convergence of time discretization (i.e., with respect to 
K) is first order.

For comparison, we also implement the CKN method. In Fig. 3a and b, we fix 
L, K or M, K and show the convergence of CKN and our method with respect to 
M or L, and the benchmark price is obtained by Monte Carlo simulation accurate 

Fig. 2   Error versus M for pricing autocallable I (on log-log scale). “MP” represents the grid proposed 
by Mijatović and Pistorius (2013) and “PU-MultiMidK” represents the grid in Sect. 3.2. The estimated 
slope is − 1 for MP under the BS model. For the PU-MultiMidK grid, the estimated slopes are around 
− 2.00 under all the models except VG. Under VG model, the estimated slopes are around − 1.5
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to the third decimal place. We also display their running times in Table 2. It is 
clear that our hybrid Markov chain approximation method can achieve more accu-
rate results with substantially less time than CKN. Moreover, the convergence of 
our method is smooth so that one can further apply Richardson extrapolation to 
obtain more accurate results.

We further demonstrate the accuracy and speed of our method in Table 3. We 
run Monte Carlo simulation with 107 replications to generate an accurate bench-
mark and the 99% confidence interval. We observe that the result produced by 
our method lies within the confidence interval in every model. For the diffusion 
models, the number of grid points required to reach a high accuracy level is small 
(less than 100 in the experiment), and computation is completed in a small frac-
tion of a second. For the jump and SLV models, we can apply extrapolation and 
still obtain highly accurate results quickly.

Fig. 3   Error versus M/L/K for the price of autocallable I (plots on the second row are on log-log scale). 
In 3c, the estimated slopes are close to − 2.00 . In 3d, the estimated slope is − 2.61 for the case without 
snowball and − 2.85 for the case with snowball. In 3e, the estimated slopes are close to − 1.00

Table 2   Running time (in 
seconds) for pricing autocallable 
I under the SABR model with 
various M. We set K = 10 in 
Hybrid and L = 35 for both 
methods

M

144 384 480 576

CKN Without snowball 175 1571 3546 5767
With snowball 175 1572 3547 5768

Hybrid Without snowball 9 76 139 220
With snowball 11 80 144 227
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4.2 � Autocallable II

We assess the performance of our method for autocallable structure II. We con-
sider a 3-year maturity ELS product following Kim and Lim (2019):

We consider the BS and Heston models as examples. In addition to the price, we are 
concerned about the performance of approximating delta and vega, which are the 
derivative of the price with respect to St and vt , respectively. These are important 
Greek letters for hedging, and we approximate them by applying finite difference to 
the prices given by our method. We obtain benchmarks by refining the grid until the 
fifth decimal places of the price and Greeks no longer change.

In the Heston model, we fix L and K and show the convergence pattern with 
respect to M. Figure  4 shows that convergence is about second order with-
out oscillations for all the quantities in both models. The error of delta is much 
smaller than that of the price in both models. However, the error of vega can be 
significantly larger in the Heston model. Thus, a larger M is required for the vega 
than for the price to obtain similar accuracy.

(9)
S0 = 100, n = 6, h = 0.5,D = (95, 95, 95, 90, 90, 90),B = 55,

y = (2%, 4%, 6%, 8%, 10%, 12%), z = (0, 0, 0, 0, 0, 0).

Table 3   Price of autocallable I under various models. Column “M” shows the number of grid points in 
the CTMC

 If two numbers are shown, it means that we apply Richardson extrapolation to the prices from these two 
numbers of grid points. For the TIBS model, we set K = 10 . For the SABR model, we set L = 15 and 
K = 10

Model M CTMC Monte Carlo 99% CI Abs. err. Rel. err. (%) Seconds

Price of autocallable I without the snowball effect
BS 60 102.05 102.09 (102.04, 102.13) 0.03 0.03 0.004
RSBS 72 102.10 102.13 (102.10, 102.15) 0.03 0.03 0.017
TIBS 96 101.31 101.32 (101.29, 101.36) 0.02 0.02 0.104
CEV 60 101.40 101.38 (101.35, 101.40) 0.02 0.02 0.004
Kou 60/72 101.57 101.60 (101.55, 101.64) 0.03 0.03 0.011
VG 288/576 102.11 102.12 (102.09, 102.15) 0.01 0.01 1.476
SABR 144/192 101.88 101.88 (101.87, 101.89) 0.01 0.00 5.752
Price of autocallable I with the snowball effect
BS 60 103.50 103.51 (103.47, 103.56) 0.02 0.02 0.004
RSBS 72 103.53 103.54 (103.51, 103.57) 0.01 0.01 0.019
TIBS 96 102.55 102.58 (102.54, 102.62) 0.03 0.03 0.106
CEV 60 102.78 102.77 (102.75, 102.80) 0.00 0.00 0.004
Kou 60/72 102.98 103.01 (102.97, 103.06) 0.03 0.03 0.013
VG 288/576 103.54 103.55 (103.52, 103.57) 0.01 0.01 1.706
SABR 144/192 103.27 103.27 (103.25, 103.28) 0.02 0.00 6.177
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5 � Hedging autocallables

The complex payoff structure of an autocallable can present significant challenges 
for risk management. If the hedger wants to apply delta hedging, which involves 
adjusting the portfolio’s exposure to the underlying asset based on its delta, they 
may encounter problems when the delta becomes extremely large when the price 
of the underlying is near the barriers. This issue is especially acute for autocallable 
II, which involves a series of barriers monitored on payout dates as well as a barrier 
monitored continuously over the lifetime of the product. In this section, we consider 
hedging autocallable II to illustrate the issue and show how to address it. We calcu-
late the autocallable’s delta by using the CTMC approximation algorithm to get the 
price and apply finite difference.

5.1 � Behavior of delta near barriers

We demonstrate the behavior of delta near barriers by considering the 3-year ELS 
product studied in Kim and Lim (2019) with parameters given by (9). When the 
price of the underlying asset approaches the barriers close to the observation dates, 
the delta can become extremely large. Figure 5 provides two such examples, where 
we show the behavior of the price and delta of the autocallable 1 day and 5 days 
before the maturity time T (these two times are denoted by T − 1 and T − 5).

•	 Figure 5a and b show the price and delta around the discretely monitored bar-
rier D6 = 90 in the case where B has been down-crossed. The price increases 
rapidly as the asset price approaches D6 from below. This is because whether the 
underlying price is greater than D6 determines whether the initial capital and the 
final coupon yn can be received, thereby creating a payoff gap at T. As a conse-
quence, the delta can become large around D6 . This phenomenon is particularly 
pronounced when time is close to the payout date, which is T in the example.

Fig. 4   Error versus M for price/delta/vega of autocallable II (on log-log scale). The estimated slopes are 
all around − 2



288	 Y. Cui et al.

Fig. 5   Prices and deltas of the original and modified products. We make the plots around D
6
 by assuming 

that B has been down-crossed and the plots around B by assuming that B has not been down-crossed
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•	 Figure  5c and  d show the price and delta around the continuously monitored 
barrier B = 55 in the case where B has not been down-crossed. Before down-
crossing B, the price of the autocallable decreases sharply as the asset price 
approaches B from above. This is because the closer the asset price moves to B, 
the more likely B is to be down-crossed, which leads to a loss in the initial capital 
and hence a payoff gap at T. It follows that the delta increases sharply and the 
effect is even more extreme than the one for D6.

Due to the substantial change in the delta near certain barriers, delta hedging can 
be costly or even impractical to implement. For instance, in Fig.  5d, as the asset 
price approaches B from above at T − 1 , the hedger has to buy a large amount of 
the underlying asset with the delta topping 40. But once the barrier B is breached, 
she has to liquidate a lot of the underlying as the delta jumps down to 1. Such dra-
matic changes in the position of the underlying can generate hefty transaction costs 
and may even be impossible to achieve in practice. Overall, the larger the pay-
off gap around the barriers, the more sensitive the delta is to changes in the asset 
price around these barriers, which makes the implementation of delta hedging very 
expensive.

To address this issue, Chan et al. (2019) apply two techniques, payoff modifica-
tion and barrier shifting, to discretely and continuously monitored barriers, respec-
tively. We use these techniques for our problem.

For the barrier D6 , the original payoff at T is given by

We modify it as

where

Figure 5e shows that the modified payoff is smoother than the original payoffs. As a 
result, the delta of the product with the modified payoff changes much less in Fig. 5f. 
This makes it easier to hedge and results in lower transaction costs.

For the barrier B, we shift it to some B′ less than B. Figure 5g and h show the 
payoff, price, and delta of the modified product with barrier B� = 53 . Clearly, the 
delta does not exhibit substantial changes now when the asset price approaches B 
from above. The hedger implements delta hedging with the delta given by the modi-
fied product before B is down-crossed. But after B is breached, the hedger returns to 
using the delta of the original product for hedging.

The above discussion highlights the effectiveness of payoff modification and bar-
rier shifting in improving delta hedging. However, the important question of how 
much to modify the payoff and how much to shift the barrier remains. Too much 

1{ST<D6}
NST∕S0 + 1{ST≥D6}

N(1 + y6).

(10)
1{ST<D

�
6
}NST∕S0 + 1{D�

6
≤ST<D6}

(
Δ(ST − D�

6
) + NST∕S0

)
+ 1{ST≥D6}

N(1 + y6),

D�
6
< D6 and Δ =

N(1 + y6) − NST∕S0

D6 − D�
6

.



290	 Y. Cui et al.

modification and shifting can lead to substantial deviation of the modified product 
from the original one, thus increasing the hedging error. In general, there is a trade-
off between the hedging error and transaction cost that must be balanced. Below we 
provide a systematic approach to address it.

5.2 � Dynamic hedging by minimizing CVaR

We consider constructing a dynamic hedging portfolio to hedge a short position in 
autocallable II. Besides the bank account, there are d hedging instruments with their 
prices collected in the vector Zt ∈ ℝ

d . The portfolio is self-financing with initial 
capital p0 , and the savings (or loans) in the bank account are expected to grow at the 
risk-free interest rate r. Let T  denote the terminal date of the autocallable where 
T ∈ {t1, ..., tn} . Our hedging strategy rebalances the hedging portfolio at a discrete 
set of time points t0 = 𝓁0 < 𝓁1 < ⋯ < 𝓁K = T  . The number of shares held in the d 
instruments at �k is denoted by ��k

∈ ℝ
d for k = 0, 1, ...,K . We define ��−1

= ��K
= 0 

for convenience. For each trade, the transaction cost associated with the jth hedging 
instrument at time �k is determined by the function cj

k
(�

j

�k

− �
j

�k−1
) where cj

k
(⋅) repre-

sents the cost function.
We implement a dynamic hedging strategy with initial capital p0 . Let Φ�k

 and 
B�k

 denote the portfolio value and bank account value at �k after rebalancing for 
k = 0, ...,K . We have

with Φ−1 = 0 . Then by self-financing, we obtain

It follows that

(11)Φk = B�k
+

d∑
j=1

Z
j

�k

�
j

�k

,

(12)

Φ�k+1
− Φ�k

=
(
er(�k+1−�k) − 1

)
B�k

+

d∑
j=1

(
Z
j

�k+1
− Z

j

�k

)�
j

�k

− c
j

k+1

(
�
j

�k+1
− �

j

�k

))
.
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where we use (11) and (12) to obtain the second to the last equality,

represents the total discounted net profit from holding the hedging instruments, and

gives the total discounted transaction cost.
At time t0 , the discounted hedging error is given by

where

represents the total discounted payoff to the holder of the autocallable product.
Controlling the tail risk of the hedging error is often considered in the litera-

ture; see Buehler et al. (2019) and the references therein. Here, we minimize the 
conditional value at risk (CVaR) of the hedging error E(p0, �) . CVaR is proposed 
in Artzner et al. (1999) and has been studied extensively as a coherent risk meas-
ure (McNeil et al., 2015). In our problem, given the confidence level 1 − � , CVaR 
is defined by

e−r𝓁KΦ𝓁K
=

K∑
k=0

(
e−r𝓁kΦ𝓁k

− e−r𝓁k−1Φ𝓁k−1

)

=

K∑
k=0

e−r𝓁k

(
Φ𝓁k

− er(𝓁k−𝓁k−1)Φ𝓁k−1

)

=

K∑
k=0

e−r𝓁k

(
Φ𝓁k

− Φ𝓁k−1
−
(
er(𝓁k−𝓁k−1) − 1

)
Φ𝓁k−1

)

=

K∑
k=0

e−r𝓁k

(
d∑
j=1

(
(Z

j

𝓁k

− Z
j

𝓁k−1
)�

j

𝓁k−1
− c

j

k

(
�
j

𝓁k

− �
j

𝓁k−1

))

−
(
er(𝓁k−𝓁k−1) − 1

) d∑
j=1

Z
j

𝓁k−1
�
j

𝓁k−1

)

= (� ⋅ Z)T − CT(�),

(� ⋅ Z)T ∶=

K∑
k=1

e−r𝓁k

d∑
j=1

[(
Z
j

𝓁k

− Z
j

𝓁k−1

)
�
j

𝓁k−1
−
(
er(𝓁k−𝓁k−1) − 1

)
Z
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𝓁k−1
�
j

𝓁k−1

]

CT(�) ∶=

K∑
k=0

e−r�k

d∑
j=1

c
j

k

(
�
j

�k

− �
j

�k−1

)

E(p0, �) = p0 + (� ⋅ Z)T − CT(�) − V ,

V =

n∑
i=1

e−rtiNzi1{ti≤T}

+ e−rTN

((
(1 + yn)1ST≥Dn

+
ST

S0
1ST<Dn

)
(1 − IB(T)) + (1 + yn)IB(T)

)
1{T=T}
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The probability of the hedging shortfall exceeding VaR�(E) is bounded by � , and 
CVaR�(E) shows the expected hedging shortfall given that the shortfall is greater 
than VaR�(E).

In our hedging problem, p0 is exogenously given (e.g., it is given by the 
risk-neutral price), and we look for the hedging strategy � that minimizes 
CVaR�(E(p0, �)) . Using the cash invariance property of CVaR, we have

Thus, in the following we just need to minimize the first term on the right hand side 
of (13).

In general, there is no closed-form formula to calculate the CVaR in our prob-
lem. We employ the following representation (see Buehler et al. (2019), Lemma 
3.5 and Example 3):

Thus, the hedging problem becomes

In this paper, we do not consider general hedging strategies for � , but instead look 
for the optimal strategy in a specific class. Below, we consider two types of hedging 
strategies depending on the asset price model.

Delta hedging strategy. We use the underlying asset as the only hedging 
instrument and perform delta hedging. Hence, we have d = 1 , Zt = St , and � ∈ ℝ . 
To deal with the delta explosion problem, we monitor Γ(t, St) , the absolute value 
of gamma of the original autocallable product. When the absolute gamma gets 
larger than a threshold Γ0 around certain barriers, signaling that delta is changing 
fast, we begin to use the delta of the modified product for hedging.

Payoff modification is parametrized by a parameter D′
i
 at time ti for i = 1,⋯ , n 

as in (10) and we have D′
i
< Di . Barrier shifting is parametrized by a new barrier 

B′ that satisfies B′ < B . Let IB(t) be the indicator of the event that B has not been 
down-crossed by time t. We denote by Δ(t, St;(D1, ...,D

�
i
, ...,Dn),B

�) the delta of 
the modified product with continuously monitored barrier shifted to B′ and payoff 
modification applied to Di at time t. If B� = B or D�

i
= Di , there is no barrier shift-

ing or payoff modification applied to B or Di . To calculate the delta of the modi-
fied product, we apply finite difference to the prices from our pricing algorithm. 
We denote by ΔI(t, St) the delta at time t when implementing the hedging strategy. 
Let IΓ(t) be the indicator of the event that the absolute value of gamma has been 
larger than Γ0 around B by time t, i.e., IΓ(t) = 1 if and only if there is some t′ ≤ t 
such that

CVaR𝛼(E) = E
[
−E| − E > VaR𝛼(E)

]
, where VaR𝛼(E) = inf{m ∈ ℝ ∶ ℙ(E < −m) ≤ 𝛼}.

(13)CVaR�(E(p0, �)) = CVaR�

(
(� ⋅ Z)T − CT(�) − V

)
− p0.

CVaR�(X) = inf
w∈ℝ

{
w + E

[
max(−X − w, 0)

1 − �

]}

min
w∈ℝ,�

{
w +

E
[
max(V − (� ⋅ Z)T + CT(�) − w, 0)

]
1 − �

}
.
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In addition, let Ii
Γ
(t) be the indicator of the event that the absolute value of gamma 

exceeds Γ0 around Di from ti−1 to t for i = 1, ..., n and t ∈ (ti−1, ti] , i.e., Ii
Γ
(t) = 1 if and 

only if there is t� ∈ (ti−1, t] such that

Then for t ∈ (ti−1, ti] , ΔI(t, St) is given by

This means that for t ∈ (ti−1, ti],

•	 If B has been down-crossed or the absolute gamma has not been larger than Γ0 
around B by t and the absolute gamma exceeds Γ0 around Di from ti−1 to t (case 1), 
we use the delta of the modified product with payoff modification applied to Di;

•	 If B has not been down-crossed and the absolute gamma has been larger than Γ0 
around B by t and the absolute gamma has not exceeded Γ0 around Di from ti−1 to t 
(case 2), we use the delta of modified product with barrier shift applied to B;

•	 If B has not been down-crossed and the absolute gamma has been larger than Γ0 
around B by t and the absolute gamma has exceeded Γ0 around Di from ti−1 to t 
(case 3), we use the delta of modified product with both payoff modification applied 
to Di and barrier shift applied to B;

•	 Otherwise, we use the delta of the original product.

Finally, in the delta hedging strategy, the holding position �t = ΔI(t, St).
Delta and vega hedging strategy. We use both the underlying St and variance swap 

as instruments to hedge against both delta and vega exposures. In this case, d = 2 and 
Zt = (St,V

vs
t
) , where Vvs

t
 denotes the price of the variance swap. Consider the general 

SLV model (5). The payoff of the variance swap with strike Kvar is given by

at terminal date T. The expectation of realized variance 1
T
[log(St)]T can be expressed 

as rT minus the expectation of a log payoff (see Demeterfi et al. (1999)):

which is also the fair strike Kvar at inception. At any time t0 < T  , the price of vari-
ance swap Vvs

t
(St, vt) should be give by

Γ(t�, St� ) ≥ Γ0 and |St� − B| ≤ |St� − Di� |, where i� = min{i = 1, ..., n ∶ ti ≥ t�}.

Γ(t�, St� ) ≥ Γ0 and |St� − Di| < |St� − B|.

(14)ΔI(t, St) =

⎧
⎪⎨⎪⎩

Δ(t, St;(D1, ...,D
�
i
, ...,Dn),B), if IΓ(t)IB(t) = 0 and Ii

Γ
(t) = 1,

Δ(t, St;(D1, ...,Dn),B
�), if IΓ(t)IB(t) = 1 and Ii

Γ
(t) = 0,

Δ(t, St;(D1, ...,D
�
i
, ...,Dn),B

�), if IΓ(t)IB(t) = 1 and Ii
Γ
(t) = 1,

Δ(t, St;(D1, ...,Dn),B), otherwise.

Vvar
T

=
1

T
[log(St)]T − Kvar

E

[
1

T
[log(St)]T

]
=

2

T

(
rT − E

[
log

(
ST

S0

)])
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where Ft = �((Ss, vs), 0 ≤ s ≤ t) . The expectation of the log payoff in the above for-
mula can be approximated by the hybrid Markov chain method in Sect. 3.6.

Given the price of the variance swap at any time, we show the dynamic hedg-
ing strategy against delta and vega exposures. Due to the high delta issue dis-
cussed in Sect.  5.1, we can use the delta of the modified product, denoted by 
Δ(t, St, vt;(D1, ...,D

�
i
, ...,Dn),B

�) , once the absolute gamma exceeds the threshold Γ0 . 
As there exists no such issue for vega, we always use the vega of the original prod-
uct, denoted by V(t, St, vt).

Let ΔI(t, St, vt) be the delta at time t when implementing the hedging strategy, 
which is determined by (14) but with Δ(t, St;⋯) replaced by Δ(t, St, vt;⋯) . In our 
hedging strategy, the holding positions of the underlying asset and variance swap are 
calculated by solving the following linear system:

In both strategies, the holding position of the underlying asset is a function of B′ and 
D′

i
 . Thus, we can reformulate the optimization problem as

where � is a function of B′ and D′ . Problem (15) determines the optimal barrier shift 
and payoff modification for minimizing CVaR. The threshold Γ0 for monitoring 
gamma can be viewed as a hyperparameter of the problem and we can try different 
values for it. The optimization problem only needs to be solved at the inception of 
the product. To solve it, we approximate the expectation by taking sample average 
(Kleywegt et al., 2002) and then apply stochastic gradient descent (SGD; see e.g., 
Bottou et al. (2018) for an introduction). On each rebalancing date along each sam-
ple path, we need to price the product and calculate its delta by the CTMC approxi-
mation algorithm. In our test, the sample paths are generated from the stochastic 
model used for pricing. However, it should be noted that the expectation in (15) is 
taken under the physical measure while we use the risk-neutral measure for pricing.

5.3 � Empirical hedging results

We consider the 3-year ELS product discussed in Sect. 5.1 and test in two environ-
ments. One is given by the BS model with drift � = 0.1 and volatility � = 0.3 . The 
other is given by the Heston model (8) with r − d replaced by � = 0.1 , � = − 0.75 , 
� = 4 , � = 0.09 , �v = 0.15 , and v0 = 0.09 . Note that all these parameters are under 

Vvar
t

(St, vt) = e−r(T−t)
(
1

T
[log(Ss)]t + E

[
1

T
[log(Ss)]t≤s≤T |Ft

]
− Kvar

)

= e−r(T−t)
(
1

T
[log(Ss)]t +

2

T

(
r(T − t) − E

[
log

(
ST

St

)
|Ft

])
− Kvar

)

{
ΔI(t, St, vt) = �1

t
+

�Vvar
t

(St ,vt)

�s
�2
t
,

V(t, St, vt) =
�Vvar

t
(St ,vt)

�v
�2
t
.

(15)min
w,B�≤B,D�

i
≤Di,i=1,⋯,n

{
w +

E
[
max(V − (� ⋅ Z)T + CT(�) − w, 0)

]
1 − �

}
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the physical measure. For the risk-neutral parameters, we replace � by r − d = 0.025 
(we set r = 0.025 and d = 0 ) and keep the others unchanged. In the first case, we 
hedge using only the underlying. In the second case, we hedge using the underlying 
and variance swap.

For the transaction cost of trading the underlying, we use the popular quadratic 
cost formulation proposed in Almgren and Chriss (2001), which imposes a heavier 
penalty on larger trades. Specifically,

where q is the trading quantity. Following Almgren and Chriss (2001), we set 
� = 2.5 × 10−6 , and N̄ = 1.25 × 105, 2.5 × 105 to consider different levels of liquid-
ity. Almgren and Chriss (2001) assume that the daily trading volume is 5 × 106 , so 
these two levels of N̄ correspond to 2.5% and 5% of daily trading volume, respec-
tively. For the variance swap, we assume a proportional transaction cost of 0.5% for 
simplicity. We have no reference to determine � and N̄ for the variance swap if the 
quadratic cost formulation is used.

As p0 is given, we consider the CVaR on the right hand side of (13) at 5% and 1% 
significance levels and try Γ0 ∈ {0, 0.125, 0.25, 0.5, 1} . We generate 4 × 105 simu-
lated paths for training. We optimize (15) using SGD with mini-batches of size 1000 
based on these paths and set the learning rate to 0.5. With this setting, we observe 
convergence in both cases. We generate 105 paths (independent of the training data) 
to assess the CVaR of the optimized strategy under different values of Γ0 (the same 
paths are used for every Γ0 ). As a benchmark, we also estimate the CVaR of the 
hedging strategy without modifying the contract for delta calculation with the same 
105 paths.

Tables 4 and 5 show the resulting CVaR of our optimized strategy for different 
values of Γ0 and the hedging strategy without modifying the contract for delta cal-
culation under the BS and Heston model, respectively. It is evident from these tables 
that by modifying the contract appropriately for delta calculation we can achieve 
substantial reductions in CVaR, particularly at the 1% significance level.

Interestingly, the optimal Γ0 is 0, implying that we should use the modified prod-
uct for hedging from the beginning. This result is surprising, as any decrease in Γ0 
would typically result in decreased transaction costs and increased hedging errors, 
leading to a balance at some Γ0 . However, the hedging error from using of the delta 
of the modified product can be either negative (loss) or positive (gain). For exam-
ple, shifting the barrier B causes the delta to be smaller for St > B compared with 
the delta of the original product. As a result, when St rises, the modified product 
increases less in value than the original one, leading to a hedging loss. Conversely, 
when St falls, the modified product decreases less in value than the original one, 
leading to a hedging gain. Considering that in the worst-case scenarios, St often 
falls from S0 = 100 to approximately B = 55 , where substantial transaction costs are 
incurred, hedging with the modified product can result in less hedging loss. This 
explains why hedging with the delta of the modified product from the outset can 
yield the lowest CVaR.

c(q) =
𝜂(N̄q)2

N̄
= 𝜂N̄q2,
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6 � Conclusion

This paper proposes a general approach based on CTMC approximation for pricing 
autocallable structured products, which are popular in financial markets. Autocalla-
bles combine the features of both fixed-income and equity investments and allow 
investors to enhance their yields. The complex payoff of autocallables with many 
discontinuities presents a difficulty for many numerical methods to perform well. By 
carefully designing the grid of the Markov chain, we are able to achieve stable and 
fast convergence. Our method is applicable to a variety of commonly used stochas-
tic models for derivatives pricing, including 1D Markov jump-diffusions (the coef-
ficients can be time dependent), regime-switching models, and SLV models. The 
versatility of our method together with its computational efficiency makes it a com-
petitive pricing tool in practice.

Hedging autocallables is also a difficult problem with transaction costs. We pre-
sent a dynamic hedging approach in which we apply payoff modification and barrier 
shifting to deal with the high delta issue near the barriers. We determine the optimal 
size of adjustments that minimize the CVaR of the hedging loss and show that our 
approach can reduce CVaR significantly.

It is possible to apply our approach to the dividend model of Buehler (2010). We 
leave the detailed treatment of this model for future research. We also plan to extend 
our approach to deal with autocallables involving more than one asset and study 
pricing and hedging in models with stochastic interest rates.

A. Pseudocodes of pricing algorithms

We provide pseudocodes for pricing three types of autocallables when the underly-
ing asset price follows a CTMC.
Algorithm 1   Calculate V(x) for autocallable I without snowball effect
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Algorithm 2   Calculate V(x) for autocallable I with snowball effect

Algorithm 3   Calculate V(x) for autocallable II



300	 Y. Cui et al.

B. Proof of Proposition 1

Let

{T(t), t ≥ 0} is a strongly continuous contraction semigroup on J with generator 
Λ(M,L) such that for any m0 = 1, ...,M , l0 = 1, ..., L,

Clearly, J is a core of Λ(M,L) . Consider

where TK is a linear contraction on J and

Let AK ∶= �−1
K
(TK − I) . By the Theorem  6.5 in Chapter  1 of Ethier and Kurtz 

(2009), to obtain (7), it is sufficient to prove that for any f ∈ J,

where ∥ ⋅ ∥ represents the maximum norm on the function space J. To show this, 
observe that for any (x, v) ∈ �

(M,L) , we have

with gx,v ∶= (gx,v(v
�))v�∈�v

 is a vector, and

where vector fv� = (f (x, v�))x∈� . Applying Taylor expansion to (18) yields

where � ∈ (0, �K) . For (17), we also expand it and obtain

where �� ∈ (0, �K) . Substituting (19) into (20), we obtain

(T(t)f )(x, v) ∶= Ex,v

[
f
(
X
(M,L)
t , ṽ

(L)
t

)]
, f ∈ J, (x, v) ∈ �

(M,L).

(Λ(M,L)f )(xm0
, vl0 ) =

M∑
m=1

(
Gvl0

)
m0,m

f (xm, vl0 ) +

L∑
l=1

Λl0,l
f (xm0

, vl).

(TKf )(x, v) ∶= Ex,v

[
f
(
X
(M,L,K)

𝛿K
, ṽ

(L,K)

𝛿K

)]
, f ∈ J, (x, v) ∈ �

(M,L),

Ex,v

�
f
�
X
(M,L,K)

⌊t∕𝛿K⌋𝛿K , ṽ
(L,K)

⌊t∕𝛿K⌋𝛿K

��
=
�
TK

�⌊t∕𝛿K⌋f (x, v).

(16)∥ AKf − Λ(M,L)f ∥→ 0, as K → ∞,

(17)(TKf )(x, v) =
∑
v�∈�v

P(ṽ
(L,K)

𝛿K
= v�)gx,v(v

�) =
(
exp(𝛿KΛ)gx,v

)
(v),

(18)gx,v(v
�) ∶= Ex,v

[
f
(
X
(M,L,K)

𝛿K
, v�

)
|ṽ(L,K)

𝛿K
= v�

]
=
(
exp(𝛿KGv)fv�

)
(x),

(19)gx,v(v
�) = f (x, v�) + �K(Gvfv� )(x) +

1

2
�2
K
(G2

v
exp(�Gv)fv� )(x),

(20)(TKf )(x, v) = gx,v(v) + �K(Λgx,v)(v) +
1

2
�2
K
(Λ2 exp(��Λ)gx,v)(v),

(TKf )(x, v) = f (x, v) + �K
[
(Gvfv))(x) + (Λfx)(v)

]
+ o(�K),
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where vector fv = (f (x, v))x∈� and fx = (f (x, v))v∈�v
 . Thus, for any f ∈ J and 

(x, v) ∈ �
(M,L) , we have

As J is the space of functions defined on a finite number of points, pointwise con-
vergence is equivalent to convergence in the maximum norm. Therefore, we have 
shown (16) holds, hence the claim of the proposition. 	� ◻
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