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a b s t r a c t

In this paper, we extend a class of micromechanical damage models by including initial stresses. The pro-
posed approach is based on the solution of the Eshelby inhomogeneous inclusion problem in the presence
of a pre-stress (in the matrix), adapted for elastic voided media. The closed form expression of the cor-
responding energy potential is used as the basis of various isotropic damage models corresponding to
three standard homogenization schemes. These models are illustrated by considering isotropic tensile
loadings with different initial stresses. Finally, still in the isotropic context, we provide an interpretation
of the macroscopic damage model formulated by Halm and Dragon (1996) by briefly connecting it to the
present study.

� 2009 Elsevier Ltd. All rights reserved.

1. Introduction

The mechanical behavior of engineering materials and in partic-
ular geomaterials are significantly affected by the presence of voids
or crack-like defects. The modeling of such behavior is classically
performed by considering purely macroscopic or micromechani-
cally-based damage models (see for instance Andrieux et al.,
1986; Halm and Dragon, 1996; Krajcinowic, 1996, etc.). Recent
developments in homogenization of microcracked media provides
now physical and mathematical arguments for the description of
damage-induced anisotropy, as well as crack closure effects
(Pensée et al., 2002; Dormieux et al., 2006). The above models have
been applied for geomaterials including concrete or rock-like med-
ia. However, except an interesting attempt to incorporate damage-
induced residual stresses by Halm and Dragon (1996) in the con-
text of purely macroscopic modeling, most of the damage models
proposed in literature are not generally able to account for
in situ initial stresses which are crucial in geomechanics (tunnel-
ing, compaction of petroleum reservoir, waste storage. . .). It is con-
venient to emphasize that pre-stresses in geotechnical problems
can also originate from the loading conditions (gravity in most
cases), and as such, should be handled at the macroscopic scale.
In the present work, no attempt is done to account for these kinds
of pre-stresses which are different in nature from those introduced

by means of homogenization techniques as components of the
material behavior.

In the above-mentioned applications, initial stresses, which ap-
pear as in situ stresses and exist before any underground excava-
tion, can have a magnitude of several MPa. Mainly from the
perspective of concerned applications in geomechanics,1 it is desir-
able to formulate a micromechanical model and determine how ini-
tial stresses affect the response of material sustaining damage by
voids growth. Before presenting the developments in the present
study, it is convenient to note that although the use of the concept
of pre-stress in the context of mechanical damage modeling with
pre-stress is at several aspects original, various micromechanics-
based works dealing with poroelastic damage, strength and/or poro-
plasticity already exist in literature (see for instance among others
(Dormieux et al., 2001; Barthélémy and Dormieux, 2004; Dormieux
et al., 2006; Maghous et al., 2009, and references cited herein).

The main purpose of the present study is to derive from homog-
enization techniques a new class of micro–macro damage models
which incorporates initial stresses and couples them to an evolving
damage. Simple examples highlight the role of the homogenization
scheme in this coupling. Finally, on the basis of the present study,
an interpretation of the macroscopic damage model formulated by
Halm and Dragon (1996) will be provided.
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1 Many other domains of applications include damage of quasi brittle materials
such as ceramics or brittle matrix composites in which initial stresses can be induced
by the formation process. Damage in porous bone is also concerned (Lennon and
Prendergast, 2002).
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2. Principle of the modeling including initial stresses

Consider a representative elementary volume (rev, X) made up
of a solid matrix s (occupying a domain Xs) and a family of inhomo-
geneous inclusions denoted I and occupying a domain XI . The ma-
trix and the inclusions are considered to behave elastically.
Moreover, an initial uniform stress field r0 is assumed in Xs. The
quantity z denotes the vector position, n the displacement vector,
and E the macroscopic strain tensor. The rev is subjected, as classi-
cally, to uniform strain boundary conditions:

@X : n ¼ E � z ð1Þ

A convenient way to formulate the problem of homogenization
with initial stresses in a unified way is to consider the stress tensor
field rðzÞ, everywhere in the rev, in an affine form:

ð8z 2 XÞ rðzÞ ¼ CðzÞ : eðzÞ þ rpðzÞ ð2Þ

where CðzÞ is a heterogeneous stiffness tensor, and rpðzÞ a pre-
stress tensor such as:

CðzÞ ¼ CI in ðXIÞ
Cs in ðXsÞ

(
rpðzÞ ¼ r0 in ðXsÞ

0 in ðXIÞ

�
ð3Þ

In this form, the problem can be solved by using the classical Levin’s
theorem (Levin, 1967) (see also Laws, 1973). This yields the follow-
ing constitutive equation (see Dormieux et al., 2006 in a general
context of poroelasticity):

R ¼ Chom : Eþ rp : A ð4Þ

in which the overbar represents the average of any considered
quantity over the rev. The fourth order tensor A is the so-called het-
erogeneous strain localization tensor which relates the microscopic
strain tensor and the macroscopic strain tensor E in absence of ini-
tial stress: eðzÞ ¼ AðzÞ : E. Tensor Chom is the macroscopic stiffness
tensor which can be obtained from any homogenization scheme
of the standard linear elasticity (e.g. without prestress), and R is
the stress averaged over the rev, i.e. R ¼ rðzÞ

Recalling that, the prestress is null in XI and is equal to r0 in Xs,
it is readily seen that:

R ¼ Chom : Eþ ð1�uÞr0 : As ¼ Chom : Eþ r0 : ðI�uAIÞ ð5Þ

As and AI are the averages of concentration tensor over the matrix
and the inclusion phase, respectively. u denotes the volume frac-
tion of the considered inclusions, i.e. the porosity when dealing
with voided materials (as it will be the case in Section 3). Since
Chom ¼ Cs : ðI�uAIÞ, (5) can be also put in the form:

R ¼ ðCs : Eþ r0Þ : ðI�uAIÞ ð6Þ

Eq. (6) shows how the initial stress simply combines with Cs : E in
the expression of the macroscopic stress of the heterogeneous
material.

3. A basic isotropic damage model accounting for initial stress

We consider now a rev constituted of an elastic matrix and
voids; the matrix is still submitted to the uniform initial stress
r0. The main purpose of this section is to micromechanically derive
a simple elastic damage model due to void growth. To this end, the
localization tensor Ap corresponding to the pores is required. Obvi-
ously, the expression of Ap depends on the considered homogeni-
zation scheme: for the matrix/inclusion morphology studied here,
an Hashin–Shtrikhman upper bound is appropriate, while the di-
lute scheme is restricted to very low porosities u ¼ up. For sim-
plicity, spherical voids will be considered in the following and
the porosity will then play the role of scalar damage variable for

the isotropic medium. For convenience, this scalar damage variable
will be denoted d, as in standard literature. For completeness, the
formulation of the elastic isotropic damage model with initial
stresses, will be done also using the first order bound of Voigt; this
corresponds to an extension of the standard Lemaı̂tre-Chaboche
model (Lemaitre and Chaboche, 1990) (see also Marigo, 1985).

3.1. An energy approach of the isotropic damage in presence of initial
stress

We start from the definition of the potential energy of the solid
phase with prestress, WðE; dÞ ¼ 1

2jXj
R

Xs e : Cs : edVz þ r0
1
jXj
R

Xs edVz,
which reads:

WðE; dÞ ¼ 1
2

E : ChomðdÞ : Eþ r0 : ðI� dApÞ : E ð7Þ

and corresponds to the first state law (5), rewritten here in the
form:

R� r0 ¼ Chom : E� dr0 : Ap ð8Þ

AI being now denoted Ap.
The second state law gives the damage energy release rate F d

(obtained as the negative of the derivative of W with respect to d):

F d ¼ � @W
@d
¼ �1

2
E :

@Chom

@d
: Eþ r0 : Ap þ d

@Ap

@d

� �
: E ð9Þ

This clearly shows that F d is a priori affected by the initial stress
through combination with the damage variable. Moreover, it
strongly depends on Ap and then on the chosen homogenization
scheme. The next step for the derivation of the damage model is
the consideration of a damage yield function. Following Marigo
(1985), the yield function is taken in the form:

f ¼ F d �RdðdÞ ¼ 0 ð10Þ

Which reads:

f ¼ �1
2

E :
@Chom

@d
: Eþ r0 : Ap þ d

@Ap

@d

� �
: E�RdðdÞ ¼ 0 ð11Þ

Assuming the normality rule, _d ¼ _K @f
@Fd ¼ _K yields:

_d ¼ ðC0hom : E� XÞ : _E
1
2 E : C0hom : EþR0dðdÞ � Y

ð12Þ

in which

X ¼ r0 : ðAp þ dA0pÞ and Y ¼ r0 : ð2A0p þ dA00pÞ : E ð13Þ

This equation explicitly shows that, in addition to modifying the
damage yield function, r0 affects also the rate of damage.

The rate form of the damage law is:

_R ¼ Chom
t : _E ð14Þ

with

Chom
t ¼

Chom ðif f < 0 or if f ¼ 0 and _f < 0Þ
Chom � ðC

0hom :E�XÞ�ðC0hom :E�XÞ
1
2E:C0hom :EþR0dðdÞ�Y

ðif f ¼ 0 and _f ¼ 0Þ

8<
: ð15Þ

In summary, note that that the initial stress r0 affects not only the
state laws of the damaged material, but also the elasticity domain of
the model (see the damage yield function), as well as the rate of
damage and the tangent operator Chom

t of the extended constitutive
law.
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3.2. Illustrations of the isotropic damage model based on an Hashin–
Shtrikman upper bound

For purpose of illustration, we consider for the elastic damaged
medium the well known Hashin–Shtrikman upper bound which
appears to be the most adapted homogenization model for the
studied rev. The corresponding localization tensor of the spherical
voids phase reads:

Ap ¼ A
p
HS ¼ I� Sð Þ�1 : ð1� dÞIþ d I� Sð Þ�1

� ��1
ð16Þ

where S is the well known Eshelby tensor associated to spherical
inclusions in an isotropic elastic solid matrix (Cs ¼ 3ks

Jþ 2lsK, ks

and ls being the bulk modulus and the shear modulus,
respectively):

S ¼ SAJþ SBK with SA ¼
3ks

3ks þ 4ls
and SB ¼

6ðks þ 2lsÞ
3ks þ 4ls

ð17Þ

It follows that the energy potential, given by (7), can be put in the
form:

W ¼ WHS ¼ 1
2

E : ChomðdÞ : Eþ vtrðr0ÞtrðEÞ þ jEd : rd
0 ð18Þ

where v ¼ 1� d
1�ð1�dÞSA

and j ¼ 1� d
1�ð1�dÞSB

. Ed and rd
0 represent the

deviatoric parts of E and rd
0, respectively.

It is recalled that Chom ¼ Cs : ðI� dA
p
HSÞ.

For simplicity, following Marigo (1985), an affine function
RdðdÞ ¼ h0ð1þ gdÞ is adopted in what follows. This choice, to-
gether with the expression of the potential (18), put in the meth-
odology described in subsection 3, allows to build the complete
constitutive damage law with initial stress and based on Hashin–
Shtrikman upper bound.

As mentioned before, for completness and for purposes of com-
parison, we consider two other homogenization schemes: the Voi-
gt model (which coincides with a standard damage model, namely
the one of Lemaitre–Chaboche) and the dilute scheme. The corre-
sponding localization tensors are, respectively:

� For the Voigt assumption, Ap ¼ I; this corresponds to the well
known Lemaitre-Chaboche damage type model (Lemaitre and
Chaboche, 1990) for which Chom ¼ ð1� dÞCs. Just for conve-
nience, note that the energy potential associated with this
model is obtained by puting SA ¼ 0 and SB ¼ 0 in (18).

� For the dilute scheme, A
p
dil ¼ ðI� SÞ�1. This leads to:

W ¼ Wdil ¼ 1
2

E : ChomðdÞ : Eþ 1� d
1� SA

� �
trðr0ÞtrðEÞ

þ 1� d
1� SB

� �
Ed : rd

0 ð19Þ

in which the homogenized stiffness tensor reads Chom ¼ Cs : ðI�
dA

p
dilÞ.

Note that for these last two models, A0p ¼ 0 and A00p ¼ 0 which
makes them relatively simple compared with the Hashin–Shtrik-
man bound-based damage model.

As simple illustrations, an isotropic macroscopic tensile loading
path ðR ¼ R1Þ is considered as well as an isotropic fixed initial
stress field ðr0 ¼ r01Þ. Simulations are performed with the follow-
ing data: matrix Young modulus Es ¼ 100

3 GPa, Poisson ratio of the
matrix ms ¼ 0:23, h0 ¼ 104J=m2 and g ¼ 32. For the isotropic tensile
loading path, the macroscopic response (E ¼ E1, the quantity E
being a scalar) predicted by the model based on the Hashin–Shtrik-
man bound is shown on Fig. 1. The considered values of r0 are indi-
cated on this figure. It is observed that the magnitude of the initial

stress r0 clearly affects the overall response of the material under-
going damage: yield stress, peak stress, stress–strain curve. A
residual strain (corresponding to R� r0 ¼ 0), related to the
amount of the damage, is observed. In a dual manner, one can ob-
serve a residual stress at zero strain. r0 also influences the soften-
ing regime: the material seems to be more softened when the
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Fig. 1. Hydrostatic curve response predicted by Hashin–Shtrikman upper bound-
based model.

0 0.25 0.5 0.75 1 1.25 1.5 1.75 2

x 10
−3

0

0.05

0.1

0.15

0.2

0.25

0.3

E

d

σ
0
 = 0

σ
0
 = 5MPa

σ
0
 = 10MPa

Fig. 2. Damage evolution under hydrostatic loading predicted by Hashin–Shtrik-
man upper bound-based model.
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tensile residual stress increases. The damage evolution associated
with the obtained response is shown on Fig. 2. It appears that
the damage evolution is slightly affected by r0.

Fig. 3 shows a comparison between the three micromechanics-
based damage models for r0 ¼ 5 MPa. The corresponding damage
evolution is given on Fig. 4. It is readily seen that the homogeniza-
tion scheme plays an important role in the prediction of the dam-

age model. In particular, the Lemaitre–Chaboche damage model
predicts a significant softening regime due to important damage
growth, while the dilute scheme predicts a very brittle macro-
scopic response. For the Hashin–Shtrikman (HS) upper bound, a
less softened response is noted. These observations are confirmed
by the comparison of the damage growth predicted by the three
models. It must be emphasized that, in contrast to the Lemaitre–
Chaboche type model, the results predicted by the dilute
scheme-based model as well as the one by HS bound crucially de-
pends on the value of the Poisson ratio ms of the matrix.

3.3. Connection with an existing model

It is interesting to connect the proposed approach to existing
macroscopic damage models dealing with initial stresses. In partic-
ular, the anisotropic model proposed by Halm and Dragon (1996) is
considered in the following. The restriction of this model to the
case of an isotropic damage leads to the following energy
potential:

W ¼ WHD ¼ 1
2

E : ChomðdÞ : Eþ g dtrE ð20Þ

where by adopting the notations introduced by Halm and Dragon
(1996) (a and b being two model parameters), one has:

Chom ¼ 3ks þ ð6aþ 4bÞd
� �

Jþ 2ðls þ 2bdÞK ð21Þ

As this model predicts a linear dependence of the macroscopic elas-
tic coefficients (bulk and shear moduli), it is comparable to the one
associated with the dilute scheme. However, the contribution de-
scribed by the mean of the term g dtrE is generally smaller than
the one obtained in the present study for the dilute scheme-based
constitutive damage law. In particular, it can account only for the
effect of isotropic initial stresses.
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