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A survey of motif finding Web tools for detecting
binding site motifs in ChIP-Seq data
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Abstract: ChIP-Seq (chromatin immunoprecipitation sequencing) has provided the advantage for finding motifs as
ChIP-Seq experiments narrow down the motif finding to binding site locations. Recent motif finding tools facilitate
the motif detection by providing user-friendly Web interface. In this work, we reviewed nine motif finding Web
tools that are capable for detecting binding site motifs in ChIP-Seq data. We showed each motif finding Web tool
has its own advantages for detecting motifs that other tools may not discover. We recommended the users to use
multiple motif finding Web tools that implement different algorithms for obtaining significant motifs, overlapping
resemble motifs, and non-overlapping motifs. Finally, we provided our suggestions for future development of motif
finding Web tool that better assists researchers for finding motifs in ChIP-Seq data.
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Introduction
The Next Generation Sequencing (NGS) technology has
revolutionized the genetics studies of RNA-Seq for tran-
scriptome analysis and ChIP-Seq for DNA-proteins
interaction [1]. ChIP-Seq has become the method of
choice for genome-wide characterization of transcription
factor binding, polymerase binding, and histone modifi-
cations [2]. The identification of binding sites by tran-
scription factors, polymerase, or histone modification
marks plays a crucial role for identifying the regulatory
elements that regulate the gene expression. Several peak
calling tools have been developed for detecting the bind-
ing sites in ChIP-Seq. These tools identify the binding
sites using a common method of calculating the density
of read counts called peaks. Peak calling tools output the
list of peak sequences in various sizes and different for-
mats. The actual binding sites are often short sequences
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embedded in these peak sequences. The actual DNA re-
gion, which interacts with a single transcription factor
(TF), typically ranges from 8–10 to 16–20 bp [2]. In
addition, the binding sites for TF in ChIP-Seq are usually
located in close proximity of the summit points of the
peaks [3]. Zambelli et al. describes the TFs bind to the
DNA in a sequence specific way that they recognize se-
quences that are similar but not identical and differ by
only some nucleotides from one another [2]. Thus, iden-
tifying the conserved motifs in these sequences reveals
the same TF binding to them. Motif finding is one of the
well-known studies in Bioinformatics. Many tools have
been developed for motif finding. Recent motif finding
development provides user-friendliness via Web inter-
face. In this work, we surveyed nine motif finding Web
tools that are capable for finding motifs in ChIP-Seq
data. These tools are listed in Table 1.
Review
General approaches for motif finding
Motifs are short sequences of a similar pattern found in
sequences of DNA or protein. Consider t input nucleo-
tide sequences of length n and an array s (s1, s2, s3,…, st)
of starting positions with each position comes from each
sequence. An alignment matrix is a matrix of t × l, which
contains t sequences of starting positions from each
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Table 1 A summary of motif finding web tools

Web Tool Pipeline Accept File Format Maximum File Size Maximum
Sequence Length

P-Value
Option

Motif’s Size
Option

# f Motifs
ption

Ref. Database

MEME No Fasta = 60000 characters < 1000 bp No Yes Yes JASPAR, BLOCKS, UniProbe, …., user
database

GLAM2 No Fasta = 60000 characters = 10000 bp No No No JASPAR, UniProbe, …., user database

CisFinder No Fasta, plain text
delimited

Unspecified = 50 Mb FDR
option

No Yes JASPAR, CisView, …., user database

W-ChIPMotifs Yes Fasta Unspecified Unspecified No No No JASPAR, TRANSFAC, …., user database

CompleteMOTIFs Yes Bed, fasta, gff = 500000 bp for MEME, Weeder, =
5000000 for ChIPMunk

Unspecified Yes Yes for
MEME

No JASPAR, TRANSFAC

DREME No Fasta Unspecified Unspecified E-value
option

No No JASPAR, UniProbe, …., user database

MEME-ChIP Yes Fasta Unlimited Unlimited E-value
option

Yes Yes JASPAR, UniProbe, …., user database

RSAT peak-
motifs

Yes Raw, multi, tab, fasta,
wconsensus, IG

Unlimited Unlimited No Yes Yes JASPAR, UniProbe, DMMPMM,
RegulonDB, …, user database

PScanChIP No Bed Unlimited 100 -150 bp No No No JASPAR, TRANSFAC

Web Tool Approach Ref. Database
Option

Ref. Genome
Option

Log in
Required

Email
Required

User
Account
Option

Published
Year

Current
Version

Ref. #

MEME Implemented Multiple EM No No No Yes No 2006 4.9.1 [4]

GLAM2 Implemented novel Gapped Local Alignment
of Motifs algorithm

No No No Yes No 2008 4.9.1 [5]

CisFinder Implemented novel CisFinder algorithm Yes No Optional Optional Optional 2009 Unspecified [6]

W-ChIPMotifs Used existing ChIPMotifs program and
incorporated other existing tools: MEME,
MaMF, and Weeder

No Human and Mouse only No Yes No 2009 Unspecified [7]

CompleteMOTIFs Integrated existing tools: MEME, Weeder,
and ChIPMunk

Yes Yes Optional Optional Optional 2011 Unspecified [8]

DREME Implemented novel Discriminative Regular
Expression Motif Elicitation algorithm (DREME)

No No No Yes No 2011 4.9.1 [9]

MEME-ChIP Integrated existing tools: MEME and DREME No No No Yes No 2011 4.9.1 [10]

RSAT peak-motifs Implemented RSAT oligo-analysis, RSAT
dyad-analysis, RSAT local-word analysis,
MEME, ChlPMunk

Yes No No Optional No 2012 Unspecified [11]

PScanChIP Used existing Pscan algorithm Yes Yes No No No 2013 1.0 [3]
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sequence with length l where l is the size of an l-mer. A
profile matrix is a matrix of 4 × l containing 4 rows for
four nucleotides (A, C, G, T) and l columns. Each entry
in the profile matrix is the frequency of each nucleotide
in the alignment matrix. The consensus score is the sum
of highest frequencies from each column in the profile
matrix. The motif finding problem can be stated simply
as follows. Given t input nucleotide sequences of length
n, we want to find a set of l-mers with one from each se-
quence such that they maximize the consensus score.
Thus, we need to consider all (n − l + 1)t possible starting
positions or candidates for motifs. That is the number of
candidates for motifs is exponential of the number of in-
put sequences. In fact, motif finding is an NP-complete
problem [12]. There are several different approaches for
finding motifs such as profiles, consensuses, projection,
graph representations, clustering, and tree-based [2,13,14].
Profiles
This approach uses a Position Weight Matrix (PWM)
for representing the frequency of four possible nucleo-
tides appearing in each position of the motif [13]. The
PWM is a matrix of 4 × l containing 4 rows for four nu-
cleotides (A, C, G, T) and l columns where l is the size
of the motif. Using a PWM, the most likely location of
the motif within each sequence can be calculated [13].
Some examples of profiles-based algorithms can be

found in [15-19].
Consensuses
In this approach, a consensus string is formed for each
profile, which is constructed for each of the possible sets
of starting locations in the alignment of the sequences.
The best consensus with highest score is chosen to de-
scribe the motifs in the sequences [13].
Some examples of consensus-based algorithms are

WINNOWER [20], CONSENSUS [21], and ProfileB-
ranching [22].
Projection
This approach solves the (l, k) motif problem where each
instance of a motif of length l differs from the original motif
by exactly k positions. These k positions are used as hashing
functions for all possible contiguous sequences of l nucleo-
tides. The potential motif sequences are put in the buckets
based on their hashing functions. If the number of l-mers
hash to the same bucket exceeds a threshold, they are
considered as good candidates for motifs. The algorithm
searches these buckets for the candidates of motifs [13].
Some examples of projection-based algorithms are

PROJECTION [23] and Uniform Projection Motif Finder
(UPMF) [24].
Graph representations
This approach recasts the motif finding problem into
graph solving problem in which nodes correspond to
substrings of input sequences and edges connecting
nodes correspond to similar substrings [2]. Thus, the
motifs can be found by detecting cliques [25] or max-
imum density sub-graphs [26].

Clustering
The motif finding can be transformed into finding the
clusters in which the substrings of the input sequences
forming the motif should be clustered together, and the
rest should belong to a background cluster [2]. Thus,
the cluster finding can be solved using appropriate clus-
tering strategies like self organizing maps [27,28].

Tree-based
This approach models the motif finding using tree-based
data structure and uses tree-based algorithms to solve
the motif detection. Al-Turaiki et al. modelled the motif
finding problem using Trie data structure and trans-
formed the motif finding into mining frequent patterns
in large datasets [14]. Mohapatra et al. transformed the
motif finding into generalized suffix tree and developed
a tree-based algorithm for finding motifs [29].

Motif finding Web tools
General features of motif finding Web tools
The implementation of motif finding Web tools gener-
ally falls into two categories. The first category is pipe-
line implementation, which incorporates existing tools
into a Web tool/Web service. The second category in-
volves implementing novel algorithms into a Web tool/
Web service. Generally, motif finding Web tools allow
uploading input sequences of DNA, protein, or binding
sites. The users can customize the motif finding strategy
before submitting the request. The results can be dis-
played on the browser or can be downloaded. However,
different motif finding Web tools provide different cus-
tomizations for finding motifs as well as provide differ-
ent result formats. Some Web tools have restrictions on
the size of input sequence, the number of peaks, or the
size of upload file. Others provide flexibility for input file
formats and allow creating an account for storing the re-
sults on the server. Some Web tools require email ad-
dress for notifying the result. All motif finding Web
tools have their own features for verifying discovered
motifs with one or more motif reference databases such
as JASPAR [30], TRANSFAC [31], CisView [32], UniP-
robe [33], and user’s reference. Some Web tools allow
selecting one or more motif reference databases while
others use their own pre-selected references. Some Web
tools provide options for selecting the reference genome,
motif size, and the number of motifs to return.
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In the following section, we observe the features, ap-
proach, strengths and weaknesses of each motif finding
Web tool.

MEME
MEME [4] (Multiple EM for Motif Elicitation) is a Web
service available on MEME suite [34]. MEME allows
running motif detection on its Website or through sev-
eral mirror sites. It can be downloaded and installed lo-
cally. MEME is a de novo motif finding tool, which was
designed for finding un-gapped motifs in unaligned
DNA or protein sequences. MEME only accepts ≤ 60,000
characters in the input file, which must be in fasta for-
mat. The input sequence’s length should be ≤ 1,000 bp
and as short as possible. MEME suggests removing du-
plicate sequences and sequences with low information
that may not contain the motif prior to running the
motif finding. MEME allows specifying the length of the
motif and the number of motifs to return. It also allows
entering the number of sites for each motif if there is a
prior knowledge about the number of occurrences that
the motif has in the dataset. MEME requires specifying
how the user believes the occurrences of the motifs are
distributed among the sequences, for example, zero or
one per sequence. MEME includes the option in the re-
sults on the browser for verifying discovered motifs with
the reference database. Its initial version allowed verify-
ing discovered motifs with JASPAR [30] or BLOCKS
[35] reference database. In its later versions, MEME
allows using TOMTOM [36] for verifying discovered
motifs. MEME requires email address for notifying the
results. It does not allow either creating an account or
storing the results on the server. MEME includes other
options such as performing discriminative motif discovery,
uploading file containing a background Markov model,
searching a given strand or both given strand and reverse
strand, and looking for palindromes [4].
A summary of MEME’s features can be found in

Table 1.
MEME provides three different output formats: HTML,

XML, and text. The output shows the motifs as local mul-
tiple alignments of the input sequences. It allows sending
motifs to MAST [37] Web server for searching the se-
quences that match discovered motifs. MEME also pro-
vides other options in HTML output for forwarding one
or all motifs to other Web-based programs for further
analysis. For each motif, MEME outputs E-value, number
of sites found, motif ’s logo, motif ’s blocks format, motif ’s
block diagrams, position-specific scoring matrix, position-
specific probability matrix, and so on [4].
MEME algorithm extends the expectation maximization

(EM) algorithm [38]. The EM algorithm for motif finding
presented by Lawrence et al. has the following drawbacks.
It is not clear how to select the starting point and when to
stop trying different starting points. It assumes there is
exactly one appearance of the shared motif appearing
in each sequence of the dataset but this is not always
the case. MEME algorithm overcomes these limita-
tions. MEME selects starting points based on all sub-
sequences of sequences in the training dataset. It also
eliminates the assumption of the shared motif appear-
ing in each sequence. MEME removes the appearances
of a motif after it is discovered and keeps searching for
additional shared motifs in the dataset [38].
Because MEME erases previous discovered motifs when

it searches for new motifs, MEME can only model a single
motif at a time and it does not detect alternative binding
motifs, which are motifs for co-factors.

GLAM2
We included this tool for finding consensus motifs [39] as
there is a possibility of having deletion or insertion (indels)
in the binding sites of the peak sequences from ChIP-Seq.
GLAM2 [5] (Gapped Local Alignment of Motifs) is a

de novo motif finding Web tool, which was designed for
finding motifs with indels in unaligned DNA or protein
sequences. The tool can be installed locally or can be
run on MEME suite [34]. GLAM2 only accepts input se-
quences in fasta format with ≤ 60,000 characters in the
input file. GLAM2 contains several features that can be
customized for the motif finding. These features include
aligned columns, alignment replicates, iterations without
improvement, insertion, deletion, shuffling, and examin-
ing forward and reverse strands. GLAM2 requires email
address for notifying the results. However, it does not
allow either creating an account or storing the results on
the server [5].
A summary of GLAM2’s features can be found in

Table 1.
GLAM2 provides three different output formats: HTML,

text, and MEME text format. It outputs the best motifs
found with their start and end positions, sites, strand, mar-
ginal score, and motif ’s logo. GLAM2 has a scanning
method called GLAM2SCAN, which is used for scanning
the alignment of the motif results against sequence data-
bases. This method is also included in the HTML output.
GLAM2’s HTML output contains an option for verifying
discovered motifs with the references using TOMTOM
[36] program. Other options in the HTML output include
viewing alignment, viewing Position Specific Probability
Matrix (PSPM), and finding replications that are similar to
the best motif found [5].
The PSPM is a 4 × l matrix containing 4 rows for four

nucleotides (A, C, G, T) and l columns where l is the
size of the motif. Each entry in the matrix is the fre-
quency of a nucleotide in the multiple alignments of the
sequences. This frequency is represented by a probability
value.
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GLAM2 implemented a generalization of the gapless
Gibbs sampling algorithm. It examines the input se-
quences and returns an alignment of segments of these
sequences. Each sequence appears in at most one seg-
ment of the alignment. GLAM2 assumes a motif is de-
fined by residue preferences at certain positions called
key positions. However, the key positions can be deleted
or the residues can be inserted between these key po-
sitions in a particular motif. GLAM2 implemented a
scoring scheme for alignments in which any identical
residues or similar residues alignment happens in the
same key position is rewarded while deletions and inser-
tions are penalized. However, the penalty is not severe if
deletions and insertions constantly occur in the same lo-
cations. Using this scoring scheme, GLAM2 calculates
the marginal score, which reflects how well each seg-
ment matches the other segments. GLAM2 finds a
motif alignment with maximum score using the scoring
scheme. Because the number of possible alignments is
too large, GLAM2 uses a heuristic optimization method
called simulated annealing for finding the motif align-
ment with maximum score. This method takes an initial
alignment and constantly makes changes to it. These
changes increase the score and also decrease the score.
GLAM2 performs two types of changes called site sam-
pling and column sampling. The changes are applied
until the score fails to improve. To verify high score
motif found, the whole procedure is repeated for a num-
ber of times from different random starting alignments.
GLAM2’s performance can also be controlled by several
given parameters as described above [5].
GLAM2 is time consuming and its running time scales

linearly with the sequence’s length. GLAM2 works best for
small datasets and short motifs. It is difficult for GLAM2
to analyze sequences longer than a few thousand residues
and it is impractical for GLAM2 to analyze sequences that
are ≥ 10,000 bp [5].
GLAM2 can only model a single motif at a time and it

does not detect alternative binding motifs.

CisFinder
CisFinder [6] is a de novo motif finding Web tool for
finding over-represented short DNA motifs. It imple-
mented the novel CisFinder algorithm. The tool accepts
input sequences in fasta format and plain text delimited
format. CisFinder accepts four main file types: sequences,
motifs, search results, and repeats. It was designed for pro-
cessing large input dataset up to 50 Mb. CisFinder allows
uploading the control file or using the public control file
provided by the tool. CisFinder provides several analysis
tools such as identifying motifs, improving motifs,
clustering motifs, comparing motifs, showing motif,
searching motif, and showing search results. It allows
downloading and deleting each of four main file types.
CisFinder provides several different parameters for cus-
tomizing the motif finding. It does not allow specifying
motif size but it allows selecting motif reference databases
such as JASPAR [30], CisView [32], or user’s reference.
CisFinder allows using Guest account or setting up a user
account for using the tool. Registered users can store the
results on the server while Guest user has only one full
session [6].
A summary of CisFinder’s features can be found in

Table 1.
CisFinder’s output can be in HTML and text formats.

The output contains elementary motifs and cluster mo-
tifs with both can be saved or downloaded. The elemen-
tary motifs are listed by name, logo, pattern, frequency,
enrichment ratio, information content of motif, score,
FDR, and so on. Motifs cluster is listed by name, logo,
pattern, number of motifs in cluster, frequency, enrich-
ment ratio, information content of motif, score, FDR,
palindrome, method of motif clustering, and so on [6].
CisFinder algorithm is based on the estimation of pos-

ition frequency matrices (PFMs). This estimation is cal-
culated from n-mer word counts in the test set and
control set of sequences. CisFinder contains five main
features. First, the algorithm is based on detecting over-
represented short words in a sequence and clustering
them. Second, the algorithm examines words with gaps
and expands PFMs over the gaps and neighboring re-
gions. Third, it uses real control sequences to compare
against test sequences for processing repeat regions
without removing repeat sequences because TF binding
sites are often located in repeat regions. Fourth, it imple-
ments exhaustive searches for all over-represented DNA
motifs in a single run and combines motifs only at the
clustering step. Finally, it includes several other functions
such as comparing motifs with reference databases, search-
ing for motifs that match PFMs, visualizing sequences and
TF binding motifs with CisView [32] or UCSC genome
browser [40], and extracting of sequence fractions and sub-
sets of sequences [6].
CisFinder provides flexibility for input file formats and

file types. It can process large datasets and provides sev-
eral tools for motif analysis. CisFinder algorithm can
accurately identify PFMs of TF binding motifs [6]. CisFin-
der runs much faster than MEME [4], Weeder [41], and
RSAT [6,42]. It can detect alternative binding motifs as
well as binding motifs of potential co-factors. Finally, it
can find motifs with a low level of enrichment [6].

W-ChIPMotifs
W-ChIPMotifs [7] is a de novo motif finding Web tool
for ChIP-based high throughput data. It only accepts in-
put sequences in fasta format. W-ChIPMotifs does not
specify either the maximum input file size or the max-
imum sequence length. The tool does not have options
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for specifying motif size and number of motifs to return.
W-ChIPMotifs incorporated STAMP [43] tool for infer-
ring phylogenetic information and verifying discovered
motifs with the reference databases. It requires specify-
ing human or mouse species, user’s name, email, and
transcription factor before submitting the request. The
tool allows supplying the control file. However, it does
not allow either creating an account or storing the re-
sults on the server [7].
A summary of W-ChIPMotifs’s features can be found

in Table 1.
The outputs of W-ChIPMotifs contain two files in

PDF format via email only. One file contains found mo-
tifs and the other contains matched similar motifs from
STAMP. The discovered motifs are listed by name, logo,
confidence level, PWMs, core and PWM scores, P-values,
and Bonferroni correction P-value. The matching motifs
from STAMP are listed by name, E-value, alignment, and
logo. A phylogenetic tree for matching motifs is also in-
cluded [7].
W-ChIPMotifs is based on the previous ChIPMotifs

program [7]. The tool is a pipeline system, which incorpo-
rated three motif finding tools: MEME [4], MaMF [44], and
Weeder [45] for motif detection [7]. W-ChIPMotifs opti-
mizes the significance of found motifs using bootstrap re-
sampling method and Fisher test. It identifies about less
than 10 candidate motifs for constructing n PWMs for each
candidate motif. Then, it uses a bootstrap re-sampling
method to infer the optimized PWM scores. If the control
data is not supplied W-ChIPMotifs uses the default control
dataset based on the species selected by the user. It ge-
nerates negative control dataset by randomizing the input
sequences with each sequence for 100 times. The generated
negative control dataset no longer corresponds to the
original sequences but it shares the same nucleotide
frequencies and it is used for scanning the identified
motifs. W-ChIPMotifs uses Fisher test and P-value for
identifying the significant cutoff for the scores [7].
W-ChIPMotifs can only model a single motif at a time

and it does not detect alternative binding motifs. How-
ever, it combines three existing motif finding tools for
maximizing the chance obtaining true motifs.

DREME
DREME [9] (Discriminative Regular Expression Motif
Elicitation) is a motif finding Web tool available from
MEME suite [34]. It was designed for finding short (≤ 8
bases), core DNA-binding motifs of eukaryotic TFs and it
is able to process very large ChIP-Seq datasets [9].
DREME is capable for finding binding motifs for cofactor
TFs. It only accepts input sequences in fasta format.
DREME allows setting E-value cutoff but it does not allow
specifying motif size. DREME includes the option in the
output for verifying found motifs with reference databases
using TOMTOM [36] program. DREME requires email
address for notifying the results. It requires selecting
comparison source, which is set to shuffled sequences
by default. It allows specifying the type of strand to use.
DREME does not allow either creating an account or
storing the results on the server [9].
A summary of DREME’s features can be found in

Table 1.
DREME provides three different output formats: HTML,

XML, and text. The found motifs are listed by name, logo,
and E-value. The motif ’s details include number of positive
and negative strands matching that motif, P-value, E-value,
and enriched matching words for that motif. DREME
allows submitting discovered motifs to other programs
within MEME suite [34] for further analysis. The found
motif can be downloaded as a position weight matrix or
a custom logo [9].
DREME algorithm is based on a simplified form of

regular expression. Its motif detection is exhaustive for
exact words and heuristic for words with wildcards. To
identify the significant, discriminative motifs, the algo-
rithm uses Fisher’s Exact test for calculating the signifi-
cance of relative enrichment of each motif in two sets of
sequences. One set is the set of ChIP-Seq peak regions
and the other is either similar data from a different
ChIP-Seq experiment or shuffled versions of the first
sequences. The algorithm counts only the number of se-
quences containing a motif in each dataset. When the
motif with highest significance is found, all of its non-
overlapping occurrences in the first set of sequences are
aligned to create a position specific probability matrix.
To find multiple, non-redundant motifs in a set of se-
quences, the algorithm erases the best motif found by
setting all its occurrences to a special letter that cannot
match any motif. Then, the algorithm repeats the search
for motifs [9].
DREME is much faster than MEME [4], Weeder [41],

and NestedMICA [9,46]. Its runtime scales linearly with
the size of the dataset [9].

MEME-ChIP
MEME-ChIP [10] is a Web service designed for analyz-
ing ChIP-Seq datasets and it is available from MEME
suite [34]. MEME-ChIP provides several analysis tools
such as motif discovery, motif enrichment analysis, motif
visualization, binding affinity analysis, and motif identi-
fication. MEME-ChIP is a pipeline system, which in-
corporated MEME and DREME into a Web service.
MEME-ChIP only accepts input sequences in fasta for-
mat. It does not have restrictions on the size of input
sequence and the number of upload sequences. Thus,
MEME-ChIP can analyze very large ChIP-Seq datasets.
It allows setting E-value cutoff as well as selecting motif
size and number of motifs to return. MEME-ChIP allows
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verifying found motifs with several motif reference da-
tabases. It provides universal options, MEME options,
DREME options, and CentriMo [47] options for cus-
tomizing the motif detection. MEME-ChIP requires
email address for notifying the results. However, it
does not allow either creating an account or storing
the results on the server [10].
A summary of MEME-ChIP’s features can be found in

Table 1.
MEME-ChIP provides three different output formats:

HTML, XML, and text. The output can be viewed in
MEME output format, DREME output format, as well as
in CentriMo [47] and TOMTOM [36] report formats [10].
MEME-ChIP incorporated two complementary motif

finding algorithms MEME and DREME [10]. MEME im-
plemented multiple EMs while DREME used the regular
expression approach. DREME is capable for detecting
very short motifs that are not found by MEME. MEME-
ChIP used TOMTOM [36] for verifying discovered mo-
tifs by MEME and DREME with the reference databases
[10]. MEME-ChIP also used AME algorithm [48] for de-
tecting very low levels of enrichment of binding sites
for motif enrichment analysis [10]. MEME-ChIP used
MAST [37] and AMA [49] algorithms for visualizing
motifs as well as for binding strength analysis [10,48].

CompleteMOTIFs
CompleteMOTIFs [8] is a de novo motif finding Web
tool, which was designed for finding over-represented
transcription factor binding motifs from ChIP-Seq. Com-
pleteMOTIFs is a pipeline system, which incorporated
MEME [4], Weeder [45], and ChIPMunk [50] into a
Web tool. It accepts input sequences in fasta, BED, and
GFF formats. CompleteMOTIFs accepts file’s size ≤
500,000 bp for MEME and Weeder. It accepts ≤
5,000,000 bp in input file for ChIPMunk. Complete-
MOTIFs allows selecting motif reference database as
well as allows supplying user’s reference in Position
Specific Scoring Matrices. It also requires specifying the
type of the background sequence and the reference gen-
ome used in the motif finding. Other options for custom-
izing the motif detection include setting P-value cutoff,
specifying the types of nucleotides shuffling, and the num-
ber of times for nucleotides shuffling. CompleteMOTIFs
allows specifying motif size for running MEME only. It
does not allow specifying the number of motifs to return.
CompleteMOTIFs allows using Guest account or setting
up a user account for using the tool. Registered users can
store the results on the server. CompleteMOTIFs also
provides annotation analysis and eight boolean logic oper-
ations for file manipulation. It also provides two utilities:
convert BED to fasta, and convert fasta to BED [8].
A summary of CompleteMOTIF’s features can be found

in Table 1.
CompleteMOTIF’s output can be in both HTML and
text formats. The output can be viewed in MEME [4],
Weeder [45], and ChIPMunk [50] formats depending on
the selections when submitting the request. The motif
results can be verified with JASPAR [30] and TRANS-
FAC [31] databases using Patser [21] scanning method.
The top 10 motifs with their logos can be viewed on the
browser. The tool also shows the motif clustering result
from STAMP [43]. All results can be downloaded in a
zip file [8].
CompleteMOTIF incorporated three existing motif find-

ing tools into a Web tool. However, the results are specific
to each tool selected by the user. Each tool has
its own approach for finding motifs. MEME used the
multiple EMs algorithm [4]. Weeder implemented a suf-
fix tree based exhaustive enumeration algorithm [45].
ChIPMunk implemented an iterative algorithm that com-
bines greedy optimization with bootstrapping [50].

RSAT peak-motifs
Peak-motifs [11] is a pipeline system for finding motifs
in ChIP-Seq data. It can be used as a stand-alone appli-
cation and Web services. peak-motifs provides several
selective categories for customizing the motif detection
as follows [11].

Uploading input Peak-motifs accepts different types of in-
put sequences such as raw, multi, tab, fasta, wconsensus,
and IG formats. The input sequences can be uploaded
in a .gz compressed file. peak-motifs can also take the
input from other Web server via URL. The input se-
quences can be masked into lowercase, uppercase, or
non-dna. peak-motifs does not have limitations for the
size of the sequence and the number of peaks in the input.
It also allows uploading the control sequences [11].

Reducing peak sequences Peak-motifs provides flexibil-
ity for selecting the number of top sequences to retain
for the motif finding. It allows reducing peak sequences
by a number of base pairs on each side of the peak cen-
ter for the motif detection [11].

Motif discovery parameters Peak-motifs provides op-
tions for finding over-represented words, words with a
positional bias, words with local over-representation,
and over-represented spaced word pairs. It allows select-
ing oligomer lengths 6, 7, and 8 characters. peak-motifs
also includes several selections for Markov order of the
background model. The users can select between 1 to 10
motifs to return per algorithm as well as selecting a sin-
gle strand or both strands for the motif detection. peak-
motifs provides several options for selecting different
reference databases including user’s database and known
reference motifs for verifying discovered motifs [11].
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Locating and visualizing motifs Peak-motifs allows
searching putative binding sites in the peak sequences. It
includes several options for selecting Markov order of the
background model for sequence scanning. It also allows
visualizing peaks and sites on the genome browser [11].

Output option Peak-motifs provides two output options:
displaying the results on the browser or emailing the results
to the user. The latter requires user’s email address [11].
A summary of peak-motifs’s features can be found in

Table 1.
All motif results can be downloaded in a zip file. All

matrices can be downloaded in TRANSFAC format.
peak-motifs displays detailed results in several different
categories such as sequence compositions and statistics,
number of discovered motifs by algorithm, number of
discovered motifs with motif comparison, individual mo-
tifs and their matrices, motif locations or sites, and motif
comparisons [11].
Peak-motifs is a computational pipeline that incorpo-

rated several algorithms. The algorithms used for motif
finding are RSAT dyad-analysis [51], RSAT local-word
analysis [52], MEME [4], and ChIPMunk [11,50]. peak-
motifs also implemented the pattern matching algorithm
called matrix-scan-quick from RSAT [11,53]. It used
RSAT compare-motifs algorithm for motif comparison.
The implementation of motif finding relies on a combin-
ation of tried and tested algorithms, which integrated in
the software suite RSAT. The motif finding also used
complementary criteria for detecting the motifs [11].

PscanChIP
PscanChIP [3] is a motif finding Web tool for ChIP-Seq
data. It only accepts input sequences in BED format.
PscanChIP assumes that the region is centered on the
point of maximum enrichment within the peak and it
only analyzes 150 bp around the summit for that region.
It does not provide options for selecting motif size and
the number of motifs to return. PscanChIP requires
selecting human or mouse species with its associated as-
sembly. It allows selecting the background model and
the motif reference databases such as JASPAR [30],
TRANSFAC [31], and user’s database. PscanChIP does
not allow either creating an account or storing the re-
sults on the server [3].
A summary of PscanChIP’s features can be found in

Table 1.
PscanChIP’s output can be in HTML and text formats.

The results include several categories such as binding
profile name, binding profile ID, local enrichment P-
value, local over- or under- representation, global en-
richment P-value, global over- or under- representation,
Spearman correlation coefficient, preferred position,
position bias P-value, and so on. For each matrix in the
results, PscanChIP shows matrix’s detailed information,
its position weight matrix (PWM), motif ’s logo, and all
occurrences [3].
PscanChIP is based on the previous Pscan tool for pro-

moter analysis. It computes the global enrichment, which
is used for identifying motifs that are overrepresented in
the regions. It also calculates local enrichment, which is
used for identifying motifs with significant preference for
binding within the regions. In addition, PscanChIP evalu-
ates motif positional bias within the input regions. It can
identify the actual binding sites for the TF and the second-
ary motifs corresponding to other TFs that tend to bind
the same region [3].

Peak calling tools
There are many factors, which can affect the result of
the motif finding such as quality of the antibody used,
read length, sequencing error, read mapping procedure,
peak caller, and so on. Here we only mentioned the clos-
est influence factor, which is the peak calling tool in this
section. We recommend the users to select the peak
calling tool that is relevant to the type of research being
conducted. We also provided a summary for a number
of peak calling tools in Table 2. Besides, the control data
is important for background model validation. Thus, it is
better to run the peak calling tool using both input and
control data.
The peak finding process contains three essential steps:

pre-processing, mapping, and peak finding [78]. The
pre-processing step removes erroneous and low quality
reads. The mapping step maps the reads back to the ref-
erence genome. It is critical as multiple reads can be
mapped to multiple locations in the genome. Thus, the
mapping can be handled by increasing the specificity
using unique reads only or increasing the sensitivity by
allowing multiple alignments of reads. Finally, the peak
finding step identifies significant peak signals among
background signals [78].
Several algorithms have been developed for identifying

true peaks. There are three types of peaks in ChIP-Seq
data: punctate regions contain a few hundred base pairs
or less, localized but broader regions contain up to a
few kilobases, and broad regions contain up to several
hundred kilobases. Different peak categories associate
with different types of binding events. For example,
punctate region is a signature of a sequence specific
transcription factor such as NRSF or CTCF. A combin-
ation of punctate and broader regions associates with
proteins such as RNA polymerase II. Broad regions can
associate with histone marks and other chromatin do-
main signatures [79].
Different peak finding tools implement different algo-

rithms for targeting these types of peaks. Thus, the users
should select a peak finding tool that is relevant to the



Table 2 A summary of peak calling tools

Tool Algorithm Approach Published
year

Language Operating
system

Software
features

Latest
release
version

Latest
release
year

Website Maintenance Ref. #

BayesPeak BayesPeak algorithm Used Hidden
Markov model
(HMM) for
finding peaks

2011 R and C Linux, Windows,
and Mac OS X

Support
multicore

1.12.0 N/A http://compbio.
sysbiol.cam.ac.uk/
Resources/Bayes
Peak/csbayespeak.
html

Yes [54]

BroadPeak Maximal-segment
algorithm, Gibbs
sampling algorithm,
Ruzzo–Tompa
algorithm

Probabilistic
model

2013 R N/A N/A One
version

2013 http://jordan.
biology.gatech.
edu/page/
software/
broadpeak/

Yes [55]

CisGenome Two-pass algorithm Implemented a
modular design,
use sliding
window for peak
detection

2008 C, C++ Windows, Mac,
and Linux

Stand-alone
system,
command
mode and
GUI

v2.0 2011 http://www.
biostat.jhsph.
edu/~hji/
cisgenome/

Yes [56]

DROMPA (DRaw
and observe
Multiple enrichment
profiles and
annotation)

Sliding window Two-step
procedure,
DROMPA
peak-calling
program

2013 ANSI-C Linux N/A 1.4.0 2013 http://www.iam.
u-tokyo.ac.jp/
chromosome
informatics/
rnakato/drompa/

Yes [57]

F-Seq F-Seq density
estimation
algorithm

Kernel density
estimation

2008 Java Unix, Linux N/A 1.84 2011 http://fureylab.
web.unc.edu/
software/fseq/

Yes [58]

FindPeaks Used directional
reads module for
identifying peaks

Implemented a
modular
architecture

2008 Java Linux, Windows,
and Mac OS X

Command
line

4.0 N/A http://vancouver
shortr.sourceforge.
net/

Yes [59]

GEM (Genome
wide Event
finding and
Motif discovery)

Genome wide
event finding
and motif
discovery (GEM)

Probabilistic
model

2012 Java N/A Stand-alone
software

2.3 2013 http://cgs.csail.
mit.edu/gem/

Yes [60]

GLITR (GLobal
Identifier of
Target Regions)

GLITR algorithm Used ChIP-Seq
Peak Finder
framework

2009 Perl and
Python

N/A N/A N/A N/A N/A N/A [61]

GLMNB (Negative
binomial
generalized
linear model)

Sliding window Generalized
Linear Model
with Negative
binomial
distribution

2012 N/A N/A N/A 1.0 2012 http://sourceforge.
net/projects/
glmnb/

N/A [62]

Hpeak (Hidden
Markov model
(HMM)-based
Peak-finding
algorithm)

HMM-based
algorithm

Hidden Markov
Model (HMM)

2010 Perl and
C++

Linux, Windows,
and Mac OS

N/A V2.1 2009 http://www.sph.
umich.edu/csg/
qin/HPeak/

N/A [63]
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Table 2 A summary of peak calling tools (Continued)

MACS (Model-
based analysis
of ChIP-Seq)

MACS algorithm
(use shift and
sliding window
algorithm)

Model-based
Analysis of
ChIP-Seq

2008 Python Linux stand-alone,
no GUI, open
source

1.4.2 20 http://liulab.dfci.
harvard.
edu/MACS/

Yes [64]

NEXT-peak (the
normal-exponential
two-peak)

NEXT-peak
algorithm

Normal-
exponential
two-peak (NEXT-
peak) model

2013 C++ Linux N/A 1.1 20 http://ww2.odu.
edu/~nxkim/
nextpeak/

Yes [65]

PeakRanger Same algorithm
as PeakSeq for
identifying broad
regions. Summit-
valley-alternator
algorithm

Build the read
coverage profile

2011 C++ Linux, Mac
OS, and
Windows

Support parallel
cloud
computing

1.16 20 http://ranger.
sourceforge.net/

Yes [66]

PeakSeq PeakSeq - two-
pass strategy

Two-pass
strategy

2009 C and Perl N/A N/A 1.1 20 http://info.
gersteinlab.
org/PeakSeq

N/A [67]

QuEST (Quantitative
Enrichment of
Sequence Tags)

Construct profiles
and use shifting
method

Statistical
framework-
Kernel Density
Estimation
approach

2008 C++ Linux, Mac
OS

Open source,
non-profit use

2.4 20 http://mendel.
stanford.edu/
SidowLab/down
loads/quest/

No [68]

SeqSite Two-step strategy:
detect tag-enriched
regions and then
pinpoint binding
sites in the de
tected regions

Poisson model 2011 C/C++ Windows,
Mac OS X,
and Linux

Academic use
only

1.1.2 20 http://bioinfo.au.
tsinghua.edu.cn/
software/seqsite/

Yes [69]

SICER Scoring scheme Spatial clustering
approach

2009 Python Linux, Unix N/A v1.1 20 http://home.gwu.
edu/~wpeng/
Software.htm

Yes [70]

SIPeS (Site
Identification
from Paired-
end Sequencing)

SIPeS algorithm Used dynamic
fragment pileup
value for peak
calling

2010 C Linux Non-profit use 2.0 20 http://gmdd.
shgmo.org/
Computational-
Biology/ChIP-Seq/
download/SIPeS

N/A [71]

SISSRs (Site
Identification
from Short
Sequence
Reads)

Site Identification
from Short
Sequence Reads
(SISSRs) algorithm

Sliding window 2008 Perl Linux, UNIX N/A v1.4 20 http://sissrs.
rajajothi.com/

N/A [72]

Sole-Search Sole-Search
program

Implemented
several different
analysis steps
for peak calling

2010 Java N/A Web-based
software

N/A N/ N/A No [73]
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Table 2 A summary of peak calling tools (Continued)

T-PIC (Tree
shape Peak
Identification
for ChIP-Seq)

Tree shape Peak
Identification for
ChIP-Seq (T-PIC)
algorithm

Tree-based
statistics

2011 R and Perl N/A N/A One
version

2011 http://www.math.
miami.edu/~
vhower/tpic.html

N/A [74]

USeq Collection of
algorithms and
software for
peak calling

Implemented
several different
methods for
peak calling

2008 Java Linux, Mac
OS X, and
Windows

GUI 8.6.6 2013 http://useq.source
forge.net/

Yes [75]

W-ChIPeaks PELT algorithm
and BELT
algorithm

Statistical
methods
control false
discovery rate

2011 PHP, Perl,
Java and
C++

N/A Web tool 1.0.1 2012 http://motif.
bmi.ohio-state.
edu/W-ChIPeaks/

Yes for
BELT only

[76]

ZINBA (Zero-
Inflated
Negative
Binomial
Algorithm)

Zero-Inflated
Negative
Binomial
Algorithm
(ZINBA)

Statistical
framework

2011 C and R Mac OS X
and Linux/
Unix

Support
multi-core
clusters

2.02.03 2012 http://code.
google.com/
p/zinba/

Yes [77]
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type of research being conducted for maximizing the
chance obtaining the best possible peak sequences for
finding the motifs. There are software tools such as
peakROTS [80] and the tool presented by Schweikert
et al. [81] that are capable for assisting the users for op-
timizing the peak calling as well as choosing relevant
software package for their analysis. The users may need
to consider these tools. Here we provide an overview for
each tool and hope the users may find it useful.
peakROTS implemented a generic data-adaptive pro-

cedure that allows to optimally adjust the parameters
of a given software package to the properties of each
ChIP-Seq dataset independently. It allows avoiding poor
parameter settings for a given dataset. It can provide dir-
ection for selecting peak calling parameters. It notifies
the users whether or not the quality of the data and/or
the software parameters of a selected software package
are sufficient for reliable binding site detections. It also
recommends the users to choose the package that is op-
timal for a given dataset [80].
Schweikert et al. presented a tool, which implemented

a combination and fusion analysis method. This tool
provides a general assessment of available technologies
and systems for assisting researchers to select a suitable
system for their ChIP-Seq analysis. It also offers an alter-
native approach for increasing true positive rates and de-
creasing false positive rates. The tool can take different
peak sequence outputs of the same dataset generated by
different peak calling tools. It analyzes these peak se-
quence outputs and combines them in such a way that it
can produce a better output from all peak sequence out-
puts it analyzes. Then, the improved peak sequence out-
put can be used for further analysis [81].

Results and discussion
Datasets
We used five datasets from ChIP-Seq experiments in
Shen et al. [82] in Table 3 for our motif discovery. These
datasets came from mouse liver tissues, which have been
sequenced on Illumina Genome Analyzer II and aligned
to the mouse reference genome mm9. The output align-
ments are in bam format [82].
Table 3 Dataset’s properties

Dataset Mark GEO
accession

Number of
sequences

Sho
seq
(res

DM230 PolII (RNA polymerase II) GSM722763 105

DM05 p300 (co-activator protein) GSM722762 142

DM254 CTCF (insulator binding protein) GSM722759 4009

DM01 H3K4me1 (histone H3 lysine 4
monomethylation)

GSM722760 2001

DM721 H3K27ac (H3 lysine 27 acetylation) GSM851275 4005
We ran MACS [64] on each dataset for obtaining the
output peak file in bed format using P-value cutoff
0.00001 for peak detection. However, these peak se-
quence datasets are large and different motif finding
Web tools accept the datasets with different limited
sizes. Thus, we reduced the size of these datasets appro-
priately so that they can be accepted by the motif finding
Web tools. In addition, each motif finding Web tool ac-
cepts different formats for peak sequence dataset. There-
fore, we prepared the format for each peak sequence
dataset appropriately for each motif finding Web tool. We
used a utility BED to fasta conversion from CompleteMo-
tifs [8] for converting the peak sequence outputs from
MACS to fasta format for the Web tools that only accept
fasta format. The details for each dataset are in Table 3.

Results
We used two small datasets DM230 and DM05 in fasta
format for running MEME [4], GLAM2 [5], W-
ChIPMotifs [7], and CompleteMOTIFs [8] as these
tools are unable to process large datasets. The parame-
ters used for running MEME for both datasets are in
Additional file 1: Table S1. We used all default parame-
ters provided by GLAM2 for running both datasets.
These parameters can be found in Additional file 1:
Table S2. For running W-ChIPMotifs, we selected
mouse species and left the transcription factor blank
for running both datasets. For running CompleteMO-
TIFs, we used the parameters in Additional file 1: Table S3
for both datasets. As of this writing, the motif finding jobs
for both datasets have not completed by Complete MO-
TIFs although these jobs have been submitted for over
two months.
We used all five datasets in fasta format for running

CisFinder [6], DREME [9], MEME-ChIP [10], and
peak-motifs [11]. The parameters used for running all
five datasets for these Web tools are in Additional file
1: Tables S4, S5, S6 and S7. CisFinder produced a large
number of motifs for each dataset as it can detect local
over-represented motifs, alternative binding motifs, bind-
ing motifs of potential co-factors, and motifs with a low
level of enrichment.
rtest
uence
idues)

Longest
sequence
(residues)

Total length
(residues)

Size (FASTA
format)

Size (BED
format)

Reference

157 1728 47242 49 KB 5 KB [82]

130 1214 50318 53 KB 7 KB [82]

94 2374 1518265 1604 KB 181 KB [82]

175 8520 1856431 1871 KB 88 KB [82]

255 16542 5429909 5423 KB 180 KB [82]
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We also used all five datasets in bed format for run-
ning PScanChIP [3]. The parameters used for running
these datasets are in Additional file 1: Table S8. PScan-
ChIP outputted all global and local over-represented
motifs with their global and local P-values for each
motif. We used P-value ≤ 0.05 as a threshold for filtering
both global and local over-represented motifs in the re-
sults. The number of global over-represented motifs and
local over-represented motifs after applying the filter for
each dataset are in Additional file 1: Table S9. A sum-
mary of all results reported by each Web tool are also in
Additional file 1: Table S9.

Discussion
It is difficult to compare motif results from different
motif finding tools even for the same peak sequence
dataset because of the following reasons. Different motif
finding Web tools implement different algorithms, which
determine the results of the motif finding. In addition,
each motif finding Web tool has its own parameters set
up for finding motifs. The default parameters and the
parameters selected by the users have an influence on
the motif results. Thus, Tompa et al. suggested using a
combination of different motif finding tools for maxi-
mizing the chance obtaining significant motifs [83].
Moreover, motifs reported by multiple tools are more re-
liable. On the other hand, multiple motif finding tools
that implement different algorithms report identical mo-
tifs for the same dataset prove the consistency and reli-
ability of these tools. However, in reality it is hard for
these motif finding tools to agee on the same set of mo-
tifs that are exactly matched. Thus, we looked for simi-
larities between these motifs reported by different motif
finding tools. We used STAMP [43] for this purpose by
comparing the similarities between two set of motif re-
sults from two different motif finding Web tools. We
implemented this pair-wise comparison for all motif
finding Web tools for each dataset. Since STAMP has its
own required input formats and the formats of the motif
results from different motif finding Web tools vary, we
prepared the motif results in the formats required by
STAMP for running this tool. Besides, different motif
finding Web tools provide different settings for getting
the maximum number of motifs to return. Thus, we ob-
tained a variety number of motifs in the results from
these tools for each dataset. Among them CisFinder re-
ported the largest number of motifs. However, STAMP
is not able to process large motif datasets. Hence, we re-
duced CisFinder’s motif datasets to ≤ 100 motifs in each
dataset for STAMP to process.
We validated all motifs used for similarity comparisons

with two reference databases: JASPAR [30] and UniP-
robe [33] for mouse species using TOMTOM [36] pro-
gram with P-value cutoff ≤ 0.01. All discovered motifs in
each dataset by MEME, GLAM2, W-ChIPMotifs,
MEME-ChIP, and PScanChIP were found in either
JASPAR or UniProbe. All discovered motifs by Cis-
Finder for four datasets DM230, DM05, DM254, and
DM721were found in either JASPAR or UniProbe ex-
cept for one motif in the dataset DM01 was not found
both databases. In addition, all discovered motifs by
DREME for three datasets DM230, DM254, and DM721
were found in either JASPAR or UniProbe except for 2
motifs in the dataset DM01 were not found in both data-
bases. Besides, RSAT peak-motifs showed two motifs that
were not found in both references with one from the data-
set DM254 and the other from the dataset DM01. All
other discovered motifs by RSAT peak-motifs in other
datasets were found in either JASPAR or UniProbe. In
general, most of discovered motifs reported by each tool
in each dataset used for similarity comparisons were
found in the references for mouse species. All validation
results can be found in column 4 of the Additional file 1:
Table S11.
We performed the similarity comparisons as follows.

For each Web tool, we compared its motif result with the
motif result in every other Web tool for the same dataset
using the matrix type in Additional file 1: Table S10. We
performed this pair-wise comparison for all datasets for
each Web tool. The pair-wise comparisons of motif results
between these tools for the same dataset reveal the num-
ber of best matches by similarities between them. How-
ever, the resemble matches may not be one to one
correspondence. The comparison results are in Additional
file 1: Table S11. Most of discovered motifs by MEME
were also found by CisFinder and W-ChIPMotifs. Besides,
most of discovered motifs by GLAM2 were also found by
all other tools except for MEME-ChIP.
For two small datasets DM230 and DM05, nearly all

discovered motifs by CisFinder were also found by all
other tools except for MEME-ChIP. For other three
datasets, most of discovered motifs by CisFinder were
also found by DREME and MEME-ChIP. However,
peak-motifs and PScanChIP do not show a large number
of similar motifs with CisFinder.
The output of W-ChIPMotifs includes the frequencies

of nucleotides but they are not in the form of matrices.
Thus, we converted these frequencies into raw PSSMs
[84], which were used to compare with the motif results
from other Web tools. Raw PSSM is defined in [84] as
follows. It is an l × 4 matrix containing 4 columns for
four nucleotides (A, C, G, T) and l rows for the size of
the motif. Each entry in the matrix is the frequency
value of a nucleotide in the multiple sequence align-
ments. The matrix is leaded by a character “>” followed
by some characters, which can be the name of the matrix.
The results show most of discovered motifs by W-
ChIPMotifs were also found by MEME and CisFinder.
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However, other tools do not show a significant number of
similar motifs with W-ChIPMotifs.
DREME returned only one motif for the dataset

DM230. This motif was found by all other tools except
for MEME-ChIP. DREME did not return any motif for
the dataset DM05 although other tools reported a num-
ber of motifs for this dataset. For other three datasets,
most of discovered motifs by DREME were also found
by all other tools. However, PScanChIP does not show a
large number of similar motifs with DREME.
MEME-ChIP integrated MEME and DREME into a

pipeline, which maximizes the chance for obtaining the
motifs that a single tool may miss because these tools
are complement to each other. We used the parameter
settings for this tool as used for running individual tool.
However, MEME-ChIP did not report any motif for the
dataset DM230 although MEME returned 20 motifs and
DREME returned one motif. For the dataset DM05,
MEME-ChIP returned 4 motifs, which were found by
MEME but other tools do not show much similarities
for this dataset. For other three datasets, most of discov-
ered motifs by MEME-ChIP were also found by all other
tools. However, PScanChIP does not show consistent
motif similarities with MEME-ChIP.
For peak-motifs, most of discovered motifs by this tool

for all datasets were also found by CisFinder. However,
other tools do not show a lot similar motifs with peak-
motifs.
PScanChIP does not allow exporting the motif results

in matrix format for further analysis. To acquire the
motif results in PSSMs format, we manually followed
each motif ’s link to the JASPAR database site for obtain-
ing the corresponding matrix in JASPAR format for each
motif. The comparison results show most of discovered
motifs by PScanChIP for all datasets were also found by
CisFinder. However, other tools do not show much simi-
lar motifs with PScanChIP.
In general, CisFinder shows consistent results compar-

ing to the results from other tools as it produced a large
number of motifs for each dataset. The capability to de-
tect large number of motifs makes CisFinder consistent
as some Web tools missed reporting the motifs that
were found by others. We suggest the users to use mul-
tiple Web tools that implement different algorithms for
their motif finding for obtaining significant motifs, over-
lapping resemble motifs, and non-overlapping motifs.
To date peak-motifs is the only Web tool that can take

the input from other Web server via URL. This feature
eliminates the uploading delay and speeds up the motif
finding.

Conclusions
In this work, we surveyed nine motif finding Web tools
that are capable for finding binding site motifs. For each
Web tool, we observed its features, approach, strengths
and weaknesses. We pointed out the results of motif
finding depend on several factors and discussed the clos-
est influence factor, which is the peak calling tool. We
presented that different peak calling tools implement dif-
ferent algorithms for targeting different types of peaks.
Thus, it is critical for the users to pick a suitable peak
calling tool for the type of research being conducted so
that it can maximize the chance for obtaining the best
possible peak sequences for finding the motifs. We also
presented the tools that are able to assist the users for
optimizing peak calling result as well as for choosing
relevant software package for their analysis. We also per-
formed comparisons for nine motif finding Web tools
using five different datasets from ChIP-Seq experiments.
We showed that comparing motif results from different
motif finding Web tools is difficult because each tool
has its own parameter settings as well as implementing
different algorithms for finding motifs. In addition, the
default parameter settings and user’s selected parameters
have an influence on the motif results. Thus, we com-
pared the motif results from different motif finding Web
tools based on their similarities using STAMP [43] tool.
We performed pair-wise comparison between two set of
motifs from two different Web tools for all datasets. The
comparison results showed CisFinder reported consist-
ent results comparing to other Web tools as it was able
to detect a large number of motifs that were not re-
ported by other Web tools. Since each motif finding
Web tool has its own advantages for detecting motifs
that other Web tools may not discover, we suggested the
users to use multiple Web tools that implement different
algorithms for obtaining significant motifs, overlapping
resemble motifs, and non-overlapping motifs.
We observed that newer motif finding Web tools have

the capability to find global over-represented motifs,
local over-represented motifs, and alternative motifs.
These newer tools can process large datasets with long
sequences. We also observed that recent motif finding
development tends to exploit the Web for providing ease
of use to the users.

Future work
From the observations above, we see that the future of
the motif finding development for ChIP-Seq should be
Web tool design with user-friendly interface. It should
be developed as a pipeline system, which integrates a
number of specialized motif finding tools for ChIP-Seq.
Such system would allow the users to run a combination
of specialized tools for maximizing the chance obtaining
significant motifs, overlapping resemble motifs, and non-
overlapping motifs. The future tool should be able to de-
tect global over-represented motifs, local over-represented
motifs, and alternative motifs. It should be able to process
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large datasets with long sequences generated from the
NGS technology. The future tool should be able to take
the input from other Web server via URL for circumvent-
ing the uploading delay and speeding up the motif detec-
tion. It is also a plus if the future tool can probe the user
for the type of research being performed and provide ad-
visory features prior to running the tool. Finally, the future
tool should provide a number of convenient result formats
for further analysis.

Reviewers’ comments
First round
Reviewer’s report 1
Prof. Sandor Pongor, International Centre for Genetic En-
gineering and biotechnology (ICGEB), Italy
The written English of the manuscript could be further

improved. The subtitle “Graph” could be replaced by
“Graph representations”, or “Graph Theory”.
Author’s response:
We have revised the manuscript and further improved

the language editing. We replaced “graph” with “graph
representations” in the first paragraph of the Section
General approaches for motif finding and revised the
subtitle “Graph” to “Graph representations” in this same
section. Below are the changes in the manuscript.
First paragraph of the Section General approaches for

motif finding:
“…There are several different approaches for finding

motifs such as profiles, consensuses, projection, graph rep-
resentations, clustering, and tree-based [2,13,14].”
In Section General approaches for motif finding, sub-

title Graph changed to Graph representations.
There are too many Tables. I suggest Tables 3 and 4 to

be combined into one, and Tables 5 to 12 to go into
Supplementary.
Author’s response:
We combined Tables 3 and 4 into one table named

Table 3 and adjusted the text in the body of the manu-
script referring to this table. We also moved Tables 5–12
to the Supplementary Tables file and renamed these ta-
bles to Supplementary Tables 1–11 respectively.
Quality of written English: Needs some language cor-

rections before being published.

Reviewer’s report 2
Dr. Yuriy Gusev, Georgetown University Medical Center,
USA
The manuscript presents a critical review of many of

the existing motif finding tools and pipelines that are de-
signed for the CHIP-seq data analysis. Many applications
of NGS technologies including CHIP-seq applications
has been steadily growing over past 5–8 years with ever
growing amount of data generated across the globe.
With the costs of next generation sequencing falling fast
toward a $1000 mark per genome, many of the sequen-
cing applications are becoming more accessible for re-
searchers. There is a clearly identifiable need for effective,
scalable and reproducible computational tools allowing
for fast and cost effective processing and analysis of this
vast amount of raw sequencing data.
The authors provided a detailed computational review

and comparison of 9 published software packages for
CHIP-seq data processing and analysis.
The results of their comparative analysis are clearly

presented and provide, perhaps for the first time a sur-
vey of capabilities, advantages and limitations of the
most current tools. One of the noticeable results of their
study is that there is a dramatic difference in the output
of these tools even thought the same data sets were ana-
lysed. An overlap reported in the paper is ranging from
0 to 100% that is a clear indication of a problem with
the existing computational algorithms. The authors have
proposed a computational criteria for selection of the
best tool based on the largest number of binding motifs
found for any particular data set. However, in reviewer
opinion, it is clear that the results obtained with any par-
ticular tool might have high level of false positive results
and purely computational approaches do not provide a
clear path to avoid high level of false positive results.
The biological validation might offer one of the solutions
for this predicament however if the number of predicted
binding sites is high the experimental validation might
not be feasible.
Overall, this paper presents a timely and useful survey

of CHIP-seq computational pipelines and while it might
be of most interest for a relatively narrow community of
bioinformaticians involved with NGS-seq data analysis,
it is also could serve as a guide for the growing number
of bio-medical researchers involved in translational and
clinical applications of NGS technologies.
Author’s response:
We found that different Web tools reported different

number of motifs even for the same dataset. Motifs re-
ported by different Web tools that implement different al-
gorithms are more reliable and we suggested the users to
use multiple Web tools that implement different algo-
rithms for obtaining overlapping motifs. The biological
validation is one of the best ways to validate motifs but
it may be impractical for high volume of motifs. We hope
the number of overlapping motifs from multiple Web
tools is feasible for this validation.
Quality of written English: Acceptable.

Reviewer’s report 3
Dr. Shyam Prabhakar (nominated by Prof. Limsoon Wong)
The manuscript “A survey of motif finding Web tools

for detecting binding site motifs in ChIP-Seq data” by
Tran and Huang reviews nine web tools for motif
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discovery. The authors describe the features of the tools
and apply them to five mouse ChIP-seq datasets. They
then quantify overlaps between the resulting motif lists.
Finally, they suggest that multiple tools be applied to
any individual data set, since each method has its own
pluses and minuses.
Since there are many online motif discovery tools, it is

certainly useful to have guidance on which tool one
should use on any particular ChIP-seq dataset. The tool
that’s best for histone ChIP-seq may not be the same as
the one that’s best for TF ChIP-seq. Some tools may
work well only when the dataset is relatively “clean,” and
others may work under almost all conditions. Some may
require tightly-defined binding regions, whereas others
may tolerate broader regions extending beyond a thou-
sand basepairs. Unfortunately, these issues are not ad-
dressed in any way. In fact, the manuscript provides no
guidance at all on the quality of the predictions made by
the various tools. At the end, one is still left wondering
which tool(s) one should use. The only concrete recom-
mendation is that it is better to use multiple tools, but
in bioinformatics this is a platitude.
Author’s response:
We have presented the detailed features of each Web

tool in the manuscript. For example, MEME suggests re-
moving duplicate and low information sequences in the
input dataset. MEME does not detect motifs for co-
factors. However, other Web tools such as CisFinder,
DREME, and PScanChIP are capable for detecting bind-
ing motifs for cofactor TFs. We have provided as much
details as possible for the input dataset’s properties that
each Web tool can accept. For instance, PScanChIP only
processes100-150 bp around the center of the summit of
the peak, MEME can take < 1000 bp for sequence’s
length, and CisFinder can accept the sequence’s length ≤
50 Mb produced by the peak caller. We hope these prop-
erties assist the users for deciding which tool is capable
for processing short or broader regions. We have also pro-
vided the details of the output that each Web tool can
provide, for instance, the size of the motif (short or lon-
ger) that each Web tool can detect and return.
All Web tools allow verifying discovered motifs with the

reference. We have validated the discovered motifs re-
ported by each tool in our similarity comparisons and
found most of them exist in the reference databases (See
our response to your suggestions section). However, some
tools reported more motifs than others for the same data-
set. Thus, we compared these tools for the motifs they re-
ported on the same dataset. The comparison’s details,
results, and discussions on the results reported by each
Web tool are presented in the manuscript. Based on the
comparison results we think it cannot be recommended
which Web tool should be used for a particular ChIP-Seq
dataset because there is no certainty to say precisely
which tool is best for a particular ChIP-Seq dataset.
Thus, we can only suggest the users to use multiple Web
tools that implement different algorithms because the
users can see exactly what they can get from each Web
tool for their dataset and take appropriate action. This is
also the approach that the pipeline motif detection tools
implement which we discussed in the manuscript. We
also suggested the users to obtain the overlapping motifs,
which are more reliable because they are reported by dif-
ferent tools that implement different algorithms.
The section that lists the general features of each of

the nine web tools seems too long. In the format sent to
reviewers, it covers 12–13 pages. The features men-
tioned in this section are often not particularly note-
worthy (“CisFinder’s output can be in HTML and text
format”), and also frequently redundant because they are
listed again in Table 2. This section could be shortened
considerably.
Author’s response:
We have provided as much details as possible to the

readers so they can see the detailed features that each
Web tool can provide. Table 2 contains a short summary
of the features for each Web tool. We think this table can
be used for a quick lookup.
The section on peak-calling tools is not well moti-

vated. In general, everything upstream has an influence
on motif discovery: the peak-caller, the binding land-
scape of the TF, the quality of the antibody used, noise
in the ChIP-seq data set, read length, the read mapping
protocol, the thoroughness with which repeats are
masked, and so on. The list could be quite long, and it is
not clear that peak calling is the most important factor,
now that peak callers have become reasonably robust. I
would not be surprised if the use of an inappropriate
peak caller or an inappropriate pvalue threshold resulted
in failure to discover relevant motifs. However, as far as
I can tell, this manuscript does not provided any data or
cite any papers that quantify the effect of peak calling on
motif discovery.
Author’s response:
We mentioned some of the influence factors pointed

out above in the revised manuscript and we focused only
on the closest influence factor, which is the peak calling
tool. We only presented the general idea that the result of
peak calling tool used for finding motifs has an influence
on the result of motif finding and suggested the users to
consider software tools that are able to assist them for
optimizing the peak calling results relevant to their data’s
property. The suggested tools are discussed in the
manuscript.
The five ChIP-seq data sets used to evaluate the motif

discovery tools are problematic - it is not obvious in
most cases what the correct motifs are (only one of the
five is a DNA-binding TF). One could guess that the
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motifs of liver-specific TFs should be enriched in, say,
H3K27ac peaks, but no attempt is made to check if this
is the case, or to evaluate the algorithms in this way.
Author’s response:
As presented above, each Web tool allows verifying

found motifs with one or more reference databases such
as TRANSFAC or JASPAR using P-value or E-value
threshold. We also validated the discovered motifs re-
ported by each tool in our similarity comparisons and
found most of them exist in the reference databases (See
our response to your suggestions section). We rely on the
correctness of TOMTOM and other methods that each
Web tool used for verifying the motifs.
The Results section relies mainly on Table 15. This

matrix-like table lists the proportion of motifs discov-
ered by tool X that are also discovered by tool Y. The
data in the table can be used to cluster the algorithms
into groups by similarity. However, the similarity rela-
tionships could in many cases have been predicted in ad-
vance, because many of the web tools employ the same
algorithms (MEME, Weeder) at the back end. Due to
this sharing of back-end algorithms, multiple web tools
could potentially identify the same incorrect motif.
Author’s response:
We have revised our suggestion for the users to use mul-

tiple Web tools that implement different algorithms because
different Web tools, which implement different algorithms
at the backend, report the same motifs for the same dataset
are more reliable than a single Web tool. Although some
Web tools implemented the same algorithms at the back-
end, they do not always report the same motifs. For ex-
ample, MEME-ChIP integrated MEME and DREME into a
pipeline. However, MEME-ChIP did not report any motif
for the dataset DM230 although MEME reported 20 motifs
and DREME reported one motif for the same dataset.
Suggestions:
It would have been more useful to start with ChIP-seq

datasets for TFs that have known motifs (derived from
protein-binding microarray data, for example), and then
evaluate the web tools on their ability to recover the
known motifs. Another possibility would be to evaluate
the tools on the number of motifs they discover that
match motifs contained in TRANSFAC or JASPAR. This
latter approach is suitable if one is testing for co-motifs
(motifs bound by TFs that co-bind with the ChIP-ed
TF). However, it is vulnerable to artifacts – false GC-
rich or AT-rich motifs frequently match TRANSFAC en-
tries with the same nucleotide composition. Yet another
suggestion would be to use cross-validation as a measure
of motif quality/accuracy.
Author’s response:
We validated all motifs used for our similarity com-

parisons with the references databases JASPAR and
UniProbe for mouse species using TOMTOM program.
Most of these motifs were found in either JASPAR or
UniProbe with P-value ≤ 0.01. We rely on the correctness
of TOMTOM and other methods that each Web tool uses
for verifying found motifs with the reference databases.
For example, MEME, GLAM2, DREME, and MEME-
ChIP use TOMTOM. W-ChIPMotifs uses STAMP, and so
on. We have added a validation paragraph to the subsec-
tion Discussion in the manuscript. Below is the additional
paragraph (paragraph 2 of the subsection Discussion).
“We validated all motifs used for similarity compari-

sons with two reference databases: JASPAR [30] and
UniProbe [33] for mouse species using TOMTOM [36]
program with P-value cutoff ≤ 0.01. All discovered motifs
in each dataset by MEME, GLAM2, W-ChIPMotifs,
MEME-ChIP, and PScanChIP were found in either JAS-
PAR or UniProbe. All discovered motifs by CisFinder for
four datasets DM230, DM05, DM254, and DM721were
found in either JASPAR or UniProbe except for one motif
in the dataset DM01 was not found both databases. In
addition, all discovered motifs by DREME for three data-
sets DM230, DM254, and DM721 were found in either
JASPAR or UniProbe except for 2 motifs in the dataset
DM01 were not found in both databases. Besides, RSAT
peak-motifs showed two motifs that were not found in
both references with one from the dataset DM254 and
the other from the dataset DM01. All other discovered
motifs by RSAT peak-motifs in other datasets were found
in either JASPAR or UniProbe. In general, most of discov-
ered motifs reported by each tool in each dataset used for
similarity comparisons were found in the references for
mouse species. All validation results can be found in col-
umn 4 of the Supplementary Table 11.”
Minor issues not for publication:
1) Introduction: “Assume that a motif appears in each se-

quence, we have (n -l + 1)^t possible candidates for motifs.”
To be more precise, perhaps this should be written as, “As-
suming that exactly one motif appears in each sequence, …”
Also, the authors should clarify that this statement applies
only to the algorithms tested in this survey. It does not apply
to thermodynamically based algorithms such as QPMEME,
MatrixREDUCE and TherMoS, which use nonlinear
optimization on a continuous space of affinity models.
Author’s response:
We have revised the definition of motif finding problem

with more details in the manuscript. This is a simple def-
inition, which may not apply to every algorithm dis-
cussed in this manuscript. The change made in the first
paragraph of the section General approaches for motif
finding in the manuscript is below.
“…Motifs are short sequences of a similar pattern found

in sequences of DNA or protein. Consider t input nucleo-
tide sequences of length n and an array s (s1, s2, s3,…, st) of
starting positions with each position comes from each se-
quence. An alignment matrix is a matrix of t × l, which
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contains t sequences of starting positions from each se-
quence with length l where l is the size of an l-mer. A pro-
file matrix is a matrix of 4 × l containing 4 rows for four
nucleotides (A, C, G, T) and l columns. Each entry in the
profile matrix is the frequency of each nucleotide in the
alignment matrix. The consensus score is the sum of high-
est frequencies from each column in the profile matrix. The
motif finding problem can be stated simply as follows.
Given t input nucleotide sequences of length n, we want to
find a set of l-mers with one from each sequence such that
they maximize the consensus score. Thus, we need to con-
sider all (n–l+1)t possible starting positions or candidates
for motifs. That is the number of candidates for motifs is
exponential of the number of input sequences…”
2) Motif finding Web tools section: “The EM algo-

rithm has the following drawbacks … It assumes there is
exactly one appearance of the shared motif appearing in
each sequence of the dataset but this is not always the
case.” The wording is a bit confusing here, because this
is not really a drawback of EM per se. Rather, it is a
drawback of one specific application of EM.
Author’s response:
We have clarified it in paragraph 3 of the subsection

MEME in the manuscript as follows.
“… The EM algorithm for motif finding presented by

Lawrence et al. has the following drawbacks. It is not
clear how to select the starting point and when to stop
trying different starting points. It assumes there is exactly
one appearance of the shared motif appearing in each se-
quence of the dataset but this is not always the case…”
3) Same section: “MEME can only model a single

motif at a time and it is unable to find alternative bind-
ing motifs or motifs for co-factors.” MEME should be
able to find motifs for co-factors, because it masks previ-
ously discovered motifs when it looks for new motifs.
Author’s response:
We have revised it in the last paragraph of the subsec-

tion MEME in the manuscript as follows.
“Because MEME erases previous discovered motifs

when it searches for new motifs, MEME can only model
a single motif at a time and it does not detect alternative
binding motifs, which are motifs for co-factors.”
4) Page 9: the acronym PSPM should be defined. More

generally, many terms are used to describe binding affinity
models (PSPM, PSSM, PWM, letter-probability matrix,
Transfac matrix). As far as I could tell, some of these terms
mean the same thing, at least as used in this manuscript.
Author’s response:
We have explained the acronym PSPM in paragraphs 3

and 4 of the subsection GLAM2 in the manuscript as follows.
“…Other options in the HTML output include viewing

alignment, viewing Position Specific Probability Matrix
(PSPM), and finding replications that are similar to the
best motif found [5].
The PSPM is a 4 × l matrix containing 4 rows for four
nucleotides (A, C, G, T) and l columns where l is the size
of the motif. Each entry in the matrix is the frequency of
a nucleotide in the multiple alignments of the sequences.
This frequency is represented by a probability value.”
5) Results and Discussion, first sentence: “We used five

datasets from ChIP-Seq experiments in Shen et al. [82]
in Table 3 for our motif search.” “Motif search” should
be replaced with “motif discovery.”
Author’s response:
We have revised this sentence as suggested. Below is the re-

vised sentence in the subsection Datasets in the manuscript.
“We used five datasets from ChIP-Seq experiments in

Shen et al. [82] in Table 3 for our motif discovery.”
6) Table 14: It’s not clear what is meant by “Raw

PSSM.” The second column (matrix type) contains many
different entries. How can the matrices be compared
when the matrix type used for comparison is not the
same? On the other hand, if the matrix type really is the
same, could this column be left out?
Author’s response:
We have added a definition for raw PSSM in para-

graph 5 of the subsection Discussion in the manuscript.
We also directed the readers to a reference, which con-
tains an URL of the site explaining this format. The
change made in this paragraph is below.
“The output of W-ChIPMotifs includes the frequencies

of nucleotides but they are not in the form of matrices.
Thus, we converted these frequencies into raw PSSMs
[84], which were used to compare with the motif results
from other Web tools. Raw PSSM is defined in [84] as
follows. It is an l × 4 matrix containing 4 columns for
four nucleotides (A, C, G, T) and l rows for the size of the
motif. Each entry in the matrix is the frequency value of
a nucleotide in the multiple sequence alignments. The
matrix is leaded by a character “>” followed by some
characters, which can be the name of the matrix…”
Different matrix types can be compared with each other by

STAMP tool as this tool accepts a wide variety of matrix for-
mats. This flexibility allowed us to perform the comparisons
presented in the manuscript. We included the matrix type col-
umn in this table for providing details of the comparisons to
the readers. This table has been moved to the Supplementary
Tables file and it was renamed to Supplementary Table 10.
7) Table 15: If I’m not mistaken, “N/A” should be re-

placed by “0” in Row 2, Column 8, which shows the
MEME-DREME comparison.
Author’s response:
It was an error in the table. We have fixed this error

by replacing “N/A” with “0 (0%)” in Row 2, Column 8.
This error has been corrected for all rows and columns
where the comparison between a dataset that has zero
motif with another dataset that has zero or more
motifs.
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Quality of written English: Needs some language cor-
rections before being published.

Second round
Reviewer’s report 1
Prof. Sandor Pongor, International Centre for Genetic En-
gineering and biotechnology (ICGEB), Italy
Accepted.
Quality of written English: Acceptable.

Reviewer’s report 2
Dr. Yuriy Gusev, Georgetown University Medical Center, USA
I am satisfied with the authors response to my com-

ments and recommend to accept the manuscript for
publication.
Quality of written English: Acceptable.

Reviewer’s report 3
Dr. Shyam Prabhakar (nominated by Prof. Limsoon Wong).
The revised version fixes some of the issues raised in

the first round of review. However, my main concern re-
mains that the study provides no guidance on the quality
of the predictions made by the various tools.
In the revised version, the authors have attempted to

address this point by comparing the de novo predicted
motifs against databases of known motifs: JASPAR and
UniProbe. It is claimed that most of the predicted motifs
exist in the reference databases, and therefore the pre-
dictions are valid. However, it is not clear if the database
matching was done correctly. As far as I can tell, motifs
were considered to have a database match if TOMTOM
found a hit with raw P-value < 0.01. Because of the mul-
tiple testing problem (there are hundreds of motifs in
the JASPAR + UniProbe database), this is actually a very
loose P-value threshold. It corresponds to a false-discovery
rate not far from 100%. In other words, even random, non-
sense motifs would match the database at this P-value
threshold. I submitted three random motifs as sample quer-
ies to TOMTOM: GSTWGR, AGACG and CMAWGT.
These motifs were plucked out of thin air – as far as I
know, they do not correspond to any real transcription fac-
tors. All three returned database matches with P < 0.01.
If the authors applied a false-discovery rate cutoff

(TOMTOM q-value < 0.01, for example), it’s likely that
only a fraction of predicted motifs would have database
matches. This is because the number of motif predic-
tions is too large – on average each tool predicted 34
motifs in one ChIP-seq dataset (average of Column 3 in
Supplementary Table 11). Only the top few motifs in
these lists are likely to be genuine.
Author’s response:
We have validated a few motifs using q-value cutoff <

0.01 on TOMTOM. We found this q-value cutoff resulted
in losing motifs that we think they are significant because
these motifs were reported by multiple tools. Below are
some examples.
Example 1:
This motif below was found by MEME in the dataset

DM05. It is motif number 17 in the list of total 46 motifs
reported by MEME.

This motif was also found by GLAM2, CisFinder, W-
ChIPMotifs, MEME-ChIP, peak-motifs, and PScanChIP.
TOMTOM reported several matches for this motif with
p-values < 0.01 but q-values are much larger than 0.01
(at least 0.188899 or greater at the time of this valid-
ation) for mouse species in JASPAR or UniProbe data-
base. One example of these matches is Hoxc9_2367.2
(homeo box C9) for this motif in the UniProbe database
for mouse with p-value = 0.00327818 and q-value =
0.6349. We also validated this motif again with STAMP
and found that STAMP also reported the same match,
which is Hoxc9_2367.2 (homeo box C9) for this motif in
the UniProbe database with E-value = 3.5754e-02.
Example 2:
This motif below was found by MEME-ChIP in the

dataset DM01. It is motif number 9 in the list of total 9
motifs reported by MEME-ChIP.
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This motif was also found by CisFinder, peak-motifs,
DREME, and PScanChIP. TOMTOM also reported
several matches for this motif with p-values < 0.01 but
q-values are much larger than 0.01 (at least 0.12092
or greater at the time of this validation) for mouse
species in JASPAR or UniProbe database.
Example 3:
The motif below was found by peak-motifs in the data-

set DM254. It is motif number 37 in the list of total 39
motifs reported by peak-motifs.

This motif was also reported by CisFinder, MEME-
ChIP, DREME, and PScanChIP. Same as above, TOMTOM
reported several matches for this motif with p-values < 0.01
but q-values > 0.01 (at least 0.354709 or greater at the time
of this validation) for mouse species in JASPAR or UniProbe
database.
The motifs in the examples above were found by multiple

tools. TOMTOM found matches for these motifs in either
JASPAR or UniProbe database for mouse with p-values <
0.01. We think these motifs are significant and should not
be eliminated. However, the q-values reported by TOM-
TOM for these motifs exceed the stringent cutoff 0.01.
Thus, if we applied this stringent cutoff q-value < 0.01 for
the motifs in our similarity comparisons it would result in
losing significant motifs.
I would suggest that more stringent cutoffs be applied

at all stages of the analysis. It would probably help quite
a bit to consider only the top motif predictions, and also
to run TOMTOM with a q-value threshold rather than
a P-value threshold. I am not completely clear on how
STAMPY was applied in this study, but it would be im-
portant to apply a q-value cutoff there as well.
Author’s response:
Using more stringent cutoffs can eliminate false posi-

tives. However, these stringent cutoffs can also eliminate
significant motifs. We do not have suggestion for the
exact stringent cutoff that would balance both cases.
Thus, we leave this value for the users to decide appro-
priately for their research.
We used STAMP for finding similar motifs that were

reported by multiple tools using E-value cutoff ≤ 0.05 in
our study. The results from STAMP provide similar mo-
tifs using E-value only. Therefore, we can only use E-
value for the cutoff.

Additional file
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running CisFinder motif finding Web tool. Table S5. Parameters used
for running DREME motif finding Web tool. Table S6. Parameters used
for running MEME-ChIP motif finding Web tool. Table S7. Parameters
used for running RSAT peak-motifs motif finding Web tool. Table S8.
Parameters used for running PScanChIP motif finding Web tool. Table S9. A
summary of the motif results for each dataset and Web tool. Table S10.
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