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We describe the development and implementation of research-based learning tools such as the
Quantum Interactive Learning Tutorials (QulLTs) and peer instruction tools to reduce students’
common difficulties with issues related to measurement in quantum mechanics. A preliminary
evaluation shows that these learning tools are effective in improving students understanding of
concepts related to quantum measurement.

I. INTRODUCTION

Issues related to measurement in quantum mechanics are very different from measurements in classical mechanics
and students usually struggle in learning about quantum measurement within the standard interpretation. In the
first of the two papers (Part 1, Ref.[1]), we describe the investigation of students’ common difficulties with quantum
measurement within the traditional interpretation which is universally taught to students. Based upon the findings of
the investigation, we have developed research-based learning tools to help students build a better knowledge structure
about quantum measurement. These research-based learning tools include Quantum Interactive Learning Tutorial
(QulLT) and peer-instruction tools such as concept tests similar to those popularized by Mazur for introductory
physics courses [2,3]. The QuILT for quantum measurement uses a guided inquiry-based approach [4] to learning and
helps students in discerning the coherence in the framework of quantum mechanics related to quantum measurement.
It can either be used as an in-class tutorial on which two or three students can work together with full class discussion
and instructor feedback as appropriate, or they can be given as homework supplements [5]. The concept tests can be
integrated with lectures and encourage students to take advantage of their peers’ expertise and learn from each other.

In this paper (Part 2), we will describe the development of the research-based QuILT and concept tests to help
students develop a good understanding of quantum measurement within the standard interpretation. We will also
discuss preliminary evaluation results of using these research-based learning tools in class. The QulLT and concept
tests related to quantum measurement were administered to students in the first semester of a full-year junior-
senior level quantum mechanics course. They strive to build on students’ prior knowledge, actively engage them in
the learning process and help them build links between the abstract formalism and conceptual aspects of quantum
physics without compromising the technical content. To assess the effectiveness of the QuILT and concept tests, we
administered the same assessment related to quantum measurement to the experimental group and a comparison group
in different but equivalent classes at two similar universities. The comparison group only had traditional lectures and
weekly homework in a similar two-semester quantum mechanics class in which the same textbook was used. Our prior
investigation shows that the students’ performance on surveys given in the upper-level quantum mechanics courses at
the two universities (experimental group and comparison group) were comparable when traditional instruction was
used at both institutions. We find that students who use research-based learning tools perform significantly better
than those who do not use them. Below, we elaborate on the research-based learning tools that the students used to
learn about quantum measurement.

II. PEER INSTRUCTION AND CONCEPT TESTS

In the peer instruction approach, students reflect with peers upon problems. Integration of peer interaction
with lectures has been popularized in the physics community by Mazur [2]. In Mazur’s peer interaction approach, the
instructor poses conceptual problems or concept tests in the form of multiple-choice questions to students periodically
during the lecture. The focal point of the PI method is the discussion among students, which is based on conceptual
questions; the lecture component is limited and intended to supplement the self-directed learning. The conceptual
multiple choice questions give students an opportunity to think about the physics concepts and principles covered in
the lecture and discuss their answers and reasoning with peers. The instructor polls the class after peer interaction
to obtain the fraction of students with the correct answer. Students learn about the level of understanding that is
desired by the instructor by discussing with each other the concrete questions that are posed as concept tests. The
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feedback obtained by the instructor is also invaluable because the instructor learns about the fraction of the class that
has understood the concepts at the desired level. This peer instruction strategy keeps students alert during lectures
and helps them monitor their learning, because not only do they have to answer the questions, they must explain
their answers to their peers. The method keeps students actively engaged in the learning process and lets them
take advantage of each others’ strengths. It also helps high-performing students, because explaining and discussing
concepts with peers helps students organize and solidify concepts in their minds.

Our prior research has shown that, even with minimal guidance from the instructors, students can benefit from peer
interaction [6]. In our study, those who worked with peers not only outperformed an equivalent group of students who
worked alone on the same task, but collaboration with a peer led to co-construction of knowledge. Co-construction of
knowledge occurs when neither student who engaged in the peer collaboration was able to answer the questions before
the collaboration, but both were able to answer them after working with a peer on a post-test given individually to
each person. For example, in our prior research [6], introductory physics students first answered the questions in the
Conceptual Survey of Electricity and Magnetism (CSEM) [7] individually after traditional instruction. Then, they
paired up and discussed the questions with their partners and answered the questions again in pairs. The fraction of
responses on each question that went from both incorrect individually to the correct response from the pair is 29%
and shows evidence for co-construction. Individual discussions suggest that students benefited from discussing their
doubts with their peers [6].

The classroom at the University of Pittsburgh (Pitt) in which quantum mechanics 1 was taught was equipped with
a clicker system so that students could submit their answers electronically. Students were actively engaged in the
peer discussion. The distribution of answers was displayed to the whole class after all the students had made their
choices following discussion with peers. The professor provided further explanations based upon students’ responses.

In the concept tests related to quantum measurement or its pre-requisite, we designed a sequence of multiple-choice
questions to address similar concepts in different contexts [8]. For example, some concept tests dealt explicitly with
how the identity operator can be written as a complete set of eigenstates of an operator corresponding to physical
observable with discrete or continuous eigenvalues (e.g., 3 |[n)(n| = I or [ |z)(z|dz = I ). Students learned how

n all
to write any state of the system in terms of a complete set of eigenstates by using this identity operator. They also

learned about calculating the probability amplitude for measuring a particular value for an observable by projecting
the state along the corresponding eigenstate of the operator as in the following concept test question:

e Suppose |1} is a vector in the Hilbert space which represents the state of the system at time t=0. |n) are the

eigenstates of the Hamiltonian operator H with eigenvalues E,, .Choose all of the following statements that are
correct.

(1) [9) = > [n)(nly)

(2) e M |y) = 37 e Ent/Rn) (n|y)

(3) If we measure the energy of the particle in the state |1} , the probability of obtaining E, is |(n|)|?.
A.1 only B.1 and 2 only C.1 and 3 only
D.2 and 3 only E.all of the above

All of the options in this question are correct. Option (2) reviews the necessity of writing the states as a linear
superposition of the energy eigenstates in order to determine the time evolution of the state. Option (3) helps students
consider the relationship between the probability of obtaining an energy eigenvalue and projecting the state vector
along the corresponding energy eigenstate.

The next concept test question helps students to review similar issues by writing the state vector as a linear
superposition of a complete set of eigenstates of position or momentum operators. In this case, the eigenvalue
spectrum is continuous. After answering the previous concept test question, students know that for a complete set
of eigenstates with discrete eigenvalues, > [n)(n| = I, so we ask them to generalize it to the continuous eigenvalue

n
spectrum cases which is a natural extension via concept test questions like the following;:

e 1)) is a vector in the Hilbert space which denotes the state of a quantum particle at time t=0. |x) and |p) are
the eigenstates of position and momentum operators. Choose all of the following statements that are correct.

(1) |9) = [ Ip)(pl¢)dp
(2) 1) = [ ¢(x)|z)dx
(3) If we measure the position of the particle in the state |1, the probability of finding the particle between x and x+dx
is |(a|)Pdz
A. lonly B.1land2only C.1and 3 only



D. 2 and 3only E. all of the above

The correct answer to the question above is F. As noted earlier, in this question, we changed the context from
the energy eigenstates to the position and momentum eigenstates. Students must think about how to replace a
complete set of eigenstates with discrete eigenvalues as the basis vectors with a complete set of eigenstates with a
continuous spectrum of eigenvalues. Options (1) and (2) can also help reinforce the wavefunction in the momentum
representation or the position representation. Option (2) reminds students that the wavefunction in the position
representation is the projection of the state |¢)) onto the position eigenstates, i.e., ¥(x) = (z|¢)). Option (3) helps
students consider the probability of position measurement in analogy with the probability of energy measurement in
the previous question. The comparison between the two questions can help students understand that for issues related
to the measurement of an observable, it is useful to expand the state of the system as a complete set of eigenstates of
the corresponding operator and then the absolute square of the expansion coefficient is related to the probability of
measurement. Another concept test related to measurement given to the students was the following:

e An operator Q corresponding to a physical observable Q) has a continuous non-degenerate spectrum of eigenvalues.
[tg) are eigenvectors of Q with eigenvalues q. At time t=0, the state of the system is |¥) . Choose all of the
following statements that are correct.

(1) A measurement of the observable QQ must return one of the eigenvalues of the operator Q
(2) If we measure Q at time t=0, the probability of obtaining an outcome between q and g+dq is |(14|¥)|?dgq.

+oo
(8) If we measure Q at time t=0, the probability of obtaining an outcome between q and q+dq is | [ ¢} (x)¥(z)dz|*dq

in which ¥q(x) and ¥(zx) are the wavefunctions corresponding to states |¢q) and |U) respectively.
A. 1 only B. 1 and 2 only C. 1 and 3 only
D. 2 and 3 only E. all of the above

As can be seen, this concept test question (with correct answer E) generalizes what students had learned in the
previous ones. Note that although all three questions listed above have the answer “all of the above”, this is not
the case for all of the peer instruction questions. These three questions were part of a sequence of concept tests
given to students on quantum measurement. The concept tests were used throughout the semester by the students in
the experimental group. We use these three concept test questions here to illustrate our strategies for designing the
concept tests as a sequence. The students’ understanding of quantum measurement in the experimental group partly
relied on the effectiveness of using concept tests as a peer discussion tool.

III. QUANTUM INTERACTIVE LEARNING TUTORIAL (QulLT) RELATED TO MEASUREMENT

The goal of the measurement QulLT is to build connections between the formalism and conceptual aspects of
quantum measurement without compromising the technical aspects [5]. The measurement QuILT can be implemented
in class so that two or three students work together on it. Or it can also be given to the students as homework or
self-learning materials [5,9].

The measurement QulLT builds on students’ prior knowledge and was developed by taking into account the difficul-
ties found in the written surveys and interviews. QulLT development went through a cyclical iterative process which
includes the following stages: (1) Development of the preliminary version based upon theoretical analysis of the un-
derlying knowledge structure and research on students” difficulties, (2) Implementation and evaluation of the QuILT
by administering it individually to students, measuring its impact on student learning and assessing what difficulties
remained, (3) refinement and modification based upon the feedback from the implementation and evaluation.

Individual interviews with students were carried out using a think-aloud protocol [10] to better understand the
rationale for their responses before, during and after the development of different versions of the QulLT and the
corresponding pre-test and post-test. During the semi-structured interviews, students were asked to verbalize their
thought processes while they answered questions about measurement either as separate questions before the prelim-
inary version of the QulLT was developed or as a part of the QuILT. Students were not interrupted unless they
remained quiet for a while. In the end, we asked them for clarification of the issues they had not made clear earlier.
Some of these interviews involved asking students to predict what should happen in a particular situation, having
them observe what happens in a simulation, and asking them to reconcile the differences between their prediction
and observation. After each individual interview with a particular version of the measurement QuILT (along with the
pre-test and post-test administered), modifications were made based upon the feedback obtained from the test results
and students’ performance on the QuILT (if students got stuck at a particular point and could not make progress from



one question to the next with the hints already provided, suitable modifications were made). When we found that the
measurement QulLT was working well in individual administration and the post-test performance was significantly
improved compared to the pre-test performance, it was administered in the quantum mechanics class.

The measurement QulLT uses computer-based visualization tools to help students build a physical intuition about
concepts related to quantum measurement [11-15]. The Open Source Physics program [16] was adapted as needed
throughout the measurement QulILT. This program is flexible and can be easily tailored to the desired situations.
In the measurement QulLT, after predicting what they expect in various situations, students are asked to check
their predictions using simulations. If the prediction and observations do not match, students reach a state of
disequilibrium and themselves realize that there is some inconsistency in their reasoning. At that point the QulLT
provides them appropriate guidance and support to help build a good grasp of relevant concepts and reconcile the
difference between their predictions and observations.

A. Warm-up exercises for the measurement QulLT

The measurement QuILT begins with warm-up exercises that students work on before learning from the QulLT. In
our research we found that some students have difficulties in understanding the basic concepts about eigenstates of
an operator corresponding to a physical observable. Therefore, we designed the warm-up to help students review the
concept of eigenstate and to help them understand that the eigenstates of all physical observables are not the same.
First, we let students differentiate the energy eigenstates and a possible wavefunction which was a linear superposition
of the energy eigenstates. Questions were also designed to help students understand that energy eigenstates satisfy
the time independent Schroedinger equation (TISE) but their linear superpositions with different energies do not. In
addition to the questions in verbal and mathematical representations that asked students to consider the differences
between the energy eigenstates and their linear superposition, one question asked them to select the energy eigenstates
from three pictorial representations as shown in Fig 1 (in which the first two were sinusoidal) for a 1D infinite square
well.

N
(1) (II) (1)

Fig 1. Pictorial question in the warm-up testing students’ understanding of the energy eigenstates for a 1D infinite
square well. (I) and (IT) are energy eigenstates but their superposition (III) is not.

Pictures (I) and (II) in Fig 1 correspond to the ground and first excited state wavefunctions 11 and ) respectively.
Picture (IIT) is one particular linear superposition of (I) and (II) (e.g., 1 + 12 ). The warm-up tutorial helps the
students learn that the energy eigenstates for this system are even or odd about the center of the well but their
superposition need not be. After the 1D infinite square well model, similar considerations were reinforced using the
simple harmonic oscillator (SHO) model. From these two models, students learned that the eigenfunctions of different
Hamiltonians have different shapes in position space but they satisfy the TISE for the respective systems because they
are states with definite energy. Students were required to summarize these characteristics of the energy eigenstates
after they studied these two examples in the warm-up.

The position eigenstate was also important in helping students understand the concept of an eigenstate and the fact
that not all eigenstates are energy eigenstates. Students were asked to draw a position eigenfunction in the position



space with an eigenvalue z or a particle interacting with an infinite square well or a finite square well. The warm-up
helps students recognize that unlike the energy eigenfunctions, the position eigenfunctions have the same shape for
all the 1D systems and their shape has nothing to do with the Hamiltonian of the system. In the warm-up, students
also learned about the mathematical representation of a position eigenfunction as a delta function in position space
and they were explicitly asked to compare the position eigenfunction and the energy eigenfunction in position space.
In one question, they were asked to consider the following statement and explain why they agreed or disagreed:

e “The position eigenstate and energy eigenstate are the same for a given system. After all, they are all eigen-
states.” Explain why you agree or disagree with this statement.

The warm-up helped students learn about the properties of eigenstates of the operators corresponding to different
physical observables. Students learned that eigenstates of different operators are different and they satisfy an
eigenvalue equation for that operator. They also learned that if the system is in an eigenstate of an operator
corresponding to a physical observable, that observable is well-defined in that state and its measurement will yield a
definite value with 100% probability.

B. Outcome of quantum measurement

The main measurement QulLT was divided into two sections. Omne deals with outcomes of measurement and
the probability of obtaining those outcomes whereas the other deals with time-evolution after the measurement. The
measurement QuILT begins with the basic model of a 1D infinite square well. For different states |1)1), %(Wﬁ +1b2))

and |U) = Y A,|1,), students predict what value they would obtain and what state the system would be in after
the measurement. After their prediction, they use a computer simulation (adapted from the open source physics
simulations) to examine their responses. If a student’s prediction is inconsistent with what he/she observes in the
simulation, there is a cognitive conflict which provides motivation to resolve the inconsistency [18]. Then the QuILT
provides guidance to students to help them reconcile the differences between their predictions and observations so
they can build a robust knowledge structure.
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Fig 2. Simulation program of the energy measurement on a superposition state (as shown in (a)) with two energy
eigenstate components (as shown in (b) and (c¢)). The vertical axis is the absolute value of the wavefunction (not the
probability density for position measurement) and the horizontal axis is the position x.

In the simulation, one example of an initial state is (|11) + [¥2))/v/2 whose absolute value in position space is shown
in Fig 2(a). The vertical axis is the absolute value of the wavefunction and the horizontal axis is the position. Our
research of students’ difficulties showed that some students mistakenly thought they may obtain the value (E; + Fs)/2
if they measure energy in the superposition of the energy eigenstates (|¢1) + [¢2))/v/2. In the simulation, students
can measure the physical observables of position, momentum and energy to examine the possible outcomes. In Fig
2(a), students can observe the shape of the absolute value of the superposition state (|11) + [¢2))/v/2 in position
space at time t=0. When the students measure the energy of the system, the state of the system may collapse to the
energy eigenstates |11) or |1)2) whose absolute values in position space are shown in Fig 2(b) and (c) respectively.

The students are also asked to reset the initial state and repeat the measurement process several times to check
whether the measurement yields the same result (the probability is 50% for obtaining |¢1) or |1)2)). Since the state
is a superposition of only two stationary states, it is possible for the students to obtain the same state after the
energy measurements. Therefore, the QulILT asked students what could happen if they measured energy in the state



> Ap|tn) whose absolute value in position space is shown in Fig 3, and which is a linear superposition of nine
stationary states [¢)1) or |1g) with equal probability. After predicting the probability of obtaining different values
of energy, students were asked to measure the energy, reset the system to the initial state and measure it again.
Since the probability of measuring the same energy is small for this superposition, students appreciated this example
while working on the QulLT. To ensure that the students understood the issues related to the energy measurement

in multiple contexts, the QulILT also incorporated questions for the SHO Hamiltonian.
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Fig 3. Simulation program of the energy measurement on a superposition state (as shown in (a)) with nine

energy eigenstate components. (b) and (c) are the examples of absolute values in position space of two basis energy
eigenstates of the superposition state.

Since the students have difficulties in differentiating between the energy eigenstates and the eigenstates correspond-
ing to other operators corresponding to physical observables, the measurement QulLT also helps students with issues
related to the position measurement with initial states similar to those for the energy measurement, e.g., 1D infinite
square well and SHO with the initial states |i1) or %(Wﬂ + |tb2)). Students first predict theoretically what state
they would obtain after a position measurement and then they use the simulation to check their prediction. In an
ideal position measurement, the state of the system would collapse to a delta function in position space at a position
where the probability of measuring the position is non-zero. As shown in the Fig 4, the initial state |11) collapses to
a broad peaked Gaussian packet (absolute value shown in position space) because of the computational limitations
in constructing a very peaked function. However, the QuILT uses this opportunity to help students recognize that a
delta function is a theoretical construction and the position measurement in real world situations, e.g., single particles
in double slit experiment landing on the screen, would have an uncertainty in position measured.
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Fig 4. Simulation program showing one possible outcome of the position measurement on an energy eigenstate (in
position space).

After predicting what should happen if they perform position measurements on a large number of identically
prepared systems, students are asked to reset the initial state of the system and repeat the position measurement.
They observe that the center of the collapsed wavefunction is generally different but its shape is always the same.
This notion is verified by the students in multiple contexts, e.g., for different quantum systems and different
initial states. Students are explicitly asked to compare and contrast what they learned from the measurements
of position and energy to help them understand better the outcomes of measurement for different physical observables.

C. Calculating the Probability of Measuring Different Values

In addition to helping students learn about the possible outcomes of a measurement, the QulLT also teaches students
how to calculate the probability of obtaining each outcome, which is a common difficulty for both undergraduate and
graduate students as shown in our research. In surveys and individual interviews, we found that most students
could find the probability of measuring different energies by observing the coefficients in an explicit superposition of
stationary states, e.g., \%(hﬁ) + |12)). In the QuILT, students first learn to interpret these coefficients by using the
projection of the initial state along an eigenstate of the operator corresponding to the observable measured. In a guided
approach, students learn to calculate the coeflicients of different energy eigenstates for cases where the wavefunction
may not be explicitly written as a linear superposition of stationary states. The QulLT also helps students make
connection between the Dirac notation form and integral form of the inner product (¢,|¥) = f Pi( z (a
common difficulty with the position representation is that students do not realize that there is an mtegral 1nv01ved
in writing (¢,|¥) in position space). Students are asked to infer the dimension (unit) of the inner product (¢,|¥)
and the physical meaning of |{1,|¥)|?>. These abstract inner products are calculated in concrete contexts, e.g.,
|¥) = %(W}ﬁ + |12)). Students learn that for this concrete case, for n > 3, the probability of obtaining energy F,, is

zero because the projection of the state |¥) along the eigenstate |1),,) is zero, i.e., (¢,|¥) = 0. After making sense of
the probability for measuring energy for state |¢)) = %(Wiﬁ + |1b2)), students calculate the probabilities of measuring

different energies for a general state |¥U) = > A, |¢,) which is explicitly written as a linear superposition of stationary

n
states. They can find that A,, = (1,,|¥) is the probability amplitude and |(1,|¥)|? is the probability of measuring
energy F,.
The QuILT then helps the students to understand that any possible state |¥) which is not explicitly written as
a linear superposition of a complete set of eigenstates of an operator corresponding to a physical observable, e.g.,
energy, could be written that way. For example, students are asked the following question.

e The orthonormal energy eigenfunctions ¢, (z) for a 1D infinite square well satisfy f V()Y (2)dx = S,

where 0y, = 1 when m = n, and d,,,, = 0 otherwise. Any state |¥) can be expressed as |¥U) = >~ A, |1,) because

n
|1,) form a complete set of vectors for the Hilbert space in which the state of the system lies. Find A,, in terms
of |¥) and |4),,) first in the Dirac notation form and then in the integral form in the position representation.

If the students did not have the mathematical skills to answer the question above, hints were provided, e.g., about
how to use the Fourier trick and multiply both sides of the expression ¥(z) = Y A, ¢, (z) by ¢}, (z)and integrate
over all space. Then students calculated the probability of obtaining FE,, for a concrete example of a triangle-shaped
wavefunction for a 1D infinite square well for which the wavefunction was not explicitly written in terms of a linear
superposition of energy eigenfunctions. Students further contemplated over these issues in multiple contexts such as
the SHO model.

The QuILT helps students learn that the probability of measuring other physical observables can be obtained by
projecting the state of the system along an eigenstate of an operator corresponding to a physical observable. They use
this projection method to analyze the probability density for position measurement. Earlier in the QulLT, students
had already learned that (i, |¥) = f i ( x)dz. They had also been asked to differentiate between an energy

eigenfunction 1 (z) = \/gsm(T) of a 1D mﬁmte square well and a position eigenfunction (x) = §(zr — x¢) with

eigenvalue xp. In the QulILT, students were explicitly asked to project the ground state of the system |¢1) onto the
+oo

position eigenstate |zo) with eigenvalue zo and interpret their result. [(zo|y1)|?> =] [ d(z—=z0)\/2/asin(rz/a)dz|? =
— 00

|\/2/asin(mzg/a)|? is the probability density for finding the particle at the position 2y. Moreover, by the definition of
wavefunction, |11 (2)|? = |(x|1)|? is the probability density for finding the particle at position 2. The QuILT required



students to assimilate the Born interpretation of the probability density for finding the particle with the method of
projecting the state vector along a position eigenstate.

After students had learned about the probability density for position measurement using the projection method,
the QuILT explicitly brings up a common difficulty they have in differentiating between the probability of obtaining
a particular value, the expectation value and similar looking expressions. For example, students are asked to consider
the following statement:

e If the initial state is |[¥) for a particle in a 1-D infinite square well, |(¢1|H|¥)|? is the probability of obtaining
energy when measuring the energy of the particle. Do you agree with this statement? Explain.

Students are given hints to consider the dimension (unit) of (¢1|H|¥) . They are also asked to consider the physical
meaning of (U|H|¥) and (¥|z|¥) (in terms of the average of a large number of measurements on identically prepared
systems). The warm-up tutorial had already helped students learn that the energy eigenstates |t¢,,) satisfy the TISE
H[¢y) = E,|tb,). By decomposing the general state |¥) into a linear superposition of |¢,), students can learn that
(1 |H|¥) = E1(31|¥) has the dimension of energy. They also contemplate over the fact that the expectation value
of the energy in state |¥) is the average of a large number of measurements on identically prepared systems, i.e.,
(U|H|¥) = > |An]?E,. In an analogous manner, they interpret the expectation value of position (¥|z|¥). Explicit
n

comparison of the expectation values with the measurement probabilities is designed to help students distinguish
between these related concepts.

D. Time Development of the System after Measurement

The second section of the measurement QulLT focuses on the time development of a quantum system after a
measurement. After an energy measurement, the system collapses into a stationary state and remains in that state
until another measurement is performed. If one were to measure, e.g., the position of the particle, the wavefunction
of the system will subsequently evolve in time. In the QulLT, the time-evolution of a quantum system after energy
and position measurement were explicitly compared to help students learn about the differences between stationary
and non-stationary states.

In the first section of the measurement QulLT, students learn about the possible outcomes of the energy measure-
ment in a 1D infinite square well for three different cases where the states of the system are |11), %(WJQ + [1)2))

and Y A,|t,) at time ¢ = 0 when the measurements are performed. At the beginning of the second part of the

n
measurement QulLT, we ask students about the possible values of the energy measurement if we started with the
same three initial states but performed the measurement at a time ¢ > 0. Also, they are explicitly asked to write
the states of the system right before the measurement in each case. For example, if the initial state is [11), the
wavefunction at time ¢ would be |1/)1>e*iE1t/ " which is still the ground state and the energy measurement will yield

the ground state energy E; with 100% probability. If the initial state is %(WJQ + 1)2)) the state of the system will

evolve into %(h/}l)e_mlt/h + |¢2>e_iE2t/h) after a time t. Thus, the probability of measuring energy is unchanged
(in this case 50% each for the ground and first excited state energies) even if the system is in a linear superposition
of stationary states. Many students correctly predicted that the energy measurement at time ¢ > 0 would yield the
same values F; and E5 as at time ¢t = 0 but they incorrectly justified it by saying that the wavefunction after a time
t is the same as that at time ¢ = 0. Students were asked to check their prediction with simulation showing the time
evolution of the absolute value of the wavefunction with two energy eigenstate components. After they observed that
the shape of the absolute value of the wavefunction changes with time as shown in Fig 5, contrary to their initial
prediction, they tried to examine the state of the system at time ¢ > 0 to resolve the inconsistency between their
prediction and their observation.
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Fig 5. Time evolution on a superposition state with two energy eigenstate components. (a) is the absolute value
of the initial state wavefunction and (b) and (c) are the absolute values of the wavefunction at different times. The
phases of the wavefunction are represented by different colors.

Students were also asked to repeat the measurement of energy at different time, e.g., t=2 or 3 units after resetting
the system to the same initial state after each measurement. They realized that the system only collapsed into
[t1) and |t2). At this point, the QuILT helped them reason systematically about why the probability of measuring
different values of energies does not change with time even though the shape of the wavefunction changes with time
for the state |W) = %(Wl)e—“ﬂlt/h + [ahg)e B2t/

Some students held the misconception that the state of the system after the measurement would eventually go back
to the initial state before the measurement. In the QulLT, students observed the time evolution of the wavefunction
after the energy measurement and found that the system stays in the stationary state in which it collapsed (|¢)1) and
|12)) ,as shown in Fig 6(b) and (c) as absolute values in position space, instead of going back to the initial state which
is a linear superposition of these states. Students predict and then perform the same sequence of activities with a
more general state |U) = > A,|t,) in position space in which more than two coefficients are non-zero. They learn
that the wavefunction in this superposition state keeps changing shape with time but the system collapses to one of
the energy eigenstates and remains there after the measurement of energy. The QulLT helps the students understand
that while the measurement instantaneously collapses the wavefunction, the wavefunction after the measurement
evolves in time in a deterministic manner according to the time-dependent Schroedinger equation (TDSE). Moreover,
comparison of the time evolution of an energy eigenstate |1,,) (after the measurement) and a general state which is
a linear superposition of stationary states (before the measurement) in position space helps build intuition about the
meaning of stationary states and non-stationary states.
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Fig 6. Energy measurement on a superposition state with two energy eigenstate components after time ¢ > 0. (a)
is the superposition state before the energy measurement. (b) and (c) are the two possible outcomes of the quantum
measurement.

Many students held the misconception that, after the position measurement, the position eigenstate does not change
with time and the system is stuck in a position eigenstate. In the QulLT, students are asked to use the simulation
after their initial prediction of what should happen when they perform a position measurement starting from a general
state. In an ideal measurement, at the instant the position is measured, the wavefunction of the system will collapse
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to a delta function §(z — x¢) as shown in Fig 7(a). The position eigenfunction can be written as a linear superposition
of the energy eigenfunctions, i.e., ¥(z,t = 0) = é(x — x9) = > Aptn(z). Different energy eigenstates will have their

n
own time-dependent phase factors and the wavefunction ¥(z,t) would not be a delta function §(z — xg) except at
some special times. Fig 7(b) and (c) show selected snapshots of the time evolution of the absolute value of the position
eigenfunction.
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Fig 7. Time evolution of the position eigenfunction. (a) is the position eigenfunction right after a position
measurement. (b) and (c) are the wavefunction of the system at later times after the position measurement.

Besides the pictorial representation in the simulations, the QulLT helps students learn to interpret the time evolution
of wavefunction via the TDSE and discern the central role of the Hamiltonian of the system in the evolution. The
following is an example of a question that students are asked:

e Given the wavefunction at time ¢t = 0, why is it useful to write the state of a quantum system as a superposition
of energy eigenstates to find the wavefunction after time ¢?

Students must realize that the Hamiltonian governs the time evolution of the system according to the TDSE so the
eigenstates of the Hamiltonian are special for issues related to the time evolution of the wavefunction. Help is provided
at the end of the QulLT if students are struggling with these issues.

Though students learn formally that the position eigenstate is not a stationary state, some of them still held the
misconception that the position eigenstate after a position measurement would finally return to the initial state,
e.g., (|¥1) + [¥02))/v2. The simulation is helpful in confronting this mistaken belief. The students observe that the
delta function does not remain a delta function as shown in Fig 7 (although there is revival of the delta function
periodically for a 1D infinite square well). They perform a systematic analysis of the time-dependence of wavefunction
starting with a delta function to convince themselves that the state will never go back to the state right before the
measurement, i.e., (Ji1) + [¢02))/+v/2. Since the delta function (2 — xo) contains non-zero coefficients A,, for higher
energy eigenstate wavefunction 1, (z) (n > 2), the probability of measuring these higher energies |A, e ~*#»*/"|? would
never be zero. Therefore, the system cannot return to the state (|11) + |1)2))/v/2 after the position measurement, no
matter how long the wait.

It is important that students learn whether the probability of obtaining different energies or positions change with
time. For a general wavefunction ¥(z,t) = > Aptppe Ent/h ot time t, the probability of obtaining F,, in an energy

n
measurement is a constant |A,e"*#nt/"|2 = |4, |? independent of time. However, when position is measured, the

probability of finding the particle at = = zo is |¥(x,t)|> = |3 Apthn(x)e Frt/" |2 which depends on time. This

non-trivial time-dependence of the probability of position measurement can be observed in the simulation since
the shape of wavefunction keeps changing with time. The QulLT helps students learn to distinguish between the
time-dependence of the probability of measuring energy and position through a concrete example of the wavefunction
%[@/Jl(x)e_iElt/h —I—wz(;v)e_iEzt/h].

E. Consecutive Measurements

After students learned about how to analyze the time evolution of the wavefunction according to the TDSE after
the measurement of a physical observable, the related concepts were reinforced by asking them questions about
consecutive measurements. For example, students were asked about the possible outcomes of an energy measurement
after a position measurement in the state % (l1) + |¥2)). Some students incorrectly claimed that one can only obtain
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energies 7 or F». However, since the position measurement will collapse the system to a position eigenstate which
is a superposition of the energy eigenstates |¢,) (including those corresponding to very high energies), the energy
measurement that follows the position measurement could yield a very high value E,,. After the prediction, students
use the simulation in position space to check their prediction and find that the wavefunction could collapse to an
energy eigenstate 1, with n > 3 as shown in Fig 8. Students are also asked to calculate the probability for measuring
different energy values.

"9 QM Posiion Space Wave Function S =) [aieiam| | QM Positon Space Wae Fincion I JI M| (" qu positon Space Wave rurciion [ "=
File Display Tools Help File Display Tools Help File Display Tools Help
1.0 e e 1.0 . —— 10 I
08k 1 08 asl
i 08+ e — 1 - natr
a7k I - i 0r a7k
| 06 1 06 ael
l E 0.5 E 05 Fospo L I I —
04 04 naf L - — :
03 0.3 aal ik
vz 0z | Gl | | L | | l
I oaf 04 0. | "
0 i | 0 | i
- 0 S R g TE 3 45 | 5 4 -3 2 4 0 1 2 3 & 5 |
=] | i =]
| 3 || 4 || B | | Measure | ® x O p O E i ‘ 13 H ir H hn | ‘ Measure | @x Op OE || | 13 || 3 || & | | Measure | Ox Op ®E ‘

Fig 8. Energy measurement after a position measurement of the initial state with only two energy eigenstate
components n=1 and n=2 as shown in (a). Following the position measurement in (b), the energy measurement
yields the energy eigenvalue with n=>5 as shown in (c).
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Fig 9. Consecutive position measurement in quick succession (a and b) /after waiting for some time (c and d)

Students are also asked to predict what would happen if they made two consecutive position measurements quickly
so that the wavefunction does not have the time to evolve. In the simulation, they find that when the second
measurement was made immediately after the first measurement, the particle is found approximately at the same
position since the wavefunction does not have the time to evolve. On the other hand, the wavefunction would not
be a peaked delta function if we waited for some time before performing the second measurement and we can find
the particle at a different position. The simulation provides the flexibility of stopping or starting the time evolution
at any point (or even stepping through time-evolution slowly) so that students can note the differences between the
consecutive position measurements performed in quick succession as shown in Fig 9(a) and (b) vs. slowly as shown
in Fig 9(c) and (d).

IV. PRELIMINARY EVALUATION

We designed a pre-test and a post-test to assess some issues related to measurement after the traditional
instruction, after concept tests related to measurement (pre-test) and after working on the measurement QulLT
(post-test). To eliminate any possible differences in the difficulty levels of the pre-test and the post-test, we divided
the tests into two versions, i.e., Test A and Test B. Test A and Test B both had two multiple choice questions (Q1
and Q2) and four open-ended questions (Q3-Q6). We randomly assigned Tests A and B when we distributed the
pre-test and post-test to students in both the comparison group and the experimental group. In the experimental
group, students who obtained Test A in the pre-test were given Test B in the post-test and vice versa.
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TABLE I: The pre-test and post-test scores on each question of Test A. The concepts involved in each question are shown in
italic.

Test A| Comparison |Experimental Group Experimental Group
Group (15) Pre-test (15) Post-test (15)
Traditional | Lecture & Concept Lecture & Concept

Lecture Only Test Test & QulILT

Q1 whether a wavefunction is an energy eigenstate
13% | 67% | 87%

Q2 energy measurement outcomes of a superposition state
40% | 93% | 100%

Q3 |sketch the shape of a position eigenstate and find the probability
31% | 7% | 87%

Q4 probability of energy measurement
3% | 62% | 7%

Q5 consecutive position measurement after position measurement
3% | 78% | 100%

Q6 consecutive energy measurement after energy measurement
53% | 70% | 93%

The comparison group students only had traditional lectures in class and regular homework problems from the
textbook. Students in the comparison group took the test at the end of their first semester quantum mechanics course
when all the topics about quantum measurement had been taught. The class average (25 students) was 26% including
both Test A and Test B. The experimental group students had been using the concept tests as a peer instruction
tool in class since the first day of the semester. The pre-test was given to the students after the lecture and the
average score for 31 students was 76%. The experimental group students were given the QulLT as homework after
being administered the pre-test in class. When they turned in the QulLT as homework, they were administered the
post-test. Their post-test average score was 91% for 29 students (2 students absent in the post-test).

To analyze students’ understanding of different concepts and principles in quantum measurement, we calculated
the percentage of correct responses for each question in Test A and Test B as listed in Table 1 and Table 2. The
numbers in the brackets represent the number of students who answered that question. The concepts involved in
each question are also shown in the Tables.

From Q1 in Test A and Q2 in Test B, we observe that the concept tests in class resolved many of the students’
difficulties related to the difference between the stationary states and the eigenstates of the operators corresponding
to any physical observables. Q4 in Test A and Q3 in Test B suggest that after the research-based learning tools,
students can better apply the projection method to calculate the probabilities of measuring a physical observable.
When answering Q3 in Test A and Q4 in Test B after using the concept tests and the QuILT, students also showed
improved interpretation of the shapes of the eigenfunctions for different operators corresponding to different physical
observables. For the questions related to the time development of the wavefunction after a measurement, e.g., Q6
in both Test A and B, the QulLT led students to a better performance compared to when they used the concept
tests only. Also, the QulILT helped the students have an improved understanding of the measurement outcome and
the properties of the corresponding eigenstate. After learning the QulLT, more students could correctly answer the
questions related to consecutive measurements such as Q5 in both Test A and B. Due to the limitation of sample size,
individual performance might affect the average score on each question. However, the effectiveness of the concept
tests and QulLTs in improving students’ performance is reflected by the difference in the overall performance of the
experimental group and the comparison group.
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TABLE II: The pre-test and post-test scores on each question of Test B. The concepts involved in each question are shown in
italic.

Test B| Comparison |Experimental Group| Experimental Group
Group (10) Pre-test (16) Post-test (14)
Traditional | Lecture & Concept Lecture & Concept

Lecture Only Test Test & QulLT

Q1 |what state will the system be in after a quantum measurement
50% | 69% | 86%

Q2 what is a stationary state
0% | 75% | 79%

Q3 energy measurement outcomes and probabilities
15% | 97% | 100%

Q4 sketch the shape of an energy eigenstate
35% | 88% | 96%

Q5 consecutive position measurement after energy measurement
10% | 66% | 89%

Q6 consecutive energy measurement after position measurement
0% | 66% | 93%

V. SUMMARY AND CONCLUSION

Students have common difficulties in learning the issues related to quantum measurement. We have developed
the research-based learning tools such as the QuILT and concept tests to improve students’ understanding of quantum
measurement concepts. Both these learning tools keep students actively engaged in the learning process. They provide
a guided approach to bridge the gap between the quantitative and conceptual issues related to quantum measurement,
help students connect different concepts and build a knowledge structure. Our preliminary results show that these
learning tools are effective in improving students’ understanding about quantum measurement.
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