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1 Static Hamilton-Jacobi equations
This paper concerns methods for simulating monotonically propagating fronts modelled
by static Hamilton-Jacobi equations. A general formulation of such equations is

H(x,VT(x)) =1, o
1
T(x)=g(x) VxeT,

where g(x) represents initially given values at points in the set I', and the Hamiltonian H
is here assumed Lipschitz continuous and convex in VT'. The unknown entity, T, can be
thought of as a generalised distance field, as well as the time of arrival of a monotonically
expanding front. Usually, g(x) = 0 which means that I" represents the object from which
the generalised distance should be computed. Static Hamilton-Jacobi equations are known
to often have multiple-valued solutions, in that a point in the domain may have several
values simultaneously. The viscosity solution of the static Hamilton-Jacobi equations is
also the minimal distance value, that is the first time of arrival [1]. In some applications,

the multiple-valued solutions can be important [2]. However, in many applications it is
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enough to solve for the viscosity solution of the equation. In this paper we solve solely for
the viscosity solution.

1.1 A mathematical framework for propagating fronts

The solution T of (1) can be thought of as the time of arrival of a wavefront that propagates
through a domain. More generally, the ¢-isosurface of T shows the position of the front
at time ¢. The ¢-isosurface can also be regarded as the generalised ¢-distance from I, that
is, solution values are increasing away from I'. In a front propagation setting, equation (1)
is often formulated as V||VT|| = 1, where the scalar V is the speed at which the front is
moving in the direction normal to the front. At every point, V is greater or equal to 0,
with equality implying that the front never reaches the point. If the speed is independent
of the direction the front is moving in, the front propagation is said to be isotropic. The
isotropic eikonal equation is important in many applications and is formulated as

FX)| VT =1 (2)

For the special case of F =1 and g(x) = 0, the viscosity solution of the eikonal equation is
the minimal Euclidean distance to I'.

The problem is anisotropic if the rate of increase of T values changes with the direction
it is measured in. There is a clear causality interpretation of a propagating front since the
current motion does not depend on future events. In other words, smaller values of T
are independent of larger T values, which imply that the discrete solution representing T
should be computed in increasing order. In the isotropic eikonal case this causality obser-
vation can be directly translated to discrete nodal values. However, for the more general
anisotropic case a similar discrete interpretation is not valid [3], and anisotropic problems
are therefore more complicated to solve. The algorithms developed in this paper have been
applied to both isotropic eikonal formulations and to anisotropic problems of the form (3).

Most formulations of static Hamilton-Jacobi equations are nonlinear, and the compu-
tations needed for updating the solution in a grid node are expensive in terms of both
floating-point operations and logical branching. The amount of computations needed can
be decreased by updating nodes in different orderings.

In the following section we give a brief overview of solution algorithms. For a more
complete algorithmic overview the reader is to [4] and references therein.

1.2 Applications

Many physical phenomena can be described by a propagating front. A front can for ex-
ample describe an interface between different objects or fluids (multi-phase flow) [5], a
shock wave [6], or the arrival of a wave [7]. In this work, the front is assumed mono-
tonically expanding, like a wildfire spreading only to unburned grounds. Monotonically
expanding fronts can be entirely described by the time of arrival of the front to all points
in the domain. Applications requiring fast simulations of monotonic front propagations
include medical tomography [8], simulation of cardiac activation times [9], segmentation
of images [10], and seismic wave propagation [11]. Shorter computing times may result in
faster and more accurate models since one can afford to better explore parameter ranges,
and thereby the model uncertainty. As a result, faster methods can provide further insight
into the underlying physical problems. In this paper, we focus on the development of new
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efficient algorithms. For a proper introduction to front propagation and a range of appli-
cations, see [1]. The application initiating the research presented in this paper is from a
software project developed by Statoil ASA and Kalkulo, and is presented in the following
paragraph.

The compound earth simulator

Structural restoration and reconstruction is a methodology for building and improving
structural models of subsurface geology. The Compound Earth Simulator (CES) is a soft-
ware in which large three dimensional models can be transformed between different struc-
tural states [12]. Generalised distance fields are needed in the transformations of the geol-
ogy and to deposit the layers. The generalised distance fields are given from the following
static Hamilton-Jacobi equation,

F|VIX)| +¢(a-VTx) =1, xeg, 5
3
T(x)=ty, Vxerl.

Here, Q2 is the computational domain, I'y is the surface of a geological layer (horizon), and
a is a unit vector. Geological volumes are transformed repeatedly in the workflow [13]. For
the software to be user friendly, the distance fields must be computed rapidly while still
being accurate.

In this paper, software is said to be interactive if the delay due to computations is of
the order of a few seconds at the most. Some of the available algorithms are fast enough
for interactive use in two spatial dimensions. This is not the case in three dimensions,
since the number of nodes and the nodal update cost increase significantly. A case study
of geological folding based on structures extracted from offshore seismic data, is included
in the numerical experiments reported in this paper. The methods presented in this study
enables interactive high-resolution restorations in three dimensions.

The ray equations

Characteristic curves are paths along which ‘particles’ on the front are pushed forward,
as well as lines along which distances are measured. Let x(s) = (x,y,z)(s) denote a char-
acteristic curve parameterised by the scalar s. Characteristic curves are often referred to
simply as characteristics. The solution 7 is strictly increasing along characteristics that
are perpendicular to the moving front. The characteristic equations can be formulated on
basis of (1) as

dx
g = va(p’ X), (4)
P _ g Hip.) (5)
ds

where p= VT, V, = (3/0x,0/3y,3/3z)T, and Vp =(3/0T%,3/3T), 3/0T,)T [14, 15]. For the
Hamiltonians (2) and (3), the respective characteristic curves x,(s) and x¢(s) are given by

X.(s) = x.(0) + sFn, (6)

x/(s) = x¢(0) + s(Fn + yra), (7)


http://www.mathematicsinindustry.com/content/4/1/10

Gillberg et al. Journal of Mathematics in Industry 2014, 4:10 Page 4 of 31
http://www.mathematicsinindustry.com/content/4/1/10

where n = VT/||VT|| is the unit normal vector to the propagating front, and x(0) marks
the starting location of the curve. The velocity parameters F and yra are assumed to be
constant in a small neighbourhood, which results in locally linear characteristic curves
along which p is constant. On a discrete grid, the parameters are commonly assumed to
be constant within the stencil area. An investigation of the solution value along a charac-

teristic curve shows that

dT  d
= .d_’s‘:p.vazl for (2) and (3) (8)
= T(x(s)) = T(x(0)) +s. 9)

That s, T is increasing linearly in s along characteristics. Because of this one-dimensional
dependency, solution values can be extrapolated with high accuracy along characteris-
tic curves. An understanding of characteristics is therefore important when creating nu-
merical stencils, as well as designing new algorithms for front propagation problems. The

solutions T, and Ty for equations (2) and (3) change explicitly according to

T,(sn) = T,(0) + % (10)
Fn+a s
T (s||Fn+a||> =IO vl )

along characteristics. In particular, T, increases at a constant rate since the front moves
with a speed that is independent of the normal and its direction. This is not the case for T,
which increases with a rate that depends on the direction in which the front moves. From
these formulations the increased complexity for the anisotropic formulation is obvious.
The anisotropic dependencies in the fold equation complicate the computations, and the

computational cost is significantly higher than for the isotropic problem.

1.3 Numerical solution methods

The solution can be built by computing the local solution along a set of characteristic
curves, and thereafter interpolating the travel time between the curves. This approach is
traditionally referred to as the method of characteristics, or ray tracing. In seismology, the
term ‘rays’ is often used in lieu of characteristics. The methods developed in this paper
assumes a fixed grid of nodal values. Grid-based methods use stencils that are strongly
related to ray-tracing methods. Instead of tracing values along specific characteristics,
the grid-based tracking methods update nodal values by interpolating solution values be-
tween neighbouring nodes organised in stencils. Commonly, solution values are interpo-
lated linearly along edge-connected nodes in the grid [16], implying a planar modelling of
the front. In Appendix 1, we present an efficient stencil formulation for the eikonal equa-
tion. A smaller value corresponds to an earlier arrival time, and thus a better estimate of
the sought viscosity solution. The solution at every point is therefore strictly decreasing.
A too small value will not be enlarged, but instead it generates an error that will spread
throughout the domain. It is therefore important that new estimates are based on upwind
information, that is, the characteristic originates from values that are upwind of the node

being updated and therefore already passed by the front.
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(a) Tracking order. (b) Parallel marching sweep.
Figure 1 lllustration of update order of algorithms, where circles are nodes on the grid. (a) Tracking
order. Red nodes belong to the narrow band, describing the current front position. One node at a time is
moved from the narrow band to the collection of already passed nodes (in blue). Nodes that have yet to be
assigned a first value are empty circles. (b) The four sub-sweeps of the parallel marching method. Red nodes
are being computed using values of nodes connected by arrows, which points in the direction of the
sub-sweep. Nodes are coloured darker after each time their value has been updated.

Tracking methods

Methods that compute nodes in the same order as they are reached by the front, are re-
ferred to as front tracking methods. Tracking algorithms classify a node as passed by the
front only once, and are often referred to as one-pass algorithms. Therefore, these al-
gorithms compute solution estimates only a few times per unknown node. The current
position of the front is described by a set of nodes known as the narrow band. Figure 1(a)
is an illustration of the classification of nodes in tracking methods. To know which value
is the to be considered passed by front, the narrow band nodes are stored in a min-heap
data structure that is kept sorted [17, 18]. With N being the total number of nodes, the
worst case computational cost of the algorithm is O(N log (N)), where the log (N) factor is
due to the min-heap sorting. It is important to note that a direct application of the causal-
ity principle to discrete nodal values does not hold for anisotropic problems [3, 19], and
the original tracking method sometimes fails to converge [20]. An algorithmic extension
for tracking solvers, is to use adaptive (also called dynamic) stencil shapes [20, 21]. When
updating a node, the stencil shape then varies depending on the dynamics of the front,
and nodes covering a wider area must contribute to the update step. The footprint of the
stencil is often determined on basis of the anisotropy coefficient [20], which is a measure
of the degree of anisotropy in the chosen problem.

The need for a sorted data structure makes tracking methods conceptually sequential.
However, there are some parallel implementations of tracking-like methods. The group
marching method [22] classifies several nodes as passed by the front in every iteration.
Since several nodes are passed simultaneously, the method allows a certain degree of par-
allel processing. However, a parallel implementation is not straightforward since all neigh-
bours should be updated according to two different orderings to ensure convergence. The
entire domain can also be decomposed into subdomains in which separate processors up-
date nodes with tracking methods [23, 24]. Subdomains must then be padded with extra
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layers of nodes, referred to as ghost nodes or ghost points. In order for rays to travel be-
tween subdomains, the resulting algorithms are not strictly of tracking type, since already
computed subdomains can be recomputed several times.

Iterative methods
Sweeping methods are iterative methods based on the observation that the minimal dis-
tance follows along a unique direction. By sweeping through the grid in one direction at
a time, the minimal distances in that direction is computed for all nodes [25]. Computed
nodes are used shortly after they have been assigned new values. The characteristic curves
are extended in the same direction as the sweep moves through the domain. Moreover,
sweeping methods are almost directly applicable to anisotropic problems [26], and can
be adapted to parallel architectures with good performance on multicore systems with a
domain-division approach [8, 27]. Still, the parallelism of traditional sweeping methods
is coarse grained. This is caused by neighbouring nodes in a sweep depending on each
other’s values. Nodes on ‘slices’ of the domain do not share dependencies, and can there-
fore be computed in parallel [28]. Slices are small in corners of the domain, and parallel
processing is then not beneficial. Another disadvantage is that memory accesses of nodes
on a slice are incoherent, which impedes the performance of GPU implementations [29].
The parallel marching methods also sweep through the domain, but in slightly modi-
fied directions and with alternative stencil shapes [29, 30]. The alternative stencil shapes
remove dependencies between neighbouring nodes, so that they can be updated simul-
taneously. Figure 1(b) give an illustration of the sweeping process of the two dimensional
parallel marching method. A full sweep of the grid consists of four sub-sweeps, during
which the front is propagated up, right, down and in the left direction. In two spatial
dimensions, lines of nodes can be updated simultaneously, and in three dimensions an
entire layer of nodes can be updated in parallel [30, 31]. The method scales well when im-
plemented on GPUs. Sweeping methods are faster than tracking methods when the do-
main structure and the velocity formulation are simple. For complicated problems, many
sweeps are needed for convergence and the methods become slow [32, 33]. Similarly, when
anisotropy is dominant, more iterations are often needed for convergence [30]. Traditional
sweeping methods need to sweep the domain in 2 directions in k dimensions [34] to span
the solution space. Interestingly, only 2k sweeps are needed for extensions of the parallel
marching method to higher dimensions. However, in practice more full sweeps of the do-
main might be needed by the parallel marching method than by the traditional sweeping
methods [29].

Label correcting methods

There are algorithms that combine iterative and tracking methods by tracing a front with
a less strict ordering. A common name for such methods is label correcting, emanating
from shortest path methods in graph networks [35, 36]. Tracking methods are referred to
as label setting, since nodes are labelled as ‘passed’ only once. Since label correcting meth-
ods use a less strict ordering than tracking methods, they can sometimes be implemented
on parallel architectures. For instance, the massive marching method [37] updates an en-
tire list of nodes in parallel on a multicore CPU. If a node receives a new value during the
update, all direct neighbours with larger solution values are collected in a new list. The
procedure is repeated until there are no nodes to be added to a list. Massive marching
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is very similar to the fast iterative method [38] (FIM), which has also been used to solve
problems with anisotropy [10]. GPU FIM have been used in several applications [8, 10],
and can be extended to compute geodesic distances on triangulated surfaces [39]. Large
velocity contrasts may cause the list to grow long and nodes to be recomputed many times,
thereby increasing the computing time significantly [38]. The amount of needed compu-
tations is reduced if nodes are updated in an order more similar to the actual position of
the expanding front. The two-queue method [40] and semi-ordered FIM (SOFI) [3] are
more uniform in their performance since they enforce a stricter ordering of the updates.
In these methods, only selected neighbours are directly added to the new list, leaving for
later computations the ones too far ahead of the front. As a result, the lists in SOFI and
the two-queue method follow the isocurves of the solution more closely than FIM.

2 Developing fast parallel solvers

For a front propagation method to perform efficiently, the algorithm must make use of
the causality information embedded in the problem. Brute force iterative and sweeping
approaches are too costly in terms of computations, and methods that are strictly track-
ing the front are too sequential. For instance, the parallel marching algorithms work well
on GPUs, but their performance on multi-core devices is not impressive when compared
to the algorithms presented in this paper. Since the entire grid is updated repeatedly, such
sweeping-like methods cannot perform well enough due to the high amount of compu-
tations. Tracking methods are stable, and each node is recomputed only a few times [33].
Since tracking methods are conceptually sequential, the computing time increases no-
ticeably when the grid size increases. Extensions for problems with anisotropy are com-
plicated and sometimes not applicable [19]. In contrast, the more general class of label cor-
recting methods can solve anisotropic problems [3] and can sometimes be implemented
on parallel computing architectures [37, 41]. Such methods are therefore particularly in-
teresting to investigate further.

2.1 Algorithmic inspiration

Several recent contributions to the field have inspired the design of the algorithms pre-
sented in this paper. In this section we discuss the relation between our algorithms and
other existing methods.

Two-scale methods

For problems where the characteristics are straight lines, sweeping methods converge
quickly and are often faster than tracking methods. However, problems with highly non-
linear characteristic curves often require many sweeps to reach convergence, and ordered
methods then perform better. For most problem formulations, the characteristics bend
smoothly and can be approximated well as piecewise linear. With these properties in mind,
Chacon et al. [35] design several two-scale algorithms for isotropic problems. In the two-
scale methods, the domain is split into subdomains and an ordering of the subdomains
is created, for instance with a FMM solver acting at the subdomain level. Every subdo-
main is thereafter computed with a sweeping method, one subdomain at a time in the
determined order. Alternatively, subdomains can enter a heap repeatedly in the heap-cell
method (HCM). The local sweeping method converges fast since characteristic curves do
not bend much within a neighbourhood, such as a subdomain. Recently, the same authors
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introduced a parallel two-scale method with the parallel Heap-Cell Method (pHCM) for
eikonal equations [34]. The pHCM targets specifically multicore architectures, and show
impressive speedups when compared with other algorithms. Every thread has its own heap
with non-overlapping subdomains awaiting computations. In this paper we consider more
general anisotropic front propagations.

Domain decomposition

Two subdomains can be updated independently of each other as long as they do not share
a boundary. On shared boundaries there is a risk of read-write memory interferences [42].
To avoid any collision between read and write operations, all subdomains are padded with
alayer of ghost nodes [43]. Ghost nodes are local copies of nodes belonging to subdomains
that are immediate neighbours. After a subdomain has been computed, ghost nodes in
surrounding subdomains must be updated with the most recently computed values. This is
done in a synchronisation step that follows the computation of a subdomain. The boundary
condition for a subdomain is then based on the values that are synchronised from the
neighbouring subdomains. Subdomains surrounded by ghost nodes are further discussed
in Appendix 2. Any algorithm can be used to compute new values within a subdomain.

Locks

The concept of locking is a methodology for reducing the number of unnecessary compu-
tations, which was introduced at the nodal level in the locked-sweeping method [40]. The
solution value of a node needs to be updated only if values on neighbouring nodes have
changed since the last update. Therefore, a node can be locked for computation right after
an update, and be kept locked until relevant changes are observed in its vicinity. A lock
can be considered a label that can be reset several times. Consequently, algorithms using
locks are of the label correcting type. We have extended the idea of locks to the subdomain
level. In our algorithms, we use a compute lock (CL) to prevent unnecessary computations
of subdomains. After computing all values in a subdomain, it is locked for computation.
This compute lock is unlocked whenever the subdomain receives a new value in the syn-
chronisation step. Adopting the terminology used in FIM, we refer to a subdomain with
an open compute lock as active.

2.2 Two new algorithms

In this paper, we propose two new algorithms that process sets of subdomains in parallel.
We refer to the sets of subdomains as schedules. The order in which subdomains are com-
puted depends on which subdomains are put into schedules. A schedule is represented as a
list of indices to subdomains. The new algorithms differ mainly in the way they build their
respective schedules. All subdomains in the schedule are computed and synchronised re-
peatedly until most subdomains have been locked for computations, and a new schedule
is built. In the development of these algorithms also a third algorithm was investigated,
called the two-scale parallel marching method [4]. Since this method is outperformed by
the list-based methods, a presentation is omitted from this paper.

In the reported implementations, we compute new nodal values in a subdomain with the
three-dimensional parallel marching method (3D PMM) [30], of which details are given
in Appendix B.2. Since 3D PMM is a parallel method, the resulting algorithm has two lev-
els of parallelism. Hardware support for multiple layers of parallelism exists for instance
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in GPUs. More advanced subdomain solvers (FMM, FIM or SOFI) may increase perfor-
mance, especially when implemented on devices with lesser processing capabilities. How-
ever, such investigations are beyond the scope of this paper. The remainder of this section
presents the two new algorithms in detail.

Algorithmic framework

The computed values T;;, approximating T in the nodal positions (i, j, k) are stored in
an array corresponding to a rectangular grid in three spatial dimensions. The domain is
decomposed in (sy, 5, ;) subdomains in the x, y, and z, directions, respectively. Every sub-
domain consists of (b,, by, b;) nodes, making the number of nodes in the x direction of
the rectangular domain b,s,. All subdomains are surrounded by a layer of ghost nodes on
either sides. The ghost nodes are stored physically in memory, resulting in a total stor-
age of (b, + 2)s, nodal values along the x-axis. Similarly there are (b, + 2)s, and (b, + 2)s;
nodes along the two other axes when ghost nodes are included. The grid may have a non-
uniform spacing defined by the parameters dx, dy, and dz, but the same spacing values
apply to all subdomains. When algorithmic details are discussed on a nodal basis, nodes
are indexed with (i, j, k) while subdomains are indexed with (i, jj, kk). For increased read-
ability, subdomains are sometimes indexed by the triple sd = (i, jj, kk). The compute lock
CL is implemented as an array with one binary state value for each subdomain, Open or
Locked.

Similar to most front propagation methods, the proposed algorithms assume mono-
tone convergence of the solution. All nodes are first assumed never to be reached by the
front, T;;x = 0o. A set of nodes with initial values is assumed known initially. These values
constitute the discretised version of the boundary condition in (3). The subdomains that
receive at least one initial value are unlocked for computations during the initialisation
phase. As new T values are computed, they are only accepted if they are smaller than the
previous value, thus assuring monotone convergence from above. The solution is bounded
from below by the smallest initialised value since the solution T is increasing away from
I'o. Note that solution values will not be increased during the iterations once accepted,
and too small values should therefore never be accepted. Too small approximations can
be avoided in upwind stencils if the used solution values lie upwind of the node being up-
dated. Further details on the construction of stencils for front propagation problems are
discussed in Appendix 1, where an efficient eikonal stencil is presented.

Generic solver

The proposed algorithms have a top level structure given by the template in Algorithm 2.
As discussed below, each algorithm have individual specifications of the conditions gov-
erning the loops marked @ and @ After initiating the problem, a schedule of computing
tasks is created. In this context, a task corresponds to the computations needed for a single
subdomain. The scheduled tasks are computed and the ghost nodes updated repeatedly
through synchronisations with neighbouring subdomains, before a new schedule is cre-
ated.

The compute and synchronisation steps are similar for both algorithms while the actual
construction of the schedule differs. After a subdomain sd has been computed, the com-
pute lock is closed, CL(sd) < Locked. In CoMPUTESCHEDULE(), all active scheduled
subdomains are computed in parallel as shown in Algorithm 3.
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Algorithm 2 SOLVER()

comment: Generic driver for the proposed algorithms.

INITIATEPROBLEM()
BUILDSCHEDULE(Schedule)
while Schedule is not empty @
while Repeat condition fulfilled @
do {COMPUTESCHEDULE(Schedule)
SYNCFROMSCHEDULE(Schedule)

BUILDSCHEDULE(Schedule)

Algorithm 3 CoMPUTESCHEDULE(Schedule)

comment: Parallel execution of computations for all
scheduled subdomains sd.

for each sd in Schedule in parallel
if CL(sd) is Open
do the {COMPUTESUBDOMAIN(Sd)
CL(sd) < Locked

Algorithm 4 SYNCFROMSCHEDULE(Schedule)

comment: Communication between subdomains updating the
values of locally stored ghost nodes.

for dire 1,-1

for each sd in Schedule in parallel
do SYNCiVALUES(sd,dir)

for each sd in Schedule in parallel
do SYNCjVALUES(sd,dir)

for each sd in Schedule in parallel
do SYNCKVALUES(sd, dir)

do

The ComPUTESUBDOMAIN() function updates the solution for all nodes and ghost
nodes in the subdomain sd. Because of the presence of the ghost nodes, the compu-
tations rely only on nodal values stored locally for the subdomain, thus eliminating the
need for subdomain communication during the computations. After computing new val-
ues for the active subdomains in the schedule, nodal values must be communicated be-
tween adjacent subdomains to assure that all ghost nodes have correct values. This is done
in SYNCFROMSCHEDULE(), shown in Algorithm 4.

To avoid any memory interference, the nodal values of neighbouring subdomains are up-
dated in parallel in one direction at a time. First, the ghost nodes belonging to subdomains
with larger i values are updated in parallel, and thereafter ghost nodes in subdomains with
larger j, k, and smaller , j, k indices are updated. Note that no computations are performed
during the synchronisation, rather the nodal values are set to match their copies in the
other subdomain. A nodal value is only changed if the value of its counter-node is smaller.
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Algorithm 5 BUILDSCHEDULELAS(L,CL)

comment: Construction of the computational schedule,
tailored for the LAS method.

noSched + 0
for sd < index to all subdomains
if CL(sd) is Open
© { then {L[noSched++] — (sd)

return (noSched)

If a node in subdomain sd receives a new value, the subdomain is activated by opening
the compute lock, CL(sd) < Open. Further details of the SyncOVALUES() functions are
given in Appendix B.1. The algorithms finish when all subdomains are locked for compu-
tations and the schedule is empty.

2.2.1 The list of active subdomains method

The list of active subdomains (LAS) algorithm schedules all active subdomains for com-
putation by storing their indices in a list. As the algorithm iterates through the grid, the
list follows a front of solution estimates as it travels through the domain, similarly to the
lists in the massive marching and FIM methods [37, 38]. Subdomains that have already
been computed may at a later stage be added to a new version of the list. Pseudocode for
building the schedule (list) for the LAS method is shown in Algorithm 5. The returned
variable noSched is the number of subdomains in the list L.

After computing and synchronising the list of subdomains, the number of active sub-
domains left in the list are computed, here referred to as noActive. The schedule is
computed again if the density of active subdomains is higher than a given fraction. Let
noSched denote the length of the list. After some experimentation with @ in Algo-
rithm 2, we have chosen to repeat the computations while 61—4 < %. This thresh-
old gives good performance for most examples. Moreover, let noC denote the number
of subdomains that can be computed simultaneously by the current computational plat-
form. If there are fewer active subdomains than what can be computed simultaneously,
i.e. noActive < noC, a new schedule is created. This optional condition to improve load
balancing is included in the LAS pseudocode given in Algorithm 6, which replaces the
generic SOLVER() in Algorithm 2.

The LAS method has some similarities with FIM, but there are differences to notice:
For FIM, only the GPU implementation computes subdomains, and no compute locks are
used. In FIM, the scheduled tasks are computed only once before a new schedule is built,
whereas in LAS the schedule is reused until at most (around 98%) scheduled subdomains
are locked for computation. Any method can be used to compute a subdomain in LAS,
whereas in FIM all nodes of a subdomain are computed iteratively until convergence. This
brute force approach of FIM would likely reduce the performance on multicore systems.

2.2.2 The semi-ordered list of active subdomains method

In the LAS method, previously active subdomains may be reactivated at later stages of
the algorithm. In some front propagation problems, this reactivation can force the list
to grow long. A similar observation holds for FIM and SOF]I, although SOFI performs


http://www.mathematicsinindustry.com/content/4/1/10

Gillberg et al. Journal of Mathematics in Industry 2014, 4:10 Page 12 of 31
http://www.mathematicsinindustry.com/content/4/1/10

Algorithm 6 SOLVERLAS()

comment: Specific driver for LAS, variant of algorithm 2.1.

INITIATEPROBLEM()

noSched < BUILDSCHEDULELAS(L, CL)

noActive < noSched

while L is not empty

while J; < mokctsrs
COMPUTESCHEDULE(L)

SYNCFROMSCHEDULE(L)

do do { noActive +— Number of active subdomains in L
if noActive < noC
then noActive + 0
noSched < BUILDSCHEDULELAS(L, CL)

noActive < noSched

more uniformly thanks to the enforced heuristic ordering of updates [3], which makes
the behaviour of the list more similar to the narrow band of tracking methods. The semi-
ordered list of active subdomains (SOLAS) method similarly schedules subdomains in lists
that in a sense stay close in shape to isosurfaces of the solution. If a subdomain is too far
ahead of the others, it is not added to the schedule.

In order to measure the approximate location of a subdomain, each subdomain has an
associated scalar value stored in a global array structure, here referred to as SD. The SD
value for a subdomain is the smallest new T value that activates the subdomain, and is
set during the synchronisation procedure. This minimal T value is similar to the ‘rollback
state’ of the domain decomposition FMM [23]. Details on handling the SD values in the
synchronisation is given in Appendix B.1.

The SD value is an approximate position of the current front as it reaches a subdomain.
Let Av denote the current average SD value of all active subdomains, while 01dAv denotes
the same average of the previous iteration. All subdomains with a SD value smaller than a
cutoff value cutT are scheduled for computation. In our implementation the cutT value
is set to be Av + 0.4 max (0, Av — 01dAv). Several methods of creating this cut-off value
was tested, but the chosen 0.4 relaxation from the average value gives good performance
for many problems. With the enforced ordering of subdomains, the list will mimic the
behavior of the solution’s isosurfaces.

If the list is made too short, some processing units may be idling since there are not
enough computations to perform. Since the list is computed repeatedly, neighbouring sub-
domains may be reactivated repeatedly, and if the neighbouring subdomain is not in the
list it will not be computed until a new list is created. It is therefore not beneficial to re-
strict the list when the number of active subdomains is low. A cut-off is therefore only cre-
ated if there are more active subdomains than an empirically chosen MinAct value. With
the variable noC representing the total number of subdomains that the targeted platform
can compute simultaneously, the choice MinAct = max (2noC, % max (s,s,, noSched))
seems to give a good overall performance, and has been used in all reported results. The

noSched bound assures that the list is not limited if there are much fewer active subdo-
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Algorithm 7 BUILDSCHEDULESOLAS(L,CL)

comment: Construction of the computational schedule,
tailored for the SOLAS method.

noActive «+ 0
sumSD + 0
cutT < oo
for sd + index to all subdomains
if CL(sd) is Open
do {noActive++
then
sumSD <— sumSD + SD(sd)
Av < oo
if noActive > MinAct
R
then { cutT <+ Av+ 0.4max (0,Av — 01dAv)
0ldAv < Av
noSched + 0
for sd < index to all subdomains
if CL(sd) is Open and SD(sd) < cutT

do then {L[noSched++] — sd

MinAct = max (2noC,  max (s, 5, noSched))

return (noSched)

mains than was scheduled in the previous list. The s,s, bound is included so that the list
is shortened only if the current front is rather large (or thick).

Pseudocode for creating a task schedule in the SOLAS method is given in Algorithm 7.
The returned variable noSched is the number of scheduled tasks that have been added
to the list L.

The pseudocode for the SOLAS driver is identical to the driver SOLVERLAS() in
Algorithm 6, except that calls to BUuILDSCHEDULELAS() are replaced by calls to the
SOLAS-specific procedure for constructing the subdomain schedule, that is,
BuiLDSCHEDULESOLAS() defined in Algorithm 7.

2.3 Algorithmic observations and implementation details

In this section we discuss implementation specific details, and some of the optimisations
that were tested. The gain of a particular optimisation depends on its interplay with other
imposed optimisations. In general, if an optimisation is said to give a ‘significant’ per-
formance boost, the reduction in computational time was lowered with more than 10%.
From an implementation perspective, LAS is easier to implement. However, SOLAS re-
quires only small modifications of the LAS code. The workload and number of iterations
of LAS and SOLAS differ significantly with the underlying physical problem and boundary
conditions. A performance modelling analysis is therefore difficult to perform.

Initial computations
An expanding front passes a node only once and reaches nodes further away at later times.
Because of this causal dependency, the parts of the solution holding larger values depend
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on nodes with smaller values. Numerical errors introduced close to the origin will prop-
agate to the whole domain. It is therefore important that the computed solution is par-
ticularly accurate close to the initial condition. To ensure that all initiated subdomains
fully converge, they are computed with one sweep of 3D PMM in the beginning of the
algorithms.

Blocking for cache

In our initial implementation, the numerical grid was stored in row-major order. Nodes
within one subdomain are stored in several rows, and every row of data continues into
other subdomains. Therefore, some of the data read into cache will belong to other sub-
domains, and will not be used in computations. When data that are reused often are stored
physically close in memory, more relevant data are loaded at once to the faster cache mem-
ory. Nodes within a subdomain were therefore ordered contiguously in memory. This op-
timisation improves the data locality, and is sometimes referred to as blocking for cache
[44]. The GPU performance was improved significantly with this optimisation, since the
access time between global memory and shared memory differ more on GPUs than on
CPUs. On GPUs, rows of two and three dimensional data structures are stored in memory
allocations of ‘pitch’ bytes. The pitch is chosen by CUDA to ensue best performance when
accessing the row addresses [45]. In the GPU implementation, all nodes in one subdomain
lie within one pitch so that the memory accesses are aligned for both the synchronisation
and the computation kernels. The CPU performance was also improved, but only by a
couple of per cent.

Sliding window
If the entire subdomain is read into the shared memory on the GPU, the performance is
limited by the high use of shared memory. This was implemented as a first attempt, but
led to unacceptably low speedup. Instead, we use a sliding window approach [46]. When
two adjacent nodes are updated in 3D PMM, they share several values in the bottom layer
of the pyramid stencils, see Appendix B.2. To reduce the number of reads from global
memory, the entire bottom layer of nodes is first loaded to a shared memory structure,
from where cache loads are faster. The GPU performance was improved significantly.

A similar sliding window optimisation is used in the CPU implementation, since the
entire bottom layer of nodes is loaded to a cached data structure. This increases the per-
formance slightly, and has been used in the numerical examples in Section 3.

List building in GPU implementations

Both the SOLAS and the LAS methods create lists. This is difficult to do efficiently on
a GPU. Instead, a boolean structure indicating whether or not a subdomain should be
present in the list is created on the GPU. This structure is transferred to the CPU where
the list creation can be performed fast. Unfortunately, this requires the GPU to wait while
the list is being built on the CPU. Stalling communications between the CPU and the GPU
is known to be a bottleneck of GPU algorithms [47].

Kernel timeout on GPUs

In our application, we sometimes experienced difficulties launching kernels for the
anisotropic experiments in double precision on laptop GPUs. These devices were simul-
taneously used by the operating system to display the graphical desktop environment. It
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appeared that when launching a kernel on many subdomains, we received the error mes-
sage CUDA_ERROR_LAUNCH_TIMEOUT. According to the CUDA Driver API [48],
this error is returned when a kernel takes too long to execute. To avoid the device making
the operating system halt, Nvidia has implemented a specific time limit on the execution
time of kernels. If this time limit is exceeded by the kernel, the kernel will simply not
launch or in some cases be terminated once being launched.

Our solution is to limit the number of launched kernels. If there are too many active sub-
domains in the list, the list is sliced into chunks on which kernels are launched. The size
of each chunk is chosen so that the device can execute the kernel with maximum occu-
pancy. In cases where the number of active subdomains will not lead to a kernel timeout,

the chunking is simply omitted.

3 Numerical verification

In this section, we review a series of numerical experiments conducted in order to study
the performance of the new solvers proposed in this paper. These experiments include
isotropic and anisotropic problems for which analytic solutions can be derived, and
isotropic problems with changing velocity and obstacles that are impermeable or very
slowly permeable. Our final case is that of simulating a geological fold, based on seismic
field data.

Definitions
For any scalar field & represented by values in every grid node (i, ], k), we will apply the

discrete L, norm

2
Zi,j,k 3 ik

1§10z, = N

, (12)

where the summation is performed over all N nodes in the domain. We refer to the grid
as uniform only when dx = dy = dz.

Computing platforms

The numerical experiments reported herein have been conducted on a 16 core CPU re-
ferred to as SandyBridge, and a Nvidia Tesla K20 GPU, hereafter called K20. The capabil-
ities of these platforms are summarised in Tables 1 and 2, respectively.

All computing times presented in this section are from implementations of the algo-
rithms, one multicore CPU variant using OpenMP [49], and one GPU variant using CUDA
[50]. For all test cases, we report on the fastest solution extracted from at least three ex-
ecutions of the chosen algorithm on the chosen platform. In general, we have observed
that the computing times have only insignificant variations from one run to another.

Sizing subdomains

In general, 3D PMM is an efficient algorithm with significant parallel capabilities. For each
subdomain, one needs to store both the internal nodes and the ghost nodes to the sub-
domain. The domain decomposition is slightly overlapping, considering that the ghost
nodes are inner nodes of other subdomains. Therefore, the smaller the subdomains get,
the larger will the fraction of ghost nodes relative to inner nodes become. From a global
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Table 1 Specifications for the Intel Xeon E5-2650 2 x 8-core CPU (one of two identical NUMA
domains).

SandyBridge: Intel Xeon E5-2650

CPU frequency 20GHz
Number of cores 2x8

Single precision 256 GFLOP/s
Double precision 512 GFLOP/s
Shared L3 2x20 MB
Memory 32 GB DDR3

Memory bandwidth ~ 2x51.2 GB/s

Table 2 Specifications for the NVIDIA Tesla K20 GPU.

K20: NVIDIA Tesla K20

CUDA cores 2496

Single precision 3520 GFLOP/s
Double precision 1170 GFLOP/s
Memory 5120 MB GDDR5

Memory bandwidth ~ 208.0 GB/s

perspective, a reduction of the subdomain size will increase the memory footprint and the
communication overhead due to storing and handling a growing number of ghost nodes.
Still, a relatively small subdomain size may offer an advantage in that the list can better
mimic the front propagation, thus leading to a more efficient exploitation of the underly-
ing causality. Moreover, nodal values of smaller subdomains are more likely to fit in fast
memory locations, thereby increasing the computational speed per subdomain.

We experimented with different cubic sizes of subdomains for a range of problems. For
the CPU implementation, the optimal subdomain size depends on the exact problem for-
mulation and the total number of nodes. A change in subdomain size have only small
impact on the performance of the CPU implementation. We have therefore focused on
the GPU implementation when choosing the subdomain size for our computations. Sub-
domains with 143 nodes lead to the best GPU performance in terms of wall clock time used
for the solution. Since the computations include updates of ghost nodes, a total of (14 + 2)?
threads are used to compute a subdomain, see Appendix B.2 for details. The GPUs used
for the analysis all have a warp size of 32, that is, a minimum of 32 identical operations
per instruction is performed in a Single Instruction Multiple Data (SIMD) fashion [47]. If
the number of threads is not a multiple of the warp size, some GPU threads will be idling
while the others performs computations. Having analysed our implementation with the
CUDA Device Occupancy calculator [51], we have concluded that the subdomain size of
143 allows for both the best occupancy and the shortest computing time. This subdomain

size is kept constant throughout all experiments reported in this paper.

3.1 Synthetic examples

The LAS and SOLAS algorithms proposed in Section 2.2 have been tested on a range of
problems that expose the solvers to several challenges. Here, we briefly summarise our
findings by presenting five of those examples. For all these examples, we have computed
solutions for grids with 84, 168, 336 and 504 nodes along each axis, grouped accordingly
in 62, 123, 243 and 36® subdomains. That is, these grids represent from 592, 704 to 128,
024, 064 unknowns. The computations have been conducted on the SandyBridge (CPU)
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Figure 8 Isosurfaces of the anisotropic solution with
13 point sources located irregularly in the rectangular
domain as boundary condition (Exa).

Ex4: 13 point sources.

and the K20 (GPU) platforms. In all experiments, the solvers stop when all subdomains
are locked for computations, and the schedules are empty.

The reported performance numbers bellow are based on computations in double pre-
cision. Due to specific hardware features of GPUs, a transition from CPU to GPU is far
more attractive for computations in single precision. For the type of calculations done in
this paper, single precision arithmetics can be used without noticeable loss of accuracy.
This topic is further discussed in Section 3.2.

3.1.1 Example with analytic solution

The first example uses the anisotropic formulation (3), with constant velocity parameters
F =14, and vra = (0.9,-0.75,-0.07). As boundary condition we used 13 point sources
spread out irregularly in the rectangular domain, defined by (0,0,0) < x < (10,13,9). The
ratio between the maximum and minimum velocities, referred to as the anisotropy co-
efficient, is 11.2 for this problem. A visualization of the anisotropic solution is given in
Figure 8.

As shown for the Ex4 case in Figure 9(a), the GPU implementations always outperform
its CPU counterparts. Notice that SOLAS performs slightly better than LAS for large grids
across both platforms. The difference between these two solvers is more prominent on the
CPU than in the GPU-based computations.

The efficiency? for eight and 16 cores is 83-88% for SOLAS, whereas it drops down to
65-75% for LAS. Many subdomains are active simultaneously in Ex4, so the additional
ordering of SOLAS is worthwhile. These efficiency ratios are good, taken into account
the sequential construction of schedules and that threads are synchronised between the
CoMPUTESCHEDULE() and SYNCFROMSCHEDULE() procedures. Going from CPU to GPU
architecture, we observe 6.9 and 8.5 times faster computations for the Exy case when
employing the SOLAS and LAS solver on the largest grids, respectively. We also run the
same problem with an isotropic setting, Yra = 0. For the isotropic case, LAS is instead
slightly faster than SOLAS on large grids. Compared to the isotropic counterpart, the
anisotropic computing time increases with a factor of 7-12 on the CPU and 5-8 on the
GPU. The anisotropic stencil is significantly more complicated than the isotropic, and
the solution dependencies in the anisotropic case increase the total number of times that
subdomains are activated.

In Figure 9(b), we have repeated the computing times from Figure 9(a), using logarith-
mic scales on both axes. The thin dotted lines illustrate linear relations to N. That is, the
figure indicates that all the tested methods have a computational cost that scales with the
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Ex,4, on SandyBridge and K20 (double) Ex 4, on SandyBridge and K20 (double)
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(a) Ex4: computing times. (b) Ex4: logarithmically scaled computing times.

Figure 9 Performance on the SandyBridge and K20 platforms for the isotropic test case with 13
irregularly located point sources (Exg). (@) Observed computing times (seconds) for 16 cores. (b) Observed
computing times presented in logarithmic scales.

grid size close to O(N), or even superlinearly, that is, the computing time seem to increas-
ing less than linearly with growing problem size. Similar behaviour is observed for all our
numerical investigations. There are several factors that can help explain this observation.
Small data sets cause more computing units to be idle, thereby reducing the observed com-
putational speed. When the data set grows in size, the level of parallelism increases and a
better load balance between the processing units is achieved. The time needed to transfer
data to and from the GPU is included in the time measurements. The overhead associ-
ated with (synchronous) data transfers between the CPU and GPU decreases as the data
set gets larger. The cost of data transfer is therefore relatively larger for smaller data sets.
Although we have not formally analysed the computational cost of the new algorithms,
they will likely have linear complexity due to being semi-ordered and of sweeping type.
The superlinear behaviour is thus caused by other artefacts as explained above.

Accuracy and convergence This example has analytical solutions [30], making it possi-
ble to study how the numerical solution converges towards the true solution. Let /1; be
the edge length of the kth grid in a sequence of increasingly finer grids used for numeri-
cal solution of the problems. Denoting the corresponding error e, the estimated rate of

convergence is

oo log(lle® I, /]Ie**D]|1,) 13)
log (M /hys1) '

For the grid sizes in this study, our convergence estimates are 0.70, 0.74, 0.76 and 0.77,
for both the anisotropic and isotopic results. Convergence estimates for single and double
precision solutions are for all practical purposes identical. To reach first order conver-
gence, the amount of nodes initially assigned analytic values should be kept constant [16].
The estimated convergence rates are therefore satisfactory.

3.1.2 Examples with curved characteristics

Iterative algorithms are sensitive to curved characteristics [32]. It is therefore common to
investigate how algorithms perform for problems with obstacles that force the character-
istics to turn sharply [18, 29, 38].
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(a) (Exc)Exg: (Im)permeable walls. (b) Exp: Velocity-cubes. (c) Exp: Velocity-cubes cut.

Figure 10 lllustrations of solutions to examples with curved characterics. (a) The distance field in
presence of semi-permeable obstacles organised as nine walls (examples Exg and Exc).

(b) Three-dimensional visualisation of the distance field obtained by solving the chequerboard velocity
problem (example Exp). (c) Two-dimensional planar cut through the velocity-cubes distance field (example
Exp).

In the test cases Exz and Exc, we consider a cubic volume divided by nine walls with
small openings in either the upper left or lower right corners. The walls are one node
layer thick, and are either semi-permeable (F = 0.03dz for Exg) or impermeable (F = 0 for
Exc). Outside these walls, the isotropic velocity is set to F = 1. The fastest path from the
starting point in a corner of the domain to the opposite corner is by zigzagging through
the small openings in the walls. A sample solution is visualised in Figure 10(a) [38, 52].

In the final example, Exp, the computational domain is divided into a set of equally sized
cubes. The velocity is constant within each cube, having the value of either 1 or 2. For a
cube with velocity value 1, all adjacent cubes sharing a side with it will have a velocity equal
to 2, and vice versa. We have placed in total 11% such velocity cubes within a computational
domain measuring 10 length units along each axis. The boundary condition is one point
source at the center of the domain. Figure 10(b) shows a volumetric view of the computed
solution, while Figure 10(c) shows a planar cut of the solution through the center of the
domain [34, 40].

Performance for the obstacle problems The examples Exg and Exc, having barriers em-
bedded in the computational domains, are challenging since the front is forced to travel
along irregularly shaped paths. Figures 11 and 12 summarise the computing times and the
speedup factors for these two problems.

The barriers are only one node thick for all grids, and the fraction of nodes that are obsta-
cles reduces as the grid gets finer. The front is small since it only propagates between two
layers of walls. For larger grids, more subdomains fit between two barriers, and the par-
allel processing possibilities increases as the front activates more subdomains. Still, many
schedules are built in the computation of these examples. The changing dynamics of the
problems causes the compute times to change rather peculiarly with grid sizes, especially
LAS since the extra ordering in SOLAS reduce the effects. At a large enough grid size, the
LAS solvers changes to such an extent that the solve time decreases for a larger grid size.
The irregular behaviour of LAS is present for both the CPU and the GPU implementa-
tions. Although the variations for each platform is at the same level when seen relative to
the platform’s computational power, this issue is most pressing in the CPU environment
due to generally longer computing times.
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Figure 11 Performance on the SandyBridge and K20 platforms for the example with semi-permeable
barriers (Exg). (@) Observed computing times (seconds) for 16 cores. (b) Observed speedup of LAS when
moving from one (t(1)) to many (t(p), p = 2,4,8,16) cores, and for 16 cores relative to the GPU.
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Figure 12 Performance on the SandyBridge and K20 platforms for the example with impermeable
barriers (Exc). (@) Observed computing times (seconds) for 16 cores. (b) Observed speedup of SOLAS when
moving from one (t(1)) to many (t(p), p = 2,4,8,16) cores, and for 16 cores relative to the GPU.

For Exg, where the barriers are semi-permeable, LAS turns out to be the most efficient
solver for large N, regardless of platform. For the impermeable barriers in Exc, SOLAS
would be the preferred method, although the behaviour comes very close to that of LAS
when the grid gets large. For the 5042 grid, the GPU versions of LAS and SOLAS compute
the solution in 4.5 seconds, while the CPU implementations require about 15 seconds. It is
noted that the semi-permeable case requires about two to three times as long computing
time as the impermeable problem, regardless of solvers and platforms.

Figure 11(b) shows that LAS applied to the Exp problem gives a very good speedup, even
on eight and 16 cores for which the efficiency is 82% and 84%, respectively. Moving on to
the GPU, the LAS method runs 5.5 times faster than the 16 CPU cores. The speedup of
SOLAS on eight cores is the same as for LAS, but there is a drop to 77% efficiency when
going up to 16 cores. Similar to the observation we made for Exy4, this drop of speedup
does not propagate over to the GPU, where SOLAS performs at same level as LAS. As
shown in Figure 12(b), the computing times obtained for applying LAS and SOLAS to
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SOLAS speedup, Exp. t(p); time on p-SandyBridge-cores
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Figure 13 Performance on the SandyBridge and K20 platforms for the example semi-permeable
barriers (Exp). (a) Observed computing times (seconds) for 16 cores. (b) Observed speedup when moving
from one (t(1)) to many (t(p), p = 2,4,8,16) cores, and for 16 cores relative to the GPU.

Exc scale with the number of cores quit similar to the factors observed for Exg. However,
the performance gain of moving from 16 cores to the GPU is less for the impermeable
problem in Exc, where the speedup factor is in the range 3.2-3.8.

Performance for the velocity-cubes problem For the velocity-cubes problem Exp, Fig-
ure 13 illustrates smooth behaviour of all algorithms with respect to the computing time
as a function of the grid size. As for the two examples with embedded barriers, SOLAS
proves to be an efficient solver. It performs consistently better than LAS, in particular on
the CPU platform. On the GPU, the solution can be computed for the largest grid in 5.7
seconds, compared to the 33.9 seconds required by the 16 CPU cores. Both LAS and SO-
LAS demonstrate excellent speedup on the CPU, delivering 80%-88% of the theoretical
potential for eight and 16 cores. For both methods, the GPU calculations runs 6-7 times
faster than the 16 cores.

Overall performance for the synthetic examples Combining the observations from the
synthetic test cases discussed above, we conclude that the proposed methods are well
suited for efficient computations on multicore CPUs and GPUs. Even for complicated
problems these algorithms offer computational efficiency that can support interactive soft-
ware applications, also when handling finely spaced grids. This behaviour is due to the
methods being designed to efficiently exploiting the causality of a propagating front.

For anisotropic problems, the GPU implementations of LAS and SOLAS spend on the
average around 96% of the time on computing, 3-4% on synchronisation, and less than
1% on list building. For isotropic problems, the computations take around 90% of the total
time on the GPUs. Computations dominate even more on CPUs where 98-99% of the total
time is spent on subdomain computations and the remaining time is used for synchroni-
sation. List creation is then less than 0.1% of the total time, and is therefore negligible. As
to be expected, the synchronisation of values is slightly more costly for SOLAS than for
the LAS algorithm.

Regardless of the test cases, the GPU implementations offer consistently faster compu-
tations than the CPU implementation running on up to 16 cores. The speedup factors
when moving from 16 cores to the GPU ranges from 3 to 8 with an average of 6. For single
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precision computations, this speedup factor varies from 6 to 16 with an average of 10. LAS
is preferred for the isotropic or mildly anisotropic problems, whereas SOLAS is the best
choice for problems with complicated velocity profiles.

3.2 Single versus double precision arithmetics

The difference in peak performance between single and double precision of the Sandy-
Bridge CPU assumes a perfectly vectorised code. Unfortunately, the large amount of log-
ical branching prohibits a vectorisation of the computationally dominating update step.
By hardware design, GPUs compute substantially faster in single precision than in double
precision. In particular, Nvidia’s Kepler architecture, such as our K20 platform detailed
in Table 2, is able to perform three times as many operations per second in single preci-
sion than in double precision. In addition to the raw processing capabilities, values repre-
sented in single precision need only half the memory space that values stored in double
precision need. Therefore, one can fit larger data sets into the limited memory of a GPU
if single precision is used. Data-intensive applications will thereby get an additional im-
provement of performance due to better utilisation of fast memory and less shuffling of
data between the GPU and the host computer. Across the range of synthetic problems
investigated in Section 3.1, we have observed an average speedup of 2.1 when comparing
single and double precision computations on the K20 platform. In comparison, the cor-
responding speedup of 1.2 for the 16-cores SandyBridge CPU is rather modest. On both
platforms, these speedup factors are independent of the solvers. This observation agrees
with the fact that the total time spent by the algorithms is heavily dominated by arithmetic
operations, rather than memory transfers and synchronisation.

Given the advantage of single precision arithmetics, it is relevant to investigate whether
computations in single precision can provide a satisfactory level of numerical accuracy
when solving problems of the form (3). Empirically, we have observed that the single pre-
cision solution, T, is practically identical to the double precision solution, T};. For the
largest grid, N = 504°, we have observed that || T,; — Ty||;, = O(107), where p = -7 for Exy4,
p = —6 for Ex4 and Exp, and p = —4 for the complicated cases Exp and Exc. By the triangle
inequality, we have

1T =Tfll, = 1T = Tp + Ta - Tallz, (14)

=@+ IT - Tallr, (15)

where ¢ = || Ty — T¢ll1,/I| T — Tallz,. That is, if & < 1, the single precision error will be of
the same order as for the computations in double precision. We have estimated ¢ empiri-
cally for Ex,4, which have analytic solutions. Depending on the problem and the grid size,
this entity stays in the range from 10~° to 10~ and is thus significantly smaller than one.
Moreover, we have computed the ratio 8 = || T4 — T¢||1,/l| Tall,, which is obtainable also for
problems that can not be solved analytically. We have then observed that g stays between
10~° and 1078 for Ex,4-Exp across all grid sizes, and that B gets smaller as N increases, thus
indicating convergence.

Based on these empirical studies, we conclude that single precision computations pro-
vide high enough accuracy when using the algorithms proposed in this paper with first
order stencils to simulate front propagation based on (3). More subdomains are reacti-
vated for computation when using double precision arithmetics than in the case of single
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Figure 14 lllustrations of a fold simulation. (a) A surface extracted in the CES application, with two cross
sections through a three-dimensional offshore seismic volume. (b) The folded layers simulated on basis of the
extracted surface and an isotropic formulation.

precision. A subdomain is only reactivated when it receives a new value. Since the small-
est noticeable change in single precision is effectively 107, the subdomains with smaller
changes will not be reactivated in single precision, but only in double precision compu-
tations. The increase of reactivations contributes to the increase of time needed by the
solvers in double precision compared to single precision. Note that a subdomain could be
reactivated only if the new value £y, differs from the old value t,q more than a chosen
threshold-limit in order to limit the amount of reactivations. In other words, to reduce the
number of subdomain computations, a subdomain can be activated only if £y1q — tpew > €
for some empirically chosen value c. In all our numerical experiments we have used ¢ = 0.

3.3 Fold simulation

Using the CES software, a user can easily segment structured surfaces from seismic data
sets by autotracking. Figure 14(a) shows an autotracked surface in the CES software, ex-
tracted from a three-dimensional seismic volume as indicated by the transparent seismic
cross sections. The physical domain measures 6700, 4975, and 11055 meter along the x,
y and z axes, respectively. Values in the nodes immediately above and below the extracted
horizon were computed in CES for grids with 2563 and 5123 nodes, respectively. These val-
ues were then used as boundary conditions in our numerical experiments. Parallel folded
layers were simulated by solving the isotropic eikonal equation for the different grids. An
example of the computed solution is visualised in Figure 14(b).

We have compared our new algorithms with the CES solver. The fold simulation solver
in CES is based on a tracking algorithm, and is therefore sequential. When measuring
the performance of the CES solver, we used a 4 core, 3.5 GHz Intel Ivy Bridge Core i7-
3770K CPU with 8MB L3 cache. This is the fastest platform available that can run the CES
software. Applying the new algorithms on K20 and SandyBridge, we have measured the
computing times for both single and double precision arithmetics. Because of the sizing
of subdomains, the grids used by the new algorithms are slightly larger than the grids used
by the CES solver. The new grids consist of 266 and 5183 nodes, respectively. These grids
represent from 343,000 to more than 138 million unknowns. Table 3 shows the computing
time for double and single precision arithmetics, together with the speedup achieved by
replacing the Ivy-based CES solver. The speedup factors are prefixed with the symbol “x’


http://www.mathematicsinindustry.com/content/4/1/10

Gillberg et al. Journal of Mathematics in Industry 2014, 4:10 Page 24 of 31
http://www.mathematicsinindustry.com/content/4/1/10

Table 3 Comparison of computing times (in seconds) for the CES solver on lvy and LAS and
SOLAS solver on SandyBridge and K20, including the speedup factors (‘ x’) relative to CES.

Solver Device Double precision Single precision

266> 5183 266> 5183
CES Ivy 27.68 x1.0 3549 x1.0 2491 x1.0 31942 x1.0
LAS K20 0.87 x32.0 6.2 x57.3 044 x57.2 299 x107.0
SOLAS K20 0.84 x33.1 6.0 x59.6 043 x58.6 298 x107.2
LAS SandyBridge 522 x53 36.0 x9.9 431 x5.8 2846 x11.2
SOLAS SandyBridge 466 x5.9 328 x10.8 3.81 x6.5 26.67 x12.0

The CES time for single precision computations has been empirically estimated as 90% of the CES time for double precision.

Reviewing the results, we observe that the difference between solution times for LAS
and SOLAS are negligible when run on the same platform and with the same arithmetic
resolution. We also observe that the speedup is higher for the GPU platforms than for the
CPU platforms. As noted in Section 3.2, there is no difference in solution quality between
single and double precision computations. However, the computing times are consider-
ably lower in single precision computations, especially on the GPU. The computing time
for the GPU is roughly halved when moving from double to single precision computa-
tions. For the largest grid in single precision, the K20 implementation of SOLAS is more
than 100 times faster than the CES solver on Ivy." We do not expect the speedup to be as
impressive in all fold simulations. However, the user experience is significantly improved
when fold simulations are performed with the new algorithms. Even on the largest grids,
the computational time is a few seconds instead of minutes when LAS or SOLAS uses
K20 instead of the current solution method. Based on this and several other numerical
experiments with seismic field data, the proposed algorithms are now being implemented
in the industrial code.

The task of simulating a folded volume is rather different from the synthetic examples
discussed initially. For fold simulations, the initial geological surface defining the bound-
ary condition will contain a significant number of subdomains. Because of this, the list
used for subdomain scheduling will be quite long already from the start. When this list is
long, it is easier to make full use of the available computing resources, thus resulting in a
substantial effect of parallelisation. For simpler problems, where the boundary condition
is represented by one or a few point sources, only a few subdomains will be scheduled as
active. Thus, some of the available computing resources will be idling until later stages of
the solution process when the lists grow longer. Since GPUs have an intrinsic capability
of processing a large number of subdomains simultaneously, the simulation of geological
folds based on LAS or SOLAS is particularly suitable for GPUs.

4 Conclusions
Two new parallel solvers are presented, together with several numerical experiments con-
ducted on both multicore CPUs and GPUs. All solvers use a domain decomposition ap-
proach, where each subdomain is surrounded by a layer of ghost nodes. A subdomain
needs to be processed only if its local boundary condition has changed since the previ-
ous computation. Due to this observation, a computed subdomain is locked for further
computations until its boundary condition changes, and the subdomain is reactivated.
The presented algorithms differ mainly in the way subdomains are scheduled for com-
putations. LAS places all active subdomains in a list, and updates the subdomains in this
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list in parallel. The GPU implementation of LAS builds the lists on the CPU, but performs
all computations on the GPU. SOLAS is very similar to LAS, but creates the lists slightly
differently to enforce a more causal ordering of the subdomain computations.

From empirical studies, the sequential solution times seem to scale linearly with the
total number of nodes. The parallel solvers appears to scale somewhat superlinearly, ac-
credited to the increase in parallel processing efficiency obtained for larger grids. Some
algorithmic details are crucial for achieving good performance. For instance, if a schedule
is only used once by LAS and SOLAS, many more and longer lists are built. For anisotropic
cases, repeated activations between neighbouring subdomains are more common than for
isotropic cases. It is therefore important not to enforce a too strict ordering of subdomains.
For some examples the LAS ordering is not very different from the SOLAS ordering, and
the extra overhead of the SOLAS ordering is then not worthwhile.

We have investigated the potential for accelerating an industrial software for simula-
tion of geological folding by introducing new algorithms for numerical solution of static
Hamilton-Jacobi equations. The computing times are reduced from several minutes to
seconds, enabling the software to be used interactively even for large three-dimensional
data sets.

Possible extensions of the presented work

In our implementation, the computing and synchronisation procedures are entirely com-
pleted before the list building starts. Future implementations can overlap the building of
new schedules with the processing of previous schedules. That is, one processor can build
the new list while other processors reuse the old list. This will result in reduced overhead
of list building and processor synchronisation. On the GPU, the copying of data to and
from the device can be done asynchronously with the computations, and the utilisation of
the CPU will increase.

The ghost nodes assure that subdomains can be updated simultaneously by different
processors. No data is communicated between subdomains during the update procedure.
Therefore, a parallel implementation iterates through the grid in the same way as a sequen-
tial implementation. The computed solutions are independent of how many processors are
used, and the computed solution is always of good quality.

Ghost nodes carry the drawback of needing a synchronisation procedure. Before a
synchronisation of nodal values, all computations must be finalised and the processing
threads must be synchronised. The pHCM method avoids synchronisations of threads by
allowing memory to be shared between different threads [34], resulting in so called false
sharing. Because of the stable upwind stencils, the pHCM method converge to the cor-
rect solution. However, the algorithmic behaviour changes noticeably depending on by
which processor, and in which order, memory is accessed. Similarly to pHCM and FIM,
the ghost nodes can be avoided in LAS and SOLAS. Some minor changes of the reacti-
vation system is then needed, and the synchronization can be entirely avoided. Values are
instead ‘synchronised’ between adjacent subdomains directly when computed. We expect
the performance when running on a few threads to improve significantly, but the number
of iterations will change with the number of threads.

Other methods than 3D PMM should be investigated for the nodal updates within each
subdomain. It is difficult to foresee which type of methods would be better suited. Itera-
tive methods such as SOFI, FIM and Locked Sweeping [40] might perform well since the
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Tv,0,0 >< A T1,0,0
(a) Stencil tetrahedron. (b) One stencil shape. (c) Independent updates.

Figure 15 lllustration of numerical stencil and nodal update procedure of 3D PMM. (a) A stencil shaped
as a tetrahedron, with four characteristics marked with A, B, C and D. Only the solution along characteristic D
is acceptable. (b) The pyramid-shaped stencil used in 3D PMM, consisting of eight tetrahedrons. Nodal values
from the bottom layer is used to update the value of node Tjjx. (c) A layer of pyramid stencils. All top nodes in
the layer can be updated in parallel, since none of the computed values affects the values of other nodes
being updated.

subdomains are rather small. Second order stencils can be implemented with almost no

algorithmic alterations, thereby increasing accuracy further.

Appendix 1: Efficient formulation of the eikonal ‘pyramid’ stencil

The most common way to propagate a front numerically is through use of semi-
Lagrangian [53] or conditional upwind [16, 30] discretisations. The semi-Lagrangian ap-
proach searches through all possible characteristics for the one yielding the minimal dis-
tance. The conditional upwind stencils first solve for a solution, and thereafter accepts the
new estimate only if the associated characteristic originates from within the spatial grid
element, defined as the convex hull of the nodes supporting the stencil. Both approaches
are identical on eikonal formulations but may differ in anisotropic cases [30]. If the char-
acteristic curve originate from outside of the element, the new estimate is not based on
upwind values, and should not be accepted. Due to the isotropic nature of the eikonal
problem one can often formulate upwind conditions for the acceptance of a new estimate
[16]. These conditions can significantly reduce the amount of computations needed to
update a nodal value.

In this appendix we present an efficient stencil for the eikonal equation, derived as a
conditional upwind stencil. The stencil element is shaped as a tetrahedon defined by the
corner nodes X;;x with values T;;x = T(Xj;), as visualised in Figure 15(a). The value T,0,1
for the top node is to be updated using the values Ty 0,0, 71,00 and 7T11,. Four character-
istic curves (dashed arrows) are shown with their entrance points on the bottom surface
defined by nodes ;. Only the solution associated with the characteristic curve D would
be acceptable since the other curves originate from outside the stencil element. When up-
dating a node in 3D PMM, the tetrahedron shape is used eight times in a configuration
that resembles a pyramid, shown in Figure 15(b).

In line with general consensus, the velocity F is assumed to be constant within the ele-
ment. When updating Ty, as in Figure 15(a), only nodes with strictly smaller T values
than Ty, are used. A larger value implies that the front moves away from X{ 1, and to-

wards the position of the larger value. Initially we assume that no new value is found, that
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is
thew < To,0,1- (16)

From the characteristic equations (6) we know that the characteristic coincides with the
gradient n, and since n = VT/||VT| = FVT, we get the following estimates

T1,00 — To0,0
0, 0, - F

i T110 — T100
dx ’ 7 dy '

n, < F 17)

These estimates and the assumption of constant velocity correspond to modelling an ar-
riving front as planar [29]. If n,, > 0, the ray reaching Xy o cuts the bottom surface outside
of the tetrahedron, in areas with negative i offset (ray A). The shortest distance from within
the tetrahedron then originates from the side with i = 0, that is, the new estimate is given
from a two-dimensional diagonal stencil solution s,p(Xp,0,0, X1,0,0) [16]. A similar obser-
vation holds for n,; in order for the characteristic to cut below the line connecting Xy,
and A%, the condition n, dy < n, dx must hold. Otherwise (ray C), the minimal new es-
timate is sop(Xp,0,0, A1,1,0). These conditions results in the following upwind conditions

1f (ny > 0){tnew < min (fnewr S20(Xo,0,0, X1,0,0)) }» (18)

else if (nydy > n, dx){tnew < min(thew S20(Xo,0,0, X110)) }- (19)

Next, n, is estimated using the unit argument of the normal, n? =1 — n2 - ni. To make sure
that the ray originates from a location with i <1 (to remove ray B), the following upwind
condition is needed

elseif (nﬁ dx* <n’ dZZ) { fnew <— min (tnew: s2p(X1,0,0, XI,I,O)) } (20)

This condition also assures that n? > 0. If all upwind conditions are true, the characteristic
curve that cuts node Xy enters the tetrahedron through its base (ray D), and the new

arrival time estimate is

dz
else {tnew <« Top00 + nzf}. (21)

Details for the anisotropic stencil

The anisotropic stencil for equation (3) uses a direct conditional upwind discretisation in
our implementation. Note that nodes upwind of the new solution point can be used in the
anisotropic stencil, as long as the point where the characteristic curve enters the stencil
lies upwind of the updated node [30].

Appendix 2: Subdomains

Subdomains are surrounded by a layer of virtual nodes referred to as ghost nodes. These
ghost nodes are copies of nodes in adjacent subdomains. Since each ghost node exists at
multiple locations, their values must be kept equal at all locations. We refer to the pro-
cedure of comparing such nodal values as synchronisation. Figure 16 is a 2D illustration
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Figure 16 Two neighbouring subdomains, without
and with ghost nodes, top and lower illustrations.
Ghost nodes are coloured in green. Columns of nodes
that exist in both subdomains have been marked with
waves or stripes. Arrows show the direction in which
nodal values are copied between the subdomains. /(ii. i)
Notice that two layers of nodes are synchronised =
between subdomains.
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of subdomains in their logical grid (top) and with the ghost nodes marked by light green
(bottom). Columns of nodes that exists in both subdomains have been marked with waves
and stripes in the lower figure.

Nodes belonging to a subdomain, including the ghost nodes, will during computations
only be accessed, and written to, by the thread(s) updating that subdomain. Two subdo-
mains can be computed simultaneously without any risk of memory interference since all
data is private to the updating thread(s). Ghost nodes have been used and discussed in
relation to front propagation problems in other works [23, 24]. Our use is different, and
details regarding the synchronisation of ghost nodes are given in Section B.1. The compu-

tation of a subdomain using 3D PMM is discussed in Section B.2.

B.1 Synchronisation of nodal values

Consider the two-dimensional case when comparing values from nodes in subdomain
(i1, jj) to values in subdomain (ii + 1,j), as shown with the two lower arrows in Figure 16.
When a computed nodal value, £ in (ii, jj) is compared to its copy £ in (ii + 1,jj), the copy
is only changed if its value is larger than the computed nodes, that is ¢, = min (¢, ¢.). If
at least one node of the inner part of (i + 1,jj) (lower solid arrow in Figure 16) receives a
new value, the subdomain is activated by releasing the compute lock, CL(ii +1, jj) < Open.
A subdomain that receives new values only on its out-most boundary (dashed arrow) does
not need to be activated.

In SOLAS we need the minimum nodal value that activates a subdomain. The minimum
activation value is computed efficiently in our GPU implementation using parallel reduc-
tion. Note that if a tetrahedron (diagonal) stencil is used, the corners will be shared and
updated by eight (four) blocks in three (two) spatial dimensions. However, by synchronis-

ing values in one direction at a time, the corner nodes receive correct solution values.

B.2 Computation of a subdomain

In all our numerical experiments, 3D PMM has been used for the computation of new

nodal values in the subdomains. Here we give a brief description of the method [30, 54].
A specific pyramid shape of the stencil is used, as shown in Figure 15(b), where the

value T}« for the top node of the pyramid is updated. 3D PMM computes layers of nodes,

i
as illustrated in Figure 15(c). Nodes in a layer have one index (i, j or k) in common. All
nodes in one layer can be updated entirely in parallel since there are no dependencies

between the computed nodes, since the value of a top node does not depend on other top
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Algorithm 17 iSUBSwEEP(sd,dir)

comment: Subsweep in a subdomain using in 3D PMM.
STENCIL(By) returns an estimate using values on nodes in
the set By.

T < T values in subdomain sd
if diris 1
then order + 0 to b,
if diris —1
then order < b, + 1 downto 1
for i + order
for each j <+~ 0to b, +1 and k£ < 0 to b, + 1, in parallel
Bx  { Al X, j1q k0,0 € {0,1},b € {0, 1} within sd }
do do thew < STENCIL(By)
if thew < Titair,jk
then Tiiqir jk = tnew

Algorithm 18 CoMPUTESUBDOMAIN(sd)

comment: Computation of nodal values in subdomain sd with 3D PMM.

T < T values in subdomain sd
if CL(sd) is Open)
CL(sd) + Locked
for dir < 1 and —1
then iSUBSWEEP(sd, dir)
do < jSUBSWEEP(sd,dir)
ESUBSWEEP(sd, dir)

nodes, see Figure 15(c). After processing a layer, the computed values are used as bottom-
pyramid values to compute the next layer of nodes. An iteration through the domain for
an increasing or decreasing common index is referred to as a subsweep. A set of all six
subsweeps, increasing and decreasing i, j, k indices, are referred to as a sweep.

Conceptually, the ghost nodes in a subdomain define the boundary condition of the sub-
domain. In our implementation we compute new values also for the ghost nodes. When
the ghost nodes are updated, no values from other subdomains are used in the computa-
tions. Therefore, ‘half’-pyramids are used at the sides, and ‘quarter’-pyramids in the cor-
ners. Pseudocode for a subsweep in the i direction is given in Algorithm 17, where the
layers defined by i = 0 and i = b, + 1 contains only ghost nodes.

A subdomain that is activated receives (at least) one surface with two layers of nodes in
the synchronisation. Assuming that these ‘thick’ boundary values are correct, the charac-
teristic curves are extrapolated to the rest of the subdomain in the sweeps as new solution
values are computed. These ‘thick’ boundary conditions explain why the solution con-
verges fast. On a local scale, the characteristic curves are straight lines, or only slightly
curved, and the solution within a subdomain will often converge in only one sweep. The

final solution remains the same in all our examples whether one, two, or more sweeps are
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used when computing subdomains. Since the total computational time is minimal when
only one sweep is used, we have used only one sweep in the numerical experiments.
After processing a subdomain, the compute lock is closed. As explained above, it can be
opened again during a synchronisation. Algorithm 18 presents pseudocode for the com-
putation of new nodal values in subdomain sd, using 3D PMM. This algorithm, named
ComPUTESUBDOMAINY(), is called from the procedure in Algorithm 3.
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Endnotes
@ Here, the term ‘efficiency’ refers to the ratio between observed speedup and the theoretically possible speedup. For
instance, the LAS speedup of 6.0 for Ex4 running eight cores gives an efficiency of 6.0/8 ~ 75%.

B The CES software is only available on the Ivy platform running in double precision. Experiments indicate that single
precision computations on Ivy runs at about 90% of the time used in double precision. Therefore, the CES times for
single precision experiments are constructed by multiplying the observations for double precision with a factor 0.9.

Received: 24 February 2014 Accepted: 30 June 2014 Published: 24 Jul 2014

References

1. Sethian JA: Level Set Methods and Fast Marching Methods: Evolving Interfaces in Computational Geometry, Fluid
Mechanics, Computer Vision, and Materials Science. 2nd edition. Cambridge: Cambridge University Press; 1999.

2. Rawlinson N, Hauser J, Sambridge M: Seismic ray tracing and wavefront tracking in laterally heterogeneous
media. Adv. Geophys. 2009, 49:203-267.

3. Gillberg T: A semi-ordered fast iterative method (SOFI) for monotone front propagation in simulations of
geological folding. In MODSIM2011, 19th International Congress on Modelling and Simulation; 2011:641-647.

4. Gillberg T: Fast and accurate front propagation for simulation of geological folds. PhD thesis. University of Oslo;
2013.

5. Natvig JR, Lie K-A: Fast computation of multiphase flow in porous media by implicit discontinuous Galerkin
schemes with optimal ordering of elements. J. Comput. Phys. 2008, 227(24):10108-10124.

6. Kornhauser ET: Ray theory for moving fluids. J. Acoust. Soc. Am. 1953, 25(5):945-949.

7. Podvin P, Lecomte I: Finite difference computation of traveltimes in very contrasted velocity models: a massively
parallel approach and its associated tools. Geophys. J. Int. 1991, 105:271-284.

8. Li'S, Mueller K, Jackowski M, Dione D, Staib L: Physical-space refraction-corrected transmission ultrasound
computed tomography made computationally practical. In Medical Image Computing and Computer-Assisted
Intervention - MICCAI 2008. Berlin: Springer; 2008:280-288. [Lecture Notes in Computer Science, vol. 5242.]

9. Wallman M, Smith NP, Rodriguez B: A comparative study of graph-based, eikonal, and monodomain simulations
for the estimation of cardiac activation times. IEEE Trans. Biomed. Eng. 2012, 59(6):1739-1748.

10. Jeong W-K, Fletcher PT, Tao R, Whitaker R: Interactive visualization of volumetric white matter connectivity in
DT-MRI using a parallel-hardware Hamilton-Jacobi solver. [EEE Trans. Vis. Comput. Graph. 2007, 13(6):1480-1487.

11. Rawlinson N, Sambridge M: Multiple reflection and transmission phases in complex layered media using a
multistage fast marching method. Geophysics 2004, 69(5):1338-1350.

12. Petersen SA, Hjelle @, Hustoft S, Haubiers M: Process based data-restoration and model-reconstruction workflow
for seismic interpretation and model building. In EAGE 74th Conference & Exhibition, Extended Abstracts; 2012.

13. Petersen SA, Hjelle @: Earth recursion, an important component in shared earth model builders. In EAGE 70th
Conference & Exhibition, Extended Abstracts; 2008.

14. Cerveny V: Seismic Ray Theory. Cambridge: Cambridge University Press; 2001.

15. Hjelle @, Petersen SA: A Hamilton-Jacobi framework for modeling folds in structural geology. Math. Geosci. 2011,
43(7):741-761.

16. Gillberg T, Hjelle @, Bruaset AM: Accuracy and efficiency of stencils for the eikonal equation in earth modelling.
Comput. Geosci. 2012, 16(4):933-952.

17. Chopp D: Recent advances in the level set method. In Handbook of Biomedical Image Analysis. Edited by
Micheli-Tzanakou E, Suri JS, Wilson DL, Laxminarayan S. New York: Springer; 2005:201-256.

18. Tsitsiklis JN: Efficient algorithms for globally optimal trajectories. IEEE Trans. Autom. Control 1995, 40(9):1528-1538.

19. Cacace S, Cristiani E, Falcone M: Requiem for local single-pass methods solving stationary Hamilton-Jacobi
equations? 2013 [arXiv:1301.6775]

20. Sethian JA, Vladimirsky A: Ordered upwind methods for static Hamilton-Jacobi equation: theory and algorithms.
SIAM J. Numer. Anal. 2003, 41(1):325-363.


http://www.mathematicsinindustry.com/content/4/1/10
http://arxiv.org/abs/arXiv:1301.6775

Gillberg et al. Journal of Mathematics in Industry 2014, 4:10
http://www.mathematicsinindustry.com/content/4/1/10

21.

22.

23.

24.

25.
26.

27.
28.

29.

30.

31.
32.
33
34.
35.
36.
37.

38.
39.

40.

41.

42.
43.

44,

45.
46.

47.
48.
49.
50.
51
52.

53.

54.

Hjelle @, Petersen SA, Bruaset AM: A numerical framework for modeling folds in structural geology. Math. Geosci.
2013, 45(3):255-276.

Zhang J, Huang Y, Song L-P, Liu Q-H: Fast and accurate 3-D ray tracing using bilinear traveltime interpolation and
the wave front group marching. Geophys. J. Int. 2011, 184(3):1327-1340.

Herrmann M: A domain decomposition parallelization of the fast marching method. In Annual Research Briefs 2003.
Stanford: Center for Turbulence Research, Stanford University; 2003:213-225.

Tugurlan MC: Fast marching methods - parallel implementation and analysis. PhD thesis. Louisiana State University
and Agricultural and Mechanical College; 2008.

Zhao H-K: A fast sweeping method for eikonal equations. Math. Comput. 2004, 74(250):603-627.

Qian J, Zhang Y-T, Zhao H-K: A fast sweeping method for static convex Hamilton-Jacobi equations. J. Sci. Comput.
2007,31(1-2):237-271.

Zhao H-K: Parallel implementations of the fast sweeping method. J. Comput. Math. 2007, 25(4):421-429.

Detrixhe M, Gibou F, Min C: A parallel fast sweeping method for the eikonal equation. J. Comput. Phys. 2013,
237:46-55.

Weber O, Devir YS, Bronstein AM, Bronstein MM, Kimmel R: Parallel algorithms for approximation of distance maps
on parametric surfaces. ACM Trans. Graph. (TOG) 2008, 27(4):104:1-104:16.

Gillberg T, Sourouri M, Cai X: A new parallel 3D front propagation algorithm for fast simulation of geological folds.
Proc. Comput. Sci. 2012, 9:947-955. Proceedings of the International Conference on Computational Science, ICCS
2012.

Gillberg T, Hjelle @, Bruaset AM: A parallel 3D front propagation algorithm for simulation of geological folding on
GPUs. In EAGE 74th Conference & Exhibition, Extended Abstracts; 2012.

Gremaud PA, Kuster CM: Computational study of fast methods for the eikonal equation. SIAM J. Sci. Comput. 2006,
27(6):1803-1816.

Hysing S-R, Turek S: The eikonal equation: numerical efficiency vs. algorithmic complexity on quadrilateral grids.
In Proceedings of ALGORITMY; 2005.

Chacon A, Vladimirsky A: A parallel heap-cell method for eikonal equations; 2013 [arXiv:1306.4743]

Chacon A, Vladimirsky A: Fast two-scale methods for eikonal equations. SIAM J. Sci. Comput. 2012, 34(2):A547-A578.
Glover F, Klingman D, Phillips N: A new polynomially bounded shortest path algorithm. Oper. Res. 1985, 33(1):65-73.
Dejnozkova E, Dokladal P: A parallel algorithm for solving the eikonal equation. In /EEE International Conference on
Acoustics, Speech, and Signal Processing, 2003. Volume 3; 2003:325-328. IEEE.

Jeong W-K, Whitaker RT: A fast iterative method for eikonal equations. SIAM J. Sci. Comput. 2008, 30(5):2512-2534.
Fu Z, Jeong W-K, Pan Y, Kirby RM, Whitaker RT: A fast iterative method for solving the eikonal equation on
triangulated surfaces. SIAM J. Sci. Comput. 2011, 33(5):2468-2488.

Bak S, MclLaughlin J, Renzi D: Some improvements for the fast sweeping method. SIAM J. Sci. Comput. 2010,
32(5):2853-2874.

Jeong W-K, Whitaker RT: A fast iterative method for a class of Hamilton-Jacobi equations on parallel systems.
Technical report. University of Utah; 2007.

Tanenbaum AS: 2. Modern Operating Systems. 3rd edition. Upper Saddle River: Prentice Hall; 2007.

Kjolstad FB, Snir M: Ghost cell pattern. In Proceedings of the 2010 Workshop on Parallel Programming Patterns. ParaPLoP
"10. New York: ACM; 2010:4-149.

Rivera G, Tseng C-W: Tiling optimizations for 3D scientific computations. In Proceedings of the 2000 ACM/IEEE
Conference on Supercomputing. Supercomputing ‘00. Washington: IEEE Computer Society; 2000:1-23.

Nvidia: CUDA C programming guide; 2012 [http://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html]
Michéa D, Komatitsch D: Accelerating a three-dimensional finite-difference wave propagation code using GPU
graphics cards. Geophys. J. Int. 2010, 182(1):389-402.

Nvidia: CUDA C Best Practices Guide; 2012 [http://docs.nvidia.com/cuda/cuda-c-best-practices-guide/index.html]
Nvidia: CUDA driver API; 2013 [http://docs.nvidia.com/cuda/cuda-driver-api/index.html]

OpenMPorg: OpenMP application program interface; 2013 [http://openmp.org/]

Nvidia: What is CUDA; 2013 [https://developer.nvidia.com/what-cuda]

Nvidia: CUDA occupancy calculator; 2012,

Kadlec B, Dorn G: Leveraging graphics processing units (GPUs) for real-time seismic interpretation. Lead. Edge
2010, 29(1):60-66.

Cristiani E, Falcone M: Fast semi-Lagrangian schemes for the eikonal equation and applications. SIAM J. Numer.
Anal. 2007, 45(5):1979-2011.

Sourouri M: A parallel front propagation method: simulating geological folds on parallel architectures. Master’s
thesis. University of Oslo; 2012.

10.1186/2190-5983-4-10
Cite this article as: Gillberg et al.: Parallel solutions of static Hamilton-Jacobi equations for simulations of geological
folds. Journal of Mathematics in Industry 2014, 4:10

Page 31 of 31


http://www.mathematicsinindustry.com/content/4/1/10
http://arxiv.org/abs/arXiv:1306.4743
http://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html
http://docs.nvidia.com/cuda/cuda-c-best-practices-guide/index.html
http://docs.nvidia.com/cuda/cuda-driver-api/index.html
http://openmp.org/
https://developer.nvidia.com/what-cuda

	Parallel solutions of static Hamilton-Jacobi equations for simulations of geological folds
	Abstract
	Keywords

	Static Hamilton-Jacobi equations
	A mathematical framework for propagating fronts
	Applications
	The compound earth simulator
	The ray equations

	Numerical solution methods
	Tracking methods
	Iterative methods
	Label correcting methods


	Developing fast parallel solvers
	Algorithmic inspiration
	Two-scale methods
	Domain decomposition
	Locks

	Two new algorithms
	Algorithmic framework
	Generic solver
	The list of active subdomains method
	The semi-ordered list of active subdomains method

	Algorithmic observations and implementation details
	Initial computations
	Blocking for cache
	Sliding window
	List building in GPU implementations
	Kernel timeout on GPUs


	Numerical veriﬁcation
	Deﬁnitions
	Computing platforms
	Sizing subdomains
	Synthetic examples
	Example with analytic solution
	Accuracy and convergence

	Examples with curved characteristics
	Performance for the obstacle problems
	Performance for the velocity-cubes problem
	Overall performance for the synthetic examples


	Single versus double precision arithmetics
	Fold simulation

	Conclusions
	Possible extensions of the presented work

	Appendix 1: Efﬁcient formulation of the eikonal `pyramid' stencil
	Appendix 2: Subdomains
	Competing interests
	Authors' contributions
	Acknowledgements
	Endnotes
	References


