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1 Introduction

In ring theory, finite commutative rings are of interest due to many applica-

tions. The role of ideals is very essential for these applications and it is often

important to know when the ideals in a ring are principal ideals. The very fa-

mous class of rings in this regard is the polynomial rings in one indeterminate

coefficients from a finite field, in fact it is an Euclidean domain. The coding for

error control has a vital role in the design of modern communication systems

and high speed digital computers. Most of the classical error-correcting codes

are ideals in finite commutative rings, especially in quotient rings of Euclidean

domains of polynomials and group rings, i.e., cyclic codes are principal ideals

in the quotient ring Fq[X ]/(Xn − 1).
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On the above ideas, Cazaran and Kelarev [2] established necessary and suffi-

cient conditions for an ideal to have a single generator and described all finite

quotient rings Zm[X1, ∙ ∙ ∙ , Xn]/I, where I is an ideal generated by univariate

polynomials which are commutative principal ideal rings. In another paper,

Cazaran and Kelarev [3] obtained conditions for the certain rings to be finite

commutative principal ideal rings. However, the extension of a BCH code C

embedded in a semigroup ring F[S], where S is a finite semigroup, was con-

sidered in 2006 by Cazaran et. all [4], where an algorithm was presented for

computing the weights of extensions for these codes embedded in semigroup

rings as ideals. A lot of information concerning various ring constructions and

about polynomial codes is given by Kelarev [5]. In [5], the whole Sections 9.1

and 9.2 are reserved to error-correcting codes in ring constructions closely re-

lated to semigroup rings. Especially, Section 9.1 deals error-correcting cyclic

codes of length n which are ideals in group ring F[G], where F is a field and

G is a finite torsion group of size n. Another work concerning extensions of

BCH codes in various ring constructions has been given by Kelarev ([6, 7]),

where the results can also be considered as the special cases of semigroup rings

of specific nature.

A.A. Andrade and R. Palazzo Jr. [1] discussed the cyclic, BCH, alternant,

Goppa and Srivastava codes over finite rings, which are in fact constructed

through a polynomial ring in one indeterminate with a finite coefficient ring.

In this paper, we introduce the construction techniques of cyclic codes through

a semigroup ring instead of a polynomial ring and then establish the construc-

tions of BCH, alternant, Goppa, Srivastava codes. Here the results of [1] are

improved in such a way that instead of cancellative torsion free additive monoid

Z0, the cancellative torsion free additive monoid 1
2Z0 is used which shifts

whole construction of a finite quotient ring of a polynomial ring into a finite

quotient ring of a semigroup ring of specific type. Furthermore, B is taken as

a finite commutative ring with unity in the same spirit of [1]. A cyclic sub-

group of group of units of the ring B[X; 1
2Z0]/(Xn − 1) is fixed analogous

to [1]. In this set up the factorization of X2s − 1 over the group of units of

B[X; 1
2Z0]/(Xn − 1) is again a difficult task.

The procedure adopted in this work for construction of linear codes through

the semigroup ring B[X; 1
2Z0] is simple as polynomial’s set up and our ap-
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proach is quite different to the embedding of linear polynomial codes in a semi-

group ring or in a group algebra, which has been adopted by several authors.

This paper is organized as follows. In Section 2, the basic results on semi-

groups and semigroup rings necessary for the construction of the codes are

given. In Section 3, the construction of cyclic codes through a semigroup ring is

introduced. Section 4, addresses the constructions of BCH and alternant codes

through the semigroup rings. In Section 5, a construction of Goppa and Srivas-

tava codes through the semigroup rings is described. Finally, in Section 6, the

concluding remarks are presented.

2 Preliminaries

In this section, we review basic facts on commutative semigroup rings from

[8]. Assume that (B, +, ∙) is an associative ring and (S, ∗) is a semigroup.

Let J be the set of all finitely nonzero functions f from S into B. The set J

is a ring with respect to binary operations addition and multiplication defined

as ( f + g)(s) = f (s) + g(s) and ( f g)(s) =
∑

t∗u=s
f (t)g(u), where the symbol

∑

t∗u=s
indicates that the sum is taken over all pairs (t, u) of elements of S such

that t ∗ u = s and it is understood that in the situation where s is not express-

ible in the form t ∗ u for any t, u ∈ S, then ( f g)(s) = 0. The ring J is known

as a semigroup ring of S over B. If S is a monoid, then J is called a monoid

ring. This ring J is represented as B[S] whenever S is a multiplicative semi-

group and elements of J are written either as
∑

s∈S
f (s)s or as

n∑

i=1
f (si )si .

The representation of J will be B[X; S] whenever S is an additive semigroup.

As there is an isomorphism between additive semigroup S and multiplicative

semigroup {Xs : s ∈ S}, so a nonzero element f of B[X; S] is uniquely rep-

resented in the canonical form

n∑

i=1

f (si )Xsi =
n∑

i=1

fi Xsi , where fi 6= 0 and si 6= s j for i 6= j.

The concepts of degree and order are not generally defined in semigroup

rings. If the semigroup S is a cancellative torsion free or totally ordered, we

can define the degree and the order of an element of the semigroup ring B[X; S]
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in the following manner; if
n∑

i=1
fi Xsi is the canonical form of a nonzero element

f of R[X; S], where s1 < s2 < ∙ ∙ ∙ < sn , then sn is called the degree of pseudo

polynomial f and we write deg( f ) = sn and similarly the order of f is written

as ord( f ) = s1. Now, if R is an integral domain, then for f, g ∈ B[X; S], we

have

deg( f g) = deg( f ) + deg(g)

ord( f g) = ord( f ) + ord(g).

If the monoid S is Z0 and B is an associative ring, the semigroup ring J

is simply the polynomial ring, that is, B[X ] = B[X;Z0] ⊂ B[X; 1
2Z0]. Further-

more in B[X; 1
2Z0] one may define the degree of a pseudo polynomial because

1
2Z0 is totally ordered.

In addition B[G] is known as group ring whenever G is a group. Particularly

F[G] is group algebra, where F is a field. In [5] the Section 9.1 is dealing with

error-correcting cyclic codes of length n which are ideals in group ring F[G],

where G is taken to be a finite torsion group of size n.

3 Cyclic codes through a semigroup ring

According to [9], if an ideal I of a commutative ring < with unity is generated

by an element a of <, then in any quotient ring < of <, the corresponding ideal

I is generated by the residue class a of a. Hence, every quotient ring of a

principal ideal ring (PIR) is a PIR as well. It follows that the ring Zn is a PIR

for any non prime positive integer n. Consequently the ring < = Fq [X;Z0]
(Xn−1)

,

where q is a power of a prime p, is a PIR. Also, if q is a power of a prime p

then < = Zq [X;Z0]
(Xn−1)

is a PIR (see also [1]). By the same argument < =
Fq [X; 1

2Z0]
(Xn−1)

and < =
Zq [X; 1

2Z0]
(Xn−1)

are PIRs. Furthermore, the homomorphic image of a PIR

is again a PIR [10, Proposition 38.4]. By the same argument as given in [1],

if B is a commutative ring with identity, then < = B[X;Z0]
(Xn−1)

is a finite ring.

A linear code C of length n over a commutative ring B with identity is a

B-submodule in the space of all n-tuples of Bn , and a linear code C over B

is a cyclic code, if v = (v0, v1, v2, ∙ ∙ ∙ , vn−1) ∈ C , every cyclic shift v(1) =

(vn−1, v0, ∙ ∙ ∙ , vn−2) ∈ C , where vi ∈ B for 0 ≤ i ≤ n − 1.
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By [8, Theorem 7.2], for a commutative ring B with identity, < =
B[X; 1

2 Z0]
(Xn−1)

is a finite ring. A linear code C of length 2n over B is a B-submodule in the

space of all 2n-tuples of B2n and C is a cyclic code, if

v =
(
v0, v 1

2
, v1, ∙ ∙ ∙ , v 2n−1

2

)
∈ C,

every cyclic shift

v(1) =
(

v 2n−1
2

, v0, v 1
2
, ∙ ∙ ∙ , vn−1

)
∈ C,

where vi ∈ B for i = 0, 1, ∙ ∙ ∙ , 2n−1
2 .

The following theorem generalizes [1, Theorem 2.1].

Theorem 1. A subset C of < =
B[X; 1

2 Z0]
(Xn−1)

is a cyclic code if and only if C is

an ideal of <.

Proof. Suppose that the subset C is a cyclic code. Then C is closed under

addition and multiplication by X
1
2 . But then it is closed under multiplication by

powers of X
1
2 and linear combinations of powers of X

1
2 . That is, C is closed

under multiplication by an arbitrary pseudo polynomial. Hence C is an ideal.

Now, suppose that the subset C is an ideal in <. Then C is closed under addi-

tion and scalar multiplication. Hence C is a B-module. It is also closed under

multiplication by any ring element, in particular under multiplication by X
1
2 .

Hence C is a cyclic code. �

If f (X
1
2 ) ∈ B[X; 1

2 Z0] is a monic pseudo polynomial of degree n, then

< =
B[X; 1

2 Z0]

( f (X
1
2 ))

is the set of residue classes of pseudo polynomials in B[X; 1
2 Z0]

modulo the ideal ( f (X
1
2 )) and a class can be represented as a(X

1
2 ) = a0 +

a 1
2

X
1
2 +a1 X +∙ ∙ ∙+a 2n−1

2
X

2n−1
2 . A principal ideal of < consists of all multiples

of a fixed pseudo polynomial g(X
1
2 ) by elements of <, where g(X

1
2 ) is called

a generator pseudo polynomial of the ideal. Now we will prove some results

which show a method of obtaining the generator pseudo polynomial of a prin-

cipal ideal. This method will serve as a base for the construction of a principal

ideal in the ring <.

The following lemma generalizes [1, Lemma 2.1].
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Lemma 1. Let I be an ideal in the ring <. If the leading coefficient of some

pseudo polynomial of lowest degree in I is a unit in B, then there exists a unique

monic pseudo polynomial of minimal degree in the ideal I .

Proof. Let g(X
1
2 ) be a pseudo polynomial of lowest degree m in I . If the

leading coefficient am of g(X
1
2 ) is a unit in B, it is always possible to obtain a

monic pseudo polynomial g1(X
1
2 ) = am g(X

1
2 ) with the same degree in I . Now,

if g(X
1
2 ) and h(X

1
2 ) are monic pseudo polynomials of minimal degree m in I,

then the pseudo polynomial k(X
1
2 ) = g(X

1
2 ) − h(X

1
2 ) is a pseudo polynomial

in I and has degree fewer than m. Therefore, by the choice of g(X
1
2 ), it follows

that k(X
1
2 ) = 0, and therefore g(X

1
2 ) = h(X

1
2 ). �

The following theorem generalizes [1, Theorem 2.2].

Theorem 2. Let I be an ideal in the ring <. If the leading coefficient of some

pseudo polynomial g(X
1
2 ) of lowest degree in I is a unit in B, then I is a principal

ideal generated by g(X
1
2 ).

Proof. Let a(X
1
2 ) be a pseudo polynomial in I . By Euclidean algorithm

there are unique pseudo polynomials q(X
1
2 ) and r(X

1
2 ) such that a(X

1
2 ) =

q(X
1
2 )g(X

1
2 )+ r(X

1
2 ), where r(X

1
2 ) = 0 or deg(r(X

1
2 )) < deg(g(X

1
2 )). By the

definition of an ideal, r(X
1
2 ) ∈ I . Thus, by the choice of g(X

1
2 ), we have that

r(X
1
2 ) = 0 and therefore, a(X

1
2 ) = q(X

1
2 )g(X

1
2 ). Thus every polynomial in I

is a multiple of g(X
1
2 ), that is, I is generated by g(X

1
2 ) and hence principal. �

The following lemma generalizes [1, Lemma 2.2].

Lemma 2. Let r(X
1
2 ) be a pseudo polynomial in B[X; 1

2 Z0]. If r(X
1
2 ) 6= 0 and

deg(r(X
1
2 )) < deg( f (X

1
2 )), then r(X

1
2 ) 6= 0 in <.

Proof. Suppose that r(X
1
2 ) = 0. Therefore there is q(X

1
2 ) 6= 0 in B[X; 1

2Z0]

such that r(X
1
2 ) = f (X

1
2 )q(X

1
2 ). Since f (X

1
2 ) is regular and r(X

1
2 ) 6= 0

it follows that deg(r(X
1
2 )) = deg( f (X

1
2 )) + deg(q(X

1
2 )) ≥ deg( f (X

1
2 )), a

contradiction since we had already assumed that deg(r(X
1
2 )) < deg( f (X

1
2 )).

Hence r(X
1
2 ) 6= 0. �

The following lemma generalizes [1, Theorem 2.3].
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Theorem 3. Let I be an ideal in the ring < and g(X
1
2 ) be a pseudo polynomial in

B[X; 1
2 Z0], where leading coefficient is a unit in B, such that deg(g(X

1
2 )) <

deg( f (X
1
2 )). If g(X

1
2 ) ∈ I and has lowest degree in I, then g(X

1
2 ) divides

f (X
1
2 ).

Proof. By Euclidean algorithm there are unique polynomials q(X
1
2 ) and

r(X
1
2 ) such that 0 = g(X

1
2 )q(X

1
2 ) + r(X

1
2 ), where r(X

1
2 ) = 0 or

deg(r(X
1
2 )) < deg(g(X

1
2 )). Thus r(X

1
2 ) = −g(X

1
2 )q(X

1
2 ), i.e., r(X

1
2 ) is in

I . Therefore by the choice of g(X
1
2 ) it follows that r(X

1
2 ) = 0. Also, by

Euclidean algorithm there are unique pseudo polynomials q1(X
1
2 ) and

r1(X
1
2 ) such that f (X

1
2 ) = g(X

1
2 )q1(X

1
2 ) + r1(X

1
2 ), where r1(X

1
2 ) = 0

or deg(r1(X
1
2 )) < deg(g(X

1
2 )). Therefore 0 = g(X

1
2 )q1(X

1
2 ) + r1(X

1
2 ) =

g(X
1
2 )q(X

1
2 ) + r(X

1
2 ). Thus q1(X

1
2 ) = q(X

1
2 ) and r1(X

1
2 ) = r(X

1
2 ) = 0.

By Lemma 2 it follows that r1(X
1
2 ) = 0 and therefore g(X

1
2 ) divides

f (X
1
2 ). �

Example 1. Let < =
Z4[X; 1

2 Z0]

( f (X
1
2 ))

, where f (X
1
2 ) = (X

1
2 )4 − 1. It is easy to

verify that

I =
{
0, 1 + 1X

1
2 + 1X + 1X

3
2 , 2 + 2X

1
2 + 2X + 2X

3
2 , 3 + X

1
2 + 3X + 3X

3
2
}

is an ideal of <. By Theorem 2, it follows that I = (3 + 3X
1
2 + 3X + 3X

3
2 )

and by Theorem 3, g(X
1
2 ) = 3 + 3X

1
2 + 3X + 3X

3
2 divides f (X

1
2 ).

The following theorem generalizes [1, Theorem 2.4].

Theorem 4. Let I be an ideal in the ring <. If g(X
1
2 ) divides f (X

1
2 ) and

g(X
1
2 ) ∈ I , then g(X

1
2 ) has lowest degree in the ideal (g(X

1
2 )).

Proof. Suppose that there is b(X
1
2 ) in (g(X

1
2 )) such that deg(b(X

1
2 )) <

deg(g(X
1
2 )). Since b(X

1
2 ) ∈ (g(X

1
2 )), it follows that b(X

1
2 ) = g(X

1
2 )h(X

1
2 )

for some h(X
1
2 ) ∈ <. Thus b(X

1
2 ) − g(X

1
2 )h(X

1
2 ) ∈ ( f (X

1
2 )), i.e., b(X

1
2 ) −

g(X
1
2 )h(X

1
2 ) = f (X

1
2 )a(X

1
2 ) for some a(X

1
2 ) in B[X; 1

2Z0]. This gives

b(X
1
2 ) = g(X

1
2 )h(X

1
2 )+ f (X

1
2 )a(X

1
2 ). Since g(X

1
2 ) divides f (X

1
2 ), so g(X

1
2 )

divides g(X
1
2 )h(X

1
2 ) + f (X

1
2 )a(X

1
2 ), which implies that g(X

1
2 ) divides

b(X
1
2 ), a contradiction, since we had already assumed that deg(b(X

1
2 )) <

deg(g(X
1
2 )). Hence g(X

1
2 ) has lowest degree in the ideal (g(X

1
2 )). �
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4 BCH and alternant codes through a semigroup ring

Before the construction of BCH and alternant codes through a semigroup ring

instead of a polynomial ring, we discuss the basic properties of Galois exten-

sion rings in perspective of quotient ring of semigroup ring of 1
2Z0 over a finite

local commutative ring B with unity, which are used in the construction of

these codes.

Assume (B, N ) is a finite local commutative ring with unity with residue field

K = B
N

∼= G F(pm), where p is a prime and m a positive integer. The natural

projection π : B[X; 1
2Z0] → K[X; 1

2Z0] is defined by π(a(X
1
2 )) = a(X

1
2 ),

i.e., π(
∑2n

i=0 ai X
1
2 i ) =

∑2n
i=0 ai X

1
2 i , where ai = ai + N , for i = 0, . . . , 2n.

Let f (X
1
2 ) be a monic pseudo polynomial of degree t in B[X; 1

2Z0] such that

π( f (X
1
2 )) is irreducible in K[X; 1

2Z0]. By [8, Theorem 7.2] B[X; 1
2Z0] can be

accommodated as B[X;Z0] and following [11, Theorem XIII.7] f (X
1
2 ) is irre-

ducible in B[X; 1
2Z0]. The ring < =

B[X; 1
2Z0]

( f (X
1
2 ))

is a local finite commutative ring

with identity, whose maximal ideal is N2 = N1

( f (X
1
2 ))

, where N1 = (N , f (X
1
2 ))

and the residue field K1 = <
N2

'
B[X; 1

2Z0]

(N , f (X
1
2 ))

'
K[X; 1

2Z0]

(π( f (X
1
2 )))

' G F(p2mt), and K∗
1

is the multiplicative group of K1 whose order is p2mt − 1.

Let the multiplicative group of units of < be denoted by <∗, which is an

abelian group, and therefore it can be expressed as a direct product of cyclic

groups. We are interested in the maximal cyclic subgroup of <∗, hereafter

denoted by Gs , whose elements are the roots of Xs − 1 for some positive inte-

ger s such that gcd(p, s) = 1. There is only one maximal cyclic subgroup of

<∗ having order s = p2mt − 1 [11, Theorem XVIII.2].

4.1 BCH codes

The following definition generalizes [1, Definition 3.1] and accelerate for the

construction of a BCH code through a semigroup ring.

Definition 1. Let η = (α1, ∙ ∙ ∙ , αn) be a vector consisting of distinct elements of

Gs, and let ω = (ω1, ω2, ∙ ∙ ∙ , ωn) be an arbitrary vector consisting of elements

(not necessarily distinct) of Gs. Then the set of all vectors
(
ω1 f (α1), ω2 f (α2), ∙ ∙ ∙ , ωn f (αn)

)
,
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where f (Z) ranges over all polynomials of degree at most k −1, for k ∈ N, with

coefficients from <, defines a shortened code C of length n ≤ s over <.

Remark 1. Since f has at most k − 1 zeros, it follows that the minimum

distance of this code is at least (n − k) + 1.

The following definition generalizes [1, Definition 3.2].

Definition 2. A shortened BCH code C(n, η) of length n ≤ s is a code over B

with parity check matrix

H =









α1 α2 ∙ ∙ ∙ αn

α2
1 α2

2 ∙ ∙ ∙ α2
n

...
...

. . .
...

α2r
1 α2r

2 ∙ ∙ ∙ α2r
n









for some r ≥ 1, where η = (α1, α2, ∙ ∙ ∙ , αn) is the locator vector, consisting of

distinct elements of Gs. The code C(n, η), with n = s, will be called a BCH

code.

The following lemma generalizes [1, Lemma 3.1].

Lemma 3. Let α
1
2 be an element of Gs of order s. Then the differences

α
1
2 l1 − α

1
2 l2 are units in < if 0 ≤ l1 6= l2 ≤ s − 1.

Proof. The differences α
1
2 l1 − α

1
2 l2 can be written as −α

1
2 l2(1 − α

1
2 (l1−l2)),

where l1 > l2 and 1 denotes the unity of <. The factor −α
1
2 l2 in the product is

a unit. The second factor can be written as 1 − α
1
2 j for some integer j in the

interval [1, s − 1]. Now if the element 1 − α
1
2 j , for 1 ≤ j ≤ s − 1, is not a

unit in <, then 1 − α
1
2 j ∈ N2, and consequently, (π(α

1
2 )) j = π(1) for j < s.

Therefore, π(α
1
2 ) has order j0 < s, which is a contradiction. Thus, the elements

1 − α
1
2 j ∈ < are units for j = 1, 2, ∙ ∙ ∙ , s − 1. �

The following theorem generalizes [1, Theorem 3.1].

Theorem 5. The minimum Hamming distance of a BCH code C(n, η) satisfies

d ≥ 2r + 1.
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Proof. Assume that c is a nonzero codeword in C(n, η) such that wH (c) ≤ 2t .

Then cH T = 0. Deleting n − 2t columns of the matrix H corresponding to

zeros of the codeword, it follows that the new matrix H
′

is a Vandermonde’s

one. By Lemma 3, it follows that the determinant of H
′
is a unit in <. Thus the

only possibility for c is the all zero codeword. �

Example 2. Let B = G F(2)[i] and

< =
B

[
X; 1

2Z0
]

(
f (X

1
2 )

) ,

where f (X
1
2 ) = (X

1
2 )3 + X

1
2 + 1 is irreducible over B. If α

1
2 is a root of

f (X
1
2 ), then α

1
2 generates a cyclic group Gs of order s = 23 − 1 = 7. Let

η = (1, α, α
3
2 , α2, α

5
2 , α3) be the locator vector consisting of distinct elements

of Gs . If r = 2, then the following matrix

H =








1 α α
3
2 α2 α

5
2 α3

1 α2 α3 α
1
2 α

3
2 α

5
2

1 α3 α α
5
2 α

1
2 α2

1 α
1
2 α

5
2 α α3 α

5
2








is the parity-check matrix of a BCH code C(6, η) of length 6 and, by The-

orem 5, the minimum Hamming distance is at least equal to 5.

4.2 Alternant codes

The construction of an alternant code through a semigroup ring is initiated in

the following definition which is a generalization of [1, Definition 3.3].

Definition 3. A shortened alternant code C(n, η, ω) of length n ≤ s is a code

over B that has parity check matrix

H =











ω1 ω2 ∙ ∙ ∙ ωn

ω1α1 ω2α2 ∙ ∙ ∙ ωnαn

ω1α
2
1 ω2α

2
2 ∙ ∙ ∙ ωnα

2
n

...
...

. . .
...

ω1α
2r−1
1 ω2α

2r−1
2 ∙ ∙ ∙ ωnα

2r−1
n











,
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where r is a positive integer, η = (α1, α2, . . . , αn) is the locator vector, con-

sisting of distinct elements of Gs, and ω = (ω1, ω2, . . . , ωn) is an arbitrary

vector consisting of elements of Gs.

In the Definition 3 we have that

H =









1 ∙ ∙ ∙ 1

α1 ∙ ∙ ∙ αn
...

. . .
...

α2r−1
1 ∙ ∙ ∙ α2r−1

n














w1 ∙ ∙ ∙ 0
...

. . .
...

0 ∙ ∙ ∙ wn




 = L M.

The following theorem generalizes [1, Theorem 3.2].

Theorem 6. The alternant code C(n, η, ω) has minimum Hamming distance

d ≥ 2r + 1.

Proof. Suppose c is a nonzero codeword in C(n, η, ω) such that the weight

wH (c) ≤ 2r . Then, cH T = c(L M)T = 0. Setting b = cMT , we obtain

wH (b) = wH (c) because M is diagonal and invertible. Thus, bLT = 0. De-

leting n − 2r columns of the matrix L that correspond to zeros of the code-

word, we have that the new matrix L ′ is a Vandermonde’s one. By Lemma 3,

it follows that the determinant of L ′ is a unit in <. Thus, the unique possibility

for c is the all zero codeword. �

Example 3. Referring to Example 2, if η = (α2, 1, α, α
1
2 , α3, α

3
2 ) is the loc-

ator vector, ω = (1, α
1
2 , α3, α, α

3
2 , α

5
2 ) and r = 2, then the following matrix

H =








1 α
1
2 α3 α α

3
2 α

5
2

α2 α
1
2 α

1
2 α

3
2 α α

1
2

α
1
2 α

1
2 α

3
2 α2 α

1
2 α2

α
5
2 α

1
2 α

5
2 α

5
2 1 1








is the parity-check matrix of an alternant code C(6, η, ω) of length 6 and, by

Theorem 6, the minimum Hamming distance is at least equal to 5.

5 Goppa and Srivastava codes through a semigroup ring

In this section, we present a construction of Goppa and Srivastava codes through

semigroup rings.
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5.1 Goppa codes

In this section, we construct a subclass of alternant codes through a semi-

group ring instead of a polynomial ring, which is similar to one initiated in

[1]. A Goppa code is described in terms of Goppa polynomial. In contrast

to cyclic codes, where it is difficult to estimate the minimum Hamming dis-

tance d from the generator polynomial, Goppa codes have the property that

d ≥ deg(h(X)) + 1.

Let B, < and Gs as defined in previous section. Let α
1
2 be a generator of the

cyclic group Gs , where s = p2mt − 1. Let

h
(

X
1
2

)
= h0 + h 1

2
X

1
2 + ∙ ∙ ∙ + h 2r

2

(
X

1
2

)2r

be a polynomial with coefficients in <, where h 2r
2

6= 0. Let T = {α1, α2, . . . ,

αn} be a subset of distinct elements of Gs such that h(αi ) are units from <,

for i = 1, 2, ∙ ∙ ∙ , n.

The following definition generalizes [1, Definition 4.1].

Definition 4. A shortened Goppa code C(T, h) of length n ≤ s is a code over

B that has parity-check matrix of the form

H =











h(α1)
−1 ∙ ∙ ∙ h(αn)

−1

α1h(α1)
−1 ∙ ∙ ∙ αnh(αn)

...
. . .

...

α2r−1
1 h(α1)

−1 ∙ ∙ ∙ α2r−1
n h(αn)











, (5.1)

where r is a positive integer, η = (α1, α2, ∙ ∙ ∙ , αn) is the locator vector, con-

sisting of distinct elements of Gs, and ω = (h(α1)
−1, ∙ ∙ ∙ , h(αn)

−1) is an vector

consisting of elements of Gs.

The following definition generalizes [1, Definition 4.2].

Definition 5. Let C(T, h) be a Goppa code.

1. If h(X
1
2 ) is irreducible, then C(T, h) is called an irreducible Goppa

code.
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2. If c = (c1, c2, . . . , cn) ∈ C(T, h) and c = (cn, . . . , c2, c1) ∈ C(T, h),

then C(T, h) is called a reversible Goppa code.

3. If h(X
1
2 ) = (X

1
2 − α)2r−1, then C(T, h) is called a cumulative Goppa

code.

4. If h(X
1
2 ) has no multiple zeros, then C(T, h) is called a separable Goppa

code.

Remark 2. Let C(T, h) be a Goppa code. Then

1. C(T, h) is a linear code.

2. For a code with Goppa polynomial hl(X
1
2 ) = (X

1
2 − βl)

2rl , where βl ∈
Gs ,

Hl =









(α1 − βl )
−2rl (α2 − βl )

−2rl ∙ ∙ ∙ (αn − βl )
−2rl

α1(α1 − βl )
−2rl α2(α2 − βl )

−2rl ∙ ∙ ∙ αn(αn − βl )
−2rl

...
...

. . .
...

α
2rl−1
1 (α1 − βl )

−2rl α
2rl−1
2 (α2 − βl )

−2rl ∙ ∙ ∙ α
2rl−1
n (αn − βl )

−2rl









,

which is row equivalent to








(α1 − βl )
−2rl (α2 − βl )

−2rl ∙ ∙ ∙ (αn − βl )
−2rl

(α1 − βl )
−(2rl−1) (α2 − βl )

−(2rl −1)
∙ ∙ ∙ (αn − βl )

−(2rl −1)

...
...

. . .
...

(α1 − βl )
−1 (α2 − βl )

−1 ∙ ∙ ∙ (αn − βl )
−1









.

Consequently, if

h
(
X

1
2
)

=
(

X
1
2 − βl

)2rl
=

2k∏

i=1

hl
(
X

1
2
)

then the Goppa code is the intersection of the codes with hl(X
1
2 ) =

(X
1
2 − βl)

2rl , for l = 1, 2, ∙ ∙ ∙ , 2k, and its parity check matrix is given by

H =









H1

H2
...

H2k








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3. A BCH code is a special case of a Goppa code. To verify this, choose

h(X
1
2 ) = (X

1
2 )2r and T = {α1, α2, ∙ ∙ ∙ , αn}, where αi ∈ Gs , for all

i = 1, 2, ∙ ∙ ∙ , n. By Equation (5.1) it follows that

H =









α−2r
1 α−2r

2 ∙ ∙ ∙ α−2r
n

α1−2r
1 α1−2r

2 ∙ ∙ ∙ α1−2r
n

...
...

. . .
...

α−1
1 α−1

2 ∙ ∙ ∙ α−1
n









,

the parity check matrix of a BCH code, when α−1
i is replaced by βi , for

all i = 1, 2, ∙ ∙ ∙ , n.

The following theorem generalizes [1, Theorem 4.1].

Theorem 7. The Goppa code C(T, h) has minimum Hamming distance d ≥

2r + 1.

Proof. The code C(T, h) is an alternant code C(n, η, ω) with η = (α1,

α2, . . . , αn) and ω = (h(α1)
−1, h(α2)

−1, . . . , h(αn)
−1). Therefore, by The-

orem 6, C(T, h) has minimum Hamming distance d ≥ 2r + 1. �

Example 4. Referring to Example 2, if T = {1, α, α
1
2 , α2, α

3
2 , α

5
2 }, h(X

1
2 ) =

(X
1
2 )2 + X

1
2 + 1 then η = (1, α, α

1
2 , α2, α

3
2 , α3) and ω = (1, α2, α, α

1
2 , α, α

5
2 ).

Therefore

H =

[
1 α2 α α

1
2 α α

5
2

1 α3 α
3
2 α

5
2 α

5
2 α2

]

is the parity check matrix of a Goppa code over B of length 6 and, by The-

orem 7, the minimum Hamming distance is at least equal to 5.

5.2 Srivastava codes

Srivastava codes form an interesting subclass of alternant codes which is similar

to the unpublished work [12], which was proposed by J.N. Srivastava in 1967.

A class of linear codes which are not cyclic and defined in the form of parity-

check matrices

H =
{

αl
j

1 − αiβ j
, 1 ≤ i ≤ r, 1 ≤ j ≤ n

}
,
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where α1, α2, . . . , αr are distinct elements from G F(qm) and β1, β2, . . . , βn

are all the elements in G F(qm), except 0, α−1
1 , α−1

2 , . . . , α−1
r and l ≥ 0.

Now, we can define Srivastava codes over semigroup ring as a generalization

of [1, Definition 4.1].

Definition 6. A shortened Srivastava code of length n ≤ s is a code over B

having parity check matrix

H =













αl
1

α1−β1

αl
2

α2−β1
∙ ∙ ∙ αl

n
αn−β1

αl
1

α1−β2

αl
2

α1−β2
∙ ∙ ∙ αl

n
αn−β2

...
...

. . .
...

αl
1

α1−β2r

αl
2

α1−β2r
∙ ∙ ∙ αl

n
αn−β2r













, (5.2)

where r, l are positive integers and α1, . . . , αn, β1, β2, . . . , β2r are n + 2r

distinct elements of Gs.

The following theorem generalizes [1, Theorem 4.2].

Theorem 8. The Srivastava code has minimum Hamming distance d ≥

2r + 1.

Proof. The minimum Hamming distance of Srivastava code is at least 2r +

1 if and only if every combination of 2r or fewer columns of H is linearly

independent over <, or equivalently that the submatrix

H1 =














αl
i1

αi1−β1

αl
i2

αi2 −β1
∙ ∙ ∙

αl
ir

αi2r −β1

αl
i1

αi1−β2

αl
2

αi2 −β2
∙ ∙ ∙ αir l

αi2r −β2

...
...

. . .
...

αl
i1

αi1−β2r

αl
i2

αi2 −β2r
∙ ∙ ∙

αl
ir

αi2r −β2r














(5.3)

is nonsingular. The determinant of this submatrix can be expressed as

det(H1) =
(
αi1, αi2, . . . , αi2r

)l
det(H2),
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where the matrix H2 is given by

H2 =











1
αi1−β1

1
αi2 −β1

∙ ∙ ∙ 1
αi2r

−β1

1
αi1−β2

1
αi2 −β2

∙ ∙ ∙ 1
αi2r

−β2

...
...

. . .
...

1
αi1−β2r

1
αi2 −β2r

∙ ∙ ∙ 1
αi2r −β2r











. (5.4)

Note that det(H2) is a Cauchy determinant of order 2r and therefore we con-

clude that the determinant of the matrix H1 is given by

det(H1) = (αi1, . . . , αi2r )
l (−1)(

2r
2 )

v(αi1)v(αi2) ∙ ∙ ∙ v(αi2r )

× φ (αi1, . . . , αi2r ) φ (β1, β2, . . . , β2r ),

where φ(αi1, . . . , αi2r ) = (αi j −αih ) and v(X) = (X −β1)(X −β2) ∙ ∙ ∙ (X −β2r ).

By Lemma 3 it follows that det(H1) is a unit in < and therefore d ≥ 2r + 1. �

The following definition generalizes [1, Definition 4.4].

Definition 7. Let α1, . . . , αn, β1, β2, . . . , β2r be n + 2r distinct elements of

Gs, ω1, . . . , ωn be elements of Gs. A generalized Srivastava code of length

n ≤ s is a code over B that has parity check matrix

H =









H1

H2
...

H2r









, (5.5)

where

Hj =











ω1
α1−β j

ω2
α2−β j

∙ ∙ ∙ ωn
αn−β j

ω1
(α1−β j )

2
ω2

(α2−β j )
2 ∙ ∙ ∙ ωn

(αn−β j )
2

...
...

. . .
...

ω1
(α1−β j )

l
ω2

(α2−β j )
l ∙ ∙ ∙ ωn

(αn−β j )
l











for j = 1, 2, ∙ ∙ ∙ , 2r .
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The following theorem generalizes [1, Theorem 4.3].

Theorem 9. The generalized Srivastava code has minimum Hamming dis-

tance d ≥ (2r)l + 1.

Proof. The proof of this theorem requires nothing else than an application of

Remark 2 and Theorem 8, since the matrices given in Equations (5.2) and (5.5)

are equivalents, where h(X
1
2 ) = (X

1
2 − βi )

l . �

Example 5. Referring to Example 2, if l = 2, {α1, α2, ∙ ∙ ∙ , α5} = {1, α
5
2 ,

α, α3, α2}, {β1, β2} = {α
1
2 , α

3
2 }, {w1, w2, ∙ ∙ ∙ , w5} = {α, 1, α

1
2 , α

5
2 , α2}, then

the matrix

H =















α

1−α
1
2

1

α
5
2 −α

1
2

α
1
2

α−α
1
2

α
5
2

α3−α
1
2

α2

α2−α
1
2

α

(1−α
1
2 )2

1

(α
5
2 −α

1
2 )2

α
1
2

(α−α
1
2 )2

α
5
2

(α3−α
1
2 )2

α2

(α2−α
1
2 )2

α

1−α
3
2

1

α
5
2 −α

3
2

α
1
2

α−α
3
2

α
5
2

α3−α
3
2

α2

α2−α
3
2

α

(1−α
3
2 )2

1

(α
5
2 −α

3
2 )2

α
1
2

(α−α
3
2 )2

α
5
2

(α3−α
3
2 )2

α2

(α2−α
3
2 )2















is the parity-check matrix of a generalized Srivastava code of length 5 and, by

Theorem 9, the minimum Hamming distance is to 5.

6 Conclusion

In [1], there is a treatment of cyclic, BCH, alternant, Goppa and Srivastava

codes over a finite ring with length n. Due to the constraints in the method of

polynomial rings, used in [1], we proved a more accurate method of getting

cyclic, BCH, alternant, Goppa and Srivastava codes over finite rings with length

n. In this work, we used the semigroup rings instead of the polynomial rings.

Interestingly, we have used the same lines as credited in [1].

Any linear code detects d − 1 errors, where d is a minimum distance of

a code and correct
⌊

d−1
2

⌋
errors. In the case of [1] for r number of check

symbols: d ≥ r + 1, and
⌊

r+1−1
2

⌋
=

⌊
r
2

⌋
but the method adopted in this

paper, d ≥ 2r + 1. This shows that codes detect at least 2r errors and cor-

rect
⌊

2r+1−1
2

⌋
=

⌊
2r
2

⌋
= r errors. The linear codes defined in this paper on
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polynomial and semigroup rings have the same code rates. However, our novel

method provides better error correcting capabilities compared with previous

constructions of codes considered in [1].
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