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This paper presents the development of soft sensor empirical models using support 
vector machine (SVM) for the continual assessment of 2,3-dimethylbutane and 2-methyl
pentane mole percentage as important product quality indicators in the refinery isomeri-
sation process. During the model development, critical steps were taken, including selec-
tion and pre-processing of the industrial process data, which are broadly discussed in this 
paper. The SVM model results were compared with dynamic linear output error model 
and nonlinear Hammerstein-Wiener model. Evaluation of the developed models on inde-
pendent data sets showed their reliability in the assessment of the component contents. 
The soft sensors are to be embedded into the process control system, and serve primarily 
as a replacement during the process analysers’ failure and service periods.
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Introduction

Process analysers, used for measurement of 
key process variables, are often weak links in refin-
ery plants. Their long analysis time, tendency of 
failure, and high price usually make them impracti-
cal and unprofitable. Soft sensors that enable re-
al-time prediction of key product properties occur 
as an alternative to process analysers.

Rarely used as first principle modelling and 
more often as data-driven mathematical models, soft 
sensors can well describe dynamics of complex in-
dustrial processes1.

This paper presents data-driven soft sensors 
which have common steps in the development pro-
cedure: selection of real process data from plant 
history database, data pre-processing, determination 
of a model structure and regressors, model estima-
tion and validation2.

The support vector machine is a popular meth-
od for soft sensor model development presented by 
Vapnik3 as part of a general learning theory. The 
method has attractive features, such as the ability to 
learn well with only a very small number of free 

parameters, robustness, and computational efficiency 
compared to several other methods4.

The method is widely used for nonlinear sys-
tem identification required in the process industry.

The application of SVM has been described in 
many published papers over the past few years. 
Meng et al.5 developed data-driven soft sensor 
based on twin support vector regression for cane 
sugar crystallisation. Ibrahim et al.6 used SVM and 
surrogate column models for a novel optimisa-
tion-based design of crude oil distillation units. Lv 
et al.7 proposed SVM-based model for puerarin ex-
traction. Shokri et al.8 developed SVM model for 
the prediction of the content of hydrogen sulphide 
in the hydrotreatment (HDT) refinery process. Sup-
port vector machine is presented in the papers by 
Xu et al.9 where least squares support vector ma-
chine (LS-SVM) is used for gas flow measurements, 
while Cheng and Liu10 used LS-SVM to propose 
online soft sensor for product quality monitoring in 
propylene polymerisation process. Some earlier 
works should be mentioned, such as the paper by 
Yan et al.11 where SVM was introduced during soft 
sensor modelling for light gas oil freezing point as-
sessment in the distillation process, as well as the 
paper by Li et al.12 who developed the model for 
kerosene dry point assessment based on least 
squares support vector machine (LS-SVM).

The research and application of soft sensors on 
an isomerisation process are still rare. Lukec et al.13 
proposed application of a software analyser for online 
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estimation of isopentane content in the deisopentan-
iser column top product, in the feed treatment sec-
tion for the isomerisation process, while Xianghua 
et al.14 presented the model for para-xylene content 
estimation at an isomerisation unit reactor outlet.

In our research, development of soft sensor em-
pirical models based on SVM for the continual as-
sessment of mole percentage of 2,3-dimethylbutane 
and 2-methylpentane in the product streams of the 
refinery isomerisation process is presented. These 
components directly affect the octane number of the 
isomerate – the product of the isomerisation pro-
cess. The model development procedure and the 
model results are presented and discussed.

Material and methods

In this section, SVM, along with the dynamic 
output error and Hammerstein-Wiener model struc-
ture are briefly explained. A particular part is dedi-
cated to the description of the refinery isomerisation 
process, while soft sensor model development is 
explained in detail.

SVM model structure

The basic idea of support vector machine can 
be expressed as shown in Fig. 1. Input space ob-
jects, separated with a complex non-linear curve, 
are mapped (rearranged) into a so-called feature 
space, where the objects are linearly separable, i.e., 
an optimal separable curve can be found15.

Mathematically it can be represented by Eq. (1), 
where the feature space linear regression function is 
a solution to the nonlinear regression problem:
	 ( ) ( ( ))f b= ⋅Φ +x w x 	 (1)
where x is the input vector, w is the load vector, b is 
a non-variable value, Φ(x) is a “feature” function, 
and (w · Φ(x)) is the scalar product in the “feature” 
space. In order to obtain a model, the optimisation 
problem of so-called structural risk minimisation 

principle should be solved. Employing the com-
monly used ε-intensive cost function and inserting 
an adjusting constant C, problem, which is being 
optimised, from Eq. (1) we obtain:
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where the adjusting constant, C, is a “penalty” fac-
tor of the model complexity 2w , while ε is the pa-
rameter of the ε-intensive cost function and rep-
resents the tube radius located around the function 
f(x) (Fig. 2)15.

Deviation outside the [ε, -ε] region denotes  
the forecast error, represented by formulation  
 *

1
( )

n

i i
i

C ξ ξ
=

+∑ , using the slack variables ξ and ξ*. 

The points on the surface and outside the ε-tube are 
called support vectors (SV). The percentage of SVs 
affects the model accuracy – as the percentage of 
SVs decreases, a more flattened model is obtained 
and vice versa15.

The solution of the optimization problem ex-
pressed in Eq. (2) is presented by the equation:
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where K(x, xi) is a kernel function, and α, α* are 
Lagrange multipliers. Radial basis function (RBF) 
is the most used kernel function, and is defined as:

	
2( , ) exp( )i iK γ= − −x x x x 	 (5)

where γ is the free parameter of RBF. Kernel func-
tion “avoids” cumbersome mathematical operations 
that take up a lot of computational time15.

F i g .  1  – Basic idea of SVM
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Dynamic linear OE and nonlinear HW model 
structure

Dynamic linear and nonlinear models are con-
cisely explained by Ljung16.

OE model is the most complex linear dynamic 
model usually used for soft sensor model develop-
ment. The model predictor is 

	 ˆ ˆ( ) [1 ( )] ( ) ( ) ( )y t q y t q u t nk= − + −F B 	 (6)

where B(q) = B1 + B2 q
–1 +…+ Bnb q

–nb+1 is polyno-
mial matrix by q–1 dimensions n(y)×n(u), nb is the 
number of past process inputs, and nk is the input 
time delay expressed by the number of samples. 
F(q) = 1 + F1  q

–1 + F2  q
–2 +…+ Fnf q

–nf is polynomial 
matrix by q–1 dimensions n(ŷ) × n(ŷ), nf is the num-
ber of past outputs predicted by the model.

The most complex nonlinear dynamic model is 
HW. It has a block structure described by 3 func-

tions: w(t) = f (u(t)) is a nonlinear function trans-
forming input data u(t), x(t) = (B / F) w(t) is a linear 
transfer function where B and F are polynomials of 
the OE model, and ŷ (t) = h (x(t)) is a nonlinear 
function mapping output data x(t) from the linear 
block to the model output. Nonlinear function could 
be represented with many nonlinear units, such as 
wavelet, sigmoid, piecewise-linear, and others.

Process description

The goal of the refinery isomerisation process 
is to upgrade the octane of light straight-run naph-
tha, processing paraffin (mainly pentane and hex-
ane) together with hydrogen on a low-temperature, 
noble-metal, fix-bed catalyst, which is mainly used 
today. In more detail, the feed paraffin is converted 
to high-octane iso-structures – normal pentane (nC5) 
to isopentane (iC5), and normal hexane (nC6) to 2,2 
and 2,3-dimethylbutane. Process conditions im-
prove isomerisation and reduce unfavourable reac-
tions (e.g., hydrocracking), and are featured by me-
dium operating pressure, low temperature, and low 
hydrogen partial pressure17.

According to the process flow diagram (Fig. 3), 
the dried feed is mixed with make-up hydrogen, and 
heated before entering the reactor section. After 
passing the reactors, the isomerised product is stabi-
lized in the stabilizer column, where the liquid from 
the stabilizer bottom passes to gasoline blending, 
while the stabilizer overhead vapour product flows 
to a fuel gas system, before being caustic scrubbed 
with in aim of removing the HCl formed from or-
ganic chloride added to the reactor feed to maintain 
catalyst activity17.

F i g .  2  – Graphical representation of SVM15

F i g .  3  – Straight-through isomerisation process17
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A straight-through isomerization process can 
be improved by separating the stabilizer bottoms 
into normal and isoparaffin components by adding a 
deisohexanizer column (DIH) (Fig. 4).

The DIH column sidecut stream concentrates 
non-converted n-paraffins and newly-formed 
low-octane methylpentanes, and returns them to the 
reactor section. The isomerate is then drawn from 
the column top, while the heptane fraction is drawn 
from the column bottom17.

Fig. 5 depicts the process flow diagram of the 
observed plant deisohexanizer section with the de-
isohexanizer column as its part. All process and 
measuring equipment, as well as control loops, are 
shown.

Soft sensor model development

2,3-DMB and 2-MP come out as key compo-
nents of isomerate – the product of the refinery 
isomerisation process improved by adding a DIH 
distillation column. The components affect the oc-
tane-number of the product. High-octane 2,3-DMB 
and low-octane 2-MP mole fractions are measured 
on-line by process analysers in the DIH sidecut 
stream and in the DIH overhead, respectively, keep-
ing 2,3-DMB in the column top and 2-MP in the 
side of the column to regulate their molar percent-

age18. The components are also analysed by labora-
tory assays once a day.

As the process analysers quite often become 
unavailable due to failures and have long time de-
lays, it was decided to develop soft sensors that 
would find their applications primarily as the analy-
sers’ replacement.

Soft sensor development has a common proce-
dure, as follows:
–  potentially influential variable selection,
–  data collection and pre-processing,
–  preliminary research,
–  model structure and regressor selection, model 

estimation, and validation,
–  model implementation.

Potentially influential variable selection

Based on process studies and consultations 
with process experts, the potentially influential vari-
ables for 2,3-DMB and 2-MP SVM soft sensor mod-
el development were selected as shown in Table 1.

Data collection and pre-processing

Experimental data for model development were 
acquired from the plant history database containing 

F i g .  4  – Deisohexanizer column
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F i g .  5  – Process flow diagram of the observed plant deisohexanizer section
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up to a few years back historical data recorded ev-
ery minute.

Data were collected for eight potentially influ-
ential variables (Table 1), and for 2,3-DMB and 
2-MP content. Special attention was paid to select-
ing the data period covering significant process dy-
namics. After the data were collected over several 
periods, lasting from 2–3 weeks to about 2 years, 
the data were pre-processed, including sample peri-
od determination, detection of outliers, and interpo-
lation of missing data.

According to process dynamics influential vari-
able (further referred to as input variable), the sam-
ple period of 3 minutes was evaluated as suitable. 
Process analyser data (further referred to as output 
variable) sample period was 30 minutes. The miss-
ing data were interpolated using cubic spline inter-
polation.

Additional data can be generated using cubic 
spline or Multivariate adaptive regression spline 
methods. MARSpline is normally used where there 
is more than one input variable, as well as when the 
output variable sample time is long19. Otherwise, 
the data interpolated using cubic spline have no 
physical bases, i.e., a relationship between input 
and output variables is not taken into account. How-
ever, due to the fact that refinery processes are quite 
inertial, this method can be considered sufficiently 
reliable20.

The common methods for detection of outliers 
are 3-sigma21, as well as principal component anal-
ysis (PCA) and partial least squares (PLS) meth-
ods22, which perform only statistical inspection of 
data and tend to remove peak values that can con-
tain useful information about process dynamics. 
Therefore, the procedure of outlier detection cannot 
be a fully automated process, and data always 
should be checked visually. All data collected were 
visually checked and the amount of outliers detect-
ed was negligible.

Preliminary research

Since SVM models are static, it is very import-
ant to determine the output variable time delays re-
garding the change in the value of each input vari-
able.

The output variable time delays were deter-
mined for 2,3-DMB and 2-MP content, respectively. 
For this purpose, an experiment on the observed 
plant was performed.

In the case of 2,3-DMB, it was observed how a 
change in one variable caused changes in others. As 
may be seen in Fig. 5, the V17 reflux flow rate 
(FIR-028) was reduced slightly, and measured were 
the time periods until the change in the V17 over-
head vapor temperature (TIR-046), in the 21st V17 
tray temperature (TIRC-047), and finally in the val-
ue of 2,3-DMB content in the V17 side product (de-
termined by AIR-004B chromatograph). A relative-
ly quick response was noticed. After 2 minutes, the 
top column temperature (TIR-046) and the tempera-
ture on the 21st tray (TIRC-047) started to rise. Af-
ter 4 minutes, 2,3-DMB content reacted in the side 
product – it increased slightly. At once, 2,3-DMB 
content value time delay in regards to the change in 
FIR-028 and FIRC-029 input variable, respectively, 
was 4 minutes. Consequently, it was concluded that, 
for TIR-046 and TIRC-047 input variable, respec-
tively, time delay was 2 minutes. Since TIR-045 in-
put variable was installed upstream of the AIR-
004B chromatographic analyser, and between them 
there were only the P10A/B pump and the EA03 air 
cooler, the time delay was short (0 – 2 minutes). 
Therefore, time delays were determined exactly for 
the following variables: TIR-046, TIRC-047, TIR-
045, FIR-028 and FIRC-029.

In the case of 2-MP time delays, 2-MP content 
(determined by the AIR-005B chromatograph) had 
not changed during the experiment. In order not to 
affect the process regime, the experiment could not 
be carried out further and had to be stopped. There-
fore, the output variable time delays in this case 
were determined by a calculation procedure. The 
main issue was to determine the time until the com-
position in the V12 separator had changed. Due to 
the relatively large separator volume (about 107 m3), 
change in composition took considerable time. 
Based on simple hydraulic calculation schematical-
ly represented in Fig. 623, using data on the mass 
flow rate of the V17 top product vapours, density, 
pipe diameters and lengths between the V17 col-
umn, the V12 separator and the AIR-005B chro-
matograph, as well as the V12 volume, the time 
until the composition in the V12 separator had 
changed was calculated. Taking into account the 
data obtained by the experiment, 2-MP content val-
ue time delays were determined for those variables 

Ta b l e  1 	–	Potentially influential variables18

Variable Tag Unit

V17 overhead vapor temperature TIR-046 °C

21st V17 tray temperature TIRC-047 °C

V17 side product temperature TIR-045 °C

V17 bottom product temperature TIR-049 °C

V17 reflux flow FIR-028 m3 h–1

V17 reflux flow and isomerate flow to 
storage sum FIRC-029 m3 h–1

V17 side product flow FIRC-020 m3 h–1

V17 bottom product flow FIRC-026 m3 h–1
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as in the case of 2,3-DMB content: TIR-046, TIRC-
047, TIR-045, FIR-028, and FIRC-029.

For TIR-049, FIRC-020, and FIRC-026 vari-
ables regarding both 2,3-DMB and 2-MP content, 
the calculation procedure was the same. However, 
due to the complex construction of the V17 column, 
the obtained results could not be considered accu-
rate but only rough.

The output variable time delay results are dis-
played and additionally discussed in the next sec-
tion “Results and discussion”.

After delays had been determined, the correla-
tion analysis was performed on the selected poten-
tially input variables, obtaining Pearson linear cor-
relations24 among the input and output variables. 
The analysis was performed on two independent 
data periods (during 2015 and 2016, respectively). 
The results are displayed and discussed in the next 
section.

Among several data periods researched, peri-
ods were found when the observed plant was in re-
duced product regime. However, since such periods 
are still rare, these data were not considered as po-
tential for the software sensor development.

Performed were descriptive statistics of the in-
put and output variables for the selected data peri-
ods, as presented in the “Results and discussion” 
section.

Model structure and regressor selection, model 
estimation and validation

SVM models were developed using TIBCO 
Statistica software. Selected data for model devel-
opment were divided randomly: 75 % for training 
data, and 25 % for model validation. Randomly di-
vided data enabled the selection of data of greater 
diversity for training, and consequently, better mod-
el results.

Obtained output variable time delays were in-
corporated into the software in such a way that each 
“excel like” data column, representing the input 
variable, was moved backwards in regards to the 
output variable data column by the number of steps 
equal to a time delay (one step is 3 minutes). The 
delay steps are presented in Tables 2 and 3.

Free model coefficients, C and ε, were opti-
mized by a grid search algorithm defining the search 
interval for each coefficient. The coefficient of radi-
al basis kernel function, γ, was initially set at the 
default value of 0.167, and then adjusted by tri-
al-and-error. The procedure was repeated with the 
number of iterations defined in the range from  
1 000 to 1 000 000. The algorithm calculation was 
stopped, and the SVM was considered to have been 
trained sufficiently when the training error reached 
the value of 0.001 % mole15.

Ta b l e  2 	–	2,3-DMB content value time delays in regards to 
the change in the value of each input variable

Variable tag Delay, min Number of steps equal to a delay 
(one step is 3 min)

TIR-046 2 1

TIRC-047 2 1

TIR-045 0 – 2 1

TIR-049 5 2

FIR-028 4 2

FIRC-029 4 2

FIRC-020 2 – 4 1

FIRC-026 8 – 10 3

Ta b l e  3 	–	2-MP content value time delays in regards to the 
change in the value of each input variable

Variable tag Delay, min Number of steps equal to a delay 
(one step is 3 min)

TIR-046 8 – 9 3

TIRC-047 8 – 9 3

TIR-045 8 – 11 3

TIR-049 13 – 16 5

FIR-028 10 – 11 4

FIRC-029 10 – 11 4

FIRC-020 10 – 13 4

FIRC-026 16 – 19 6

F i g .  6  – Transport delay calculating procedure23
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Developed models were validated based on FIT 
values, final prediction error (FPE), root mean square 
error (RMSE), and mean absolute error (MAE).

Model implementation

Implementation of the model to the refinery 
isomerisation process is underway. The goal is to 
implement the developed models into the module 
for advanced process control in plant DCS. The 
new variable labels for 2,3-DMB and 2-MP content 
predicted by the model, will be created and stored 
in the process history database.

Results and discussion

In this section, the results obtained from data 
collection and pre-processing, preliminary research 
– including calculation of input variables time de-
lays, performance of the correlation analysis and 
descriptive statistics, as well as the developed 2,3-
DMB and 2-MP content SVM model results com-
pared with dynamic linear OE and nonlinear HW 
model, are presented and discussed.

Interpolation of missing data

Fig. 7 shows a part of cubic spline interpolated 
output data compared with the real measurements 
(stepped curve). Very good interpolation of missing 
data can be observed.

Determining time delays

From Table 2 it can be seen that the time delays 
are relatively small. AIRC-004A chromatographic 
analyser on V17 sidecut product line was installed 
with no upstream accumulated liquid vessel, e.g., a 
separator, etc. (Fig. 5), that can consequently slow 
down a mass transfer.

In the case of 2-MP content, the time delays are 
larger than in the case of 2,3-DMB. This is mainly 
due to the aforementioned V12 separator, i.e., AIR-
005B chromatograph installed downstream of it.

Correlation analysis

Tables 4 and 5 show Pearson’s linear correlation 
coefficients between the input and output variables 
within 2015 and 2016 data period, respectively.

Observing the tables, it can be concluded that 
most of the inputs had significant impact on the out-
puts. However, from Table 4 it can be seen that, for 
all four outputs, the potential input variable FIRC-
020 (V17 side product flow) had low correlations, 
and could be excluded as the model input. Also, for 
data according to Table 5, the potential inputs FIRC-
020 and FIRC-026 (V17 bottom product flow) 
could be excluded.

The time delays were not taken into account.

Final input variables and model determination 
periods

Earlier research18 on dynamic polynomial mod-
els has shown that much better results had been ob-
tained for 2,3-DMB content models during 2015 
data period, while in the case of 2-MP, the better 
results were during 2016. Due to the direct compar-
ison of SVM model results with the results of the 
dynamic polynomial, the development of the pro-
posed SVM models was based on the same corre-
sponding periods. In the case of 2,3-DMB content 
SVM model, the range was from November 27 to 
December 11, 2015, comprising 6 667 measured 
data, while in the case of 2-MP model, the range 
was from January 1 to January 21, 2016, compris-
ing 10 078 measured data, for each of the input 
variables and the outputs.

F i g .  7  – Cubic spline interpolated output data and the real analyser output
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The final number of the input variables for the 
development of the SVM models based on the cor-
relation coefficient results given in Tables 4 and 5 is 
given in Tables 6 and 7.

Descriptive statistics

Tables 8 and 9 show the descriptive statistics of 
the input and output variables within 2015 and 2016 
data period, respectively.

Ta b l e  4 	–	Correlation coefficient results within 2015 data period

TIR 046 TIRC 047 TIR 045 TIR 049 FIR 028 FIRC 029 FIRC 020 FIRC 026 AIR 004B AIR 005B

TIR-046 1.00 0.90 0.71 –0.50 –0.88 –0.33 –0.10 0.36 –0.88 0.93

TIRC-047 1.00 0.65 –0.50 –0.81 –0.23 –0.17 0.26 –0.87 0.84

TIR-045 1.00 –0.39 –0.63 –0.22 –0.20 0.27 –0.62 0.57

TIR-049 1.00 0.38 0.17 0.22 –0.19 0.30 –0.36

FIR-028 1.00 0.43 0.05 –0.24 0.83 –0.83

FIRC-029 1.00 –0.09 –0.18 0.36 –0.32

FIRC-020 1.00 –0.06 0.10 –0.04

FIRC-026 1.00 –0.35 0.42

AIR-004B 1.00 –0.92

AIR-005B 1.00

Ta b l e  5 	–	Correlation coefficient results within 2016 data period

TIR 046 TIRC 047 TIR 045 TIR 049 FIR 028 FIRC 029 FIRC 020 FIRC 026 AIR 004B AIR 005B

TIR-046 1.00 0.94 0.72 –0.59 –0.68 –0.31 –0.24 –0.22 –0.70 0.82

TIRC-047 1.00 0.73 –0.55 –0.74 –0.28 –0.21 –0.24 –0.75 0.85

TIR-045 1.00 –0.20 –0.33 –0.15 –0.10 –0.17 –0.43 0.45

TIR-049 1.00 0.42 0.11 0.20 0.47 0.29 –0.45

FIR-028 1.00 0.49 0.25 0.24 0.68 –0.78

FIRC-029 1.00 0.23 0.08 0.44 –0.37

FIRC-020 1.00 0.18 0.26 –0.20

FIRC-026 1.00 0.13 –0.08

AIR-004B 1.00 –0.88

AIR-005B 1.00

Ta b l e  6 	–	Input variables for the development of 2,3-DMB 
content SVM model

No. Variable Tag Unit

1 V17 overhead vapor temperature TIR-046 °C

2 21st V17 tray temperature TIRC-047 °C

3 V17 side product temperature TIR-045 °C

4 V17 bottom product temperature TIR-049 °C

5 V17 reflux flow FIR-028 m3 h–1

6 V17 reflux flow and isomerate  
flow to storage sum

FIRC-029 m3 h–1

7 V17 bottom product flow FIRC-026 m3 h–1

Ta b l e  7 	–	Input variables for the development of 2-MP con-
tent SVM model

No. Variable Tag Unit

1 V17 overhead vapor temperature TIR-046 °C

2 21st V17 tray temperature TIRC-047 °C

3 V17 side product temperature TIR-045 °C

4 V17 bottom product temperature TIR-049 °C

5 V17 reflux flow FIR-028 m3 h–1

6 V17 reflux flow and isomerate  
flow to storage sum

FIRC-029 m3 h–1
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Laboratory analyses

Figs. 8 and 9 show comparison between the on-
line chromatographic analysers data (2,3-DMB, 2-MP 
contents) and the laboratory assays within 2015 and 
2016 data period, respectively.

From the plots, a good correlation between 
measured and laboratory data can be observed, 
which proves the accuracy of the on-line chromato-
graphic analysers, i.e., validity of the selected data 
periods.

Model evaluation results

Based on statistical criteria, Tables 10 and 11 
show validation of SVM as well as OE and HW 
models on validation data set for estimating the 
content of 2,3-DMB and 2-MP in the isomerisation 
process DIH column side and top product, respec-
tively.

As may be seen from Table 10, 2,3-DMB con-
tent SVM model shows superior results compared 
to both dynamic polynomial OE and HW model, 
respectively, with only 3 model free coefficients (C, 
ε and γ).

Table 11 shows that the dynamic models are 
better; however, with dozens of model free coeffi-
cients.

The FIT values, as well as the values of FPE, 
RMSE, and MAE of the SVM models, indicate sat-

isfactory assessment meaning that the process dy-
namics were well described.

It is easy to conclude that the SVM models are 
better for implementation than dynamic polynomial 
linear or nonlinear models, which also contributes 
to the robustness of the SVM models.

Ta b l e  8 	–	Descriptive statistics within 2015 data period15

Variable Samples Mean Median Min Max Variance Std. dev.

TIR-046 6667 75.43 75.72 72.54 77.57 1.083 1.041

TIRC-047 6667 87.29 87.65 82.55 88.40 1.072 1.035

TIR-045 6667 97.23 97.26 96.19 98.19 0.072 0.268

TIR-049 6667 121.7 121.8 117.4 125.0 1.078 1.038

FIR-028 6667 378.2 377.4 360.8 397.5 38.22 6.182

FIRC-029 6667 426.2 426.5 404.7 448.9 29.69 5.448

FIRC-026 6667 5.534 5.497 2.966 11.00 1.826 1.351

AIR-004B 6667 7.417 7.278 5.871 10.12 0.605 0.778

Ta b l e  9 	–	Descriptive statistics within 2016 data period15

Variable Samples Mean Median Min Max Variance Std. dev.

TIR-046 10078 75.93 75.99 73.44 77.89 0.804 0.897

TIRC-047 10078 87.67 87.76 86.26 88.65 0.175 0.418

TIR-045 10078 97.15 97.16 96.21 97.89 0.060 0.245

TIR-049 10078 122.7 122.8 119.6 125.3 1.004 1.002

FIR-028 10078 372.4 372.2 357.1 386.7 36.67 6.056

FIRC-029 10078 422.3 422.6 404.7 439.0 18.19 4.265

AIR-005B 10078 11.05 11.74 4.605 16.91 8.788 2.965

Ta b l e  1 0 	–	2,3-DMB content model evaluation

SVM OE18 HW18

FIT (%) 84.67 72.62 73.76

FPE 0.014 0.035 0.102

RMSE (% mole) 0.118 0.213 0.200

MAE (% mole) 0.077 0.156 0.149

Model free coefficient 3 85 156

Ta b l e  11 	–	2-MP content model evaluation

SVM OE18 HW18

FIT (%) 82.98 88.02 88.91

FPE 0.249 0.086 0.182

RMSE (% mole) 0.499 0.270 0.260

MAE (% mole) 0.317 0.201 0.196

Model free coefficient 3 87 190
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F i g .  8 	–	 Comparison between 2,3-DMB content output variable measured by 
the on-line chromatographic analyser and the laboratory analysis 
within 2015 data period

F i g .  9 	–	 Comparison between 2-MP content output variable measured by the 
on-line chromatographic analyser and the laboratory analysis within 
2016 data period

Graphical representation in Figs. 10 and 11 de-
picts the comparison between measured data and 
2,3-DMB/2-MP content model data, respectively. 
Very good correspondence between the measured 
data and model outputs may be observed.

Table 12 shows the comparison between 2,3-
DMB and 2-MP SVM content models. 2-MP SVM 
content model is somewhat more complex than 2,3-
DMB – a larger number of SVs was required to 
achieve an accurate model.

Overall, the obtained results confirm SVM 
method to be suitable for nonlinear system identifi-
cation in chemical plants.

Conclusion

Soft sensor models based on SVM for continu-
al assessment of the mole percentage of 2,3-DMB 
and 2-MP, as the key components in products of the 
refinery isomerisation process, improved by adding 
a deisohexanizer, were developed. The models de-
scribe the process dynamics very well, and are 
therefore suitable for implementation within the 
isomerisation process plant distributed control sys-
tem (DCS). Due to its robustness, it is expected that 
the method will be an alternative to expensive pro-
cess analysers.

Ta b l e  1 2 	–	Comparison between 2,3-DMB and 2-MP SVM 
models

Model
Optimized coefficients Kernel 

function
Number 
of SVsC ε γ

2,3-DMB 15 0.001 20 RBF 4748

2-MP 1 0.01 50 RBF 6042
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The development and application of soft sen-
sors are desirable and often necessary in modern 
process industry. The requirements for continuous 
improvements, especially in product quality and 
minimization of energy consumption, urge in-
creased application of soft sensors.
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L i s t  o f  s y m b o l s  a n d  a b b r e v i a t i o n s

2,3-DMB	 –	 2,3-dimethylbutane
2-MP	 –	 2-methylpentane
b	 –	 constant
B(q), B1, B2, Bnb	–	 polynomial matrix
C	 –	 adjusting constant
DCS	 –	 distributed control system

DIH	 –	 deisohexanizer
f(x)	 –	 regression function
F(q), F1, F2, Fnf	 –	 polynomial matrix
FIT	 –	 fitting coefficient
FPE	 –	 final prediction error
h(x(t))	 –	 output nonlinearity function
HDT	 –	 hydrotreatment
HW	 –	 Hammerstein-Wiener
OE	 –	 output error
i	 –	 numerator
iC5	 –	 isopentane
K(x, xi)	 –	 kernel function
LS-SVM	 –	 least squares support vector	  

	 machine
MAE	 –	 mean absolute error
MARSpline	 –	 multivariate adaptive regression spline
n	 –	 number of data
nb	 –	 number of past process inputs
nf	 –	 number of past model predicted	 

	 outputs
nk	 –	 input time delay expressed by the	

	 number of samples

F i g .  11  – Comparison between measured data and 2-MP content SVM model results

F i g .  1 0  – Comparison between measured data and 2,3-DMB content SVM model results
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nC5	 –	 normal pentane
nC6	 –	 normal hexane
PCA	 –	 principle component analysis
PLS	 –	 partial least squares
q, q–1, q–nb+1, q–nf	 –	 time shift operator
RBF	 –	 radial basis function
RMSE	 –	 root mean square error
SV	 –	 support vectors
SVM	 –	 support vector machines
t	 –	 time
u(t)	 –	 input data function
w(t)	 –	 nonlinear function
w	 –	 load vector
x(t)	 –	 linear transfer function
x, xi	 –	 vector of input data
x, xi	 –	 input data value
y, yi	 –	 output data value
ŷ(t)	 –	 model output function
α, α*	 –	 Lagrange multipliers
γ	 –	 parameter of radial basis function
ε	 –	 parameter of ε-intensive cost function
ξ, ξ*, ξi, ξi

*	 –	 slack variables
Φ(x)	 –	 feature function
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