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Abstract
With the advancement of high-throughput biotechnologies, we increasingly accumulate biomedical data about
diseases, especially cancer. There is a need for computational models and methods to sift through, integrate, and
extract new knowledge from the diverse available data, to improve the mechanistic understanding of diseases
and patient care. To uncover molecular mechanisms and drug indications for specific cancer types, we develop
an integrative framework able to harness a wide range of diverse molecular and pan-cancer data. We show that
our approach outperforms the competing methods and can identify new associations. Furthermore, it captures
the underlying biology predictive of drug response. Through the joint integration of data sources, our framework
can also uncover links between cancer types and molecular entities for which no prior knowledge is available.
Our new framework is flexible and can be easily reformulated to study any biomedical problem.
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Introduction
Over 18 million new cases of cancer and 9 million
deaths were recorded worldwide in 2018.1 This makes
cancer one of the leading causes of death. Cancer is a
multi-faceted, complex disease arising from an accu-
mulation of somatic mutations within the genome of
normal cells that eventually leads to loss of normal cel-
lular functioning and appearance of tumors that can
spread across the body. Technological advances have
enabled measurements from patients’ tumor biopsies,
including gene expression levels, DNA methylations,
and somatic mutations. The research into cancer
causes, and treatments, has greatly benefited from
this wealth of patient data.2,3

Cancer projects, including The Cancer Genome
Atlas (TCGA) and the International Cancer Genome
Consortium (ICGC), have made publicly available
wide-ranging, multi-modal, multi-omics cancer data,
such as patient whole slide images, genome alterations,
transcriptome, and epigenome.4,5 Free access to these

large-scale, diverse databases has dramatically facili-
tated studies of the biological mechanisms of specific
cancer types.4,6,7 The available data have also enabled
pan-cancer analyses that study cancer in general to
identify common mechanisms and differences across
cancer types.7,8 Recently, the Pan-Cancer Analysis of
Whole Genome (PCAWG) project7 has informed that
our knowledge about cancer is far from complete, as
5% of their cohort was without any known cancer
driver mutations. Importantly, these large databases
have paved the way for the field of Precision Medicine,
whose overarching aim is to improve medical care for
patients by tailoring treatment to their individual mo-
lecular profiles.9 Precision medicine has diverse inter-
mediary objectives, for instance, uncovering diagnostic
and prognostic biomarkers. This is especially relevant
to a heterogeneous disease, such as cancer, which man-
ifests uniquely in every patient.

Complex diseases, such as cancer, can be caused by
combinations of genetic, molecular, environmental,
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and lifestyle factors. Any single type of biological data
cannot fully capture such diseases. As such, collective
mining of different data has been gaining momentum
as a means to extract integrated system knowledge
that goes beyond what any single data source can
offer.10 This principle applied to the study of cancer
has enabled the discovery of cancer-related genes, or
group of genes,11–13 and the identification of cancer sub-
types significantly correlated with patient prognoses.12,14

Biological data often have a small number of samples
relative to the number of available features. For in-
stance, a typical dataset in TCGA contains a few 100
patients who are each characterized by tens of thousands
of features (e.g., expression levels of around 20,000
genes). However, biological features are often redundant
due to underlying molecular interactions among biolog-
ical entities.15 This has been a motivation for the use of
dimensionality reduction and embedding algorithms
that are pervasive in bioinformatics.16 In addition, due
to the low sample to features ratio, dimensionality reduc-
tion techniques are often necessary as data pre-
processing for machine learning models.16

Non-negative matrix factorization (NMF) appro-
aches are unsupervised algorithms that have extensively
been used both as a means to integrate heterogeneous
data and reduce data dimensionality. They encompass
all methods that decompose a matrix, representing re-
lational links between two sets of entities, into the
product of low-dimensional, latent, positive matrices,
or factors, whose sizes control the degree of dimension-
ality reduction.17 Importantly, they can be used to
derive an embedding in an unspecified latent space
for each entity. Matrix factorization approaches have
had numerous applications, including collaborative
filtering18 and biological data integration for cancer
analysis.12,14 Reconstructing a matrix based on a factor-
ization has often been used to make predictions and
infer new knowledge.12 NMF approaches have been
successfully applied as pre-processing steps for down-
stream machine learning classifiers.19

We propose a pan-cancer framework to uncover
cancer type-specific molecular mechanisms and iden-
tify drugs that could be repurposed (Fig. 1). Our frame-
work relies on the simultaneous integration and
dimensionality reduction of various data using a joint
NMF model. Our framework includes more data than
the previous studies, integrating patient-specific diag-
nosis, gene expression, and single-nucleotide vari-
ants, (SNV) as well as generic network data on
human: protein–protein interactions, protein complex

associations, biological pathways, drug–target interac-
tions, and drug chemical similarities. To integrate the
wealth of data in one framework, we rely on three
types of matrix factorizations: NMF, non-negative ma-
trix tri-factorization (NMTF), and symmetric non-
negative matrix tri-factorization (SNMTF). The details
for each can be found in Supplementary Methods sec-
tion. Data integration is achieved by jointly optimizing
for multiple factorization objectives with shared factors
(see Supplementary Methods section). We obtain a
context-aware embedding of each entity (cancer type,
patient, gene, complex, pathway, and drug) that takes
into account all the input data.

Using boosted decision trees, we predict biologically
relevant associations between cancer types and genes,
drugs, pathways, and complexes based on the context-
rich embeddings of our entities. One key insight is that
the integration step, by construction, embeds the enti-
ties into three latent spaces, each associated with a dif-
ferent family of entities: (1) patient-related entities (i.e.,
patients and cancer types), (2) gene-related entities
(i.e., genes, complexes, and pathways), and (3) drugs.
This means that the entities in a given latent space
can be substituted with each other when using a
model trained to predict associations between one of
these classes of entities and cancer types. In this respect,
our approach is similar to zero-shot learning,20 which
aims to accurately classify at test time samples that be-
long to classes unseen at training time. In our case, we
aim to predict the association of cancer types to unseen
classes of entities at training time. Finally, our approach
is able to predict patient’s response to drugs, implying
that our framework captures important biology that
governs response to cancer drugs.

Materials and Methods
Our framework for context-aware embeddings
The core of the framework is gene information
(Fig. 1a). We integrate three types of data about
genes. We obtain RNA sequencing data and SNV
data for 7998 patients from ICGC (see Supplementary
Methods section for details) across 21 cancers. Hence-
forth, we refer to each cancer by its abbreviation given
in Supplementary Table S1. We obtain data on gene
interactions, including protein–protein interaction
(PPI) network from Biogrid, protein complexes from
Reactome and Corum, and biological pathways from
Reactome (see Supplementary Methods section for
details). These data capture physical and functional
relationships between genes and are used to anchor
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our framework within the context of molecular interac-
tions. The last type of gene data corresponds to drug–
target interactions from DrugBank (see Supplementary
Methods section for details), connecting drugs to pro-
teins that they target. We further add drug chemical
similarity information to push similar drugs closer in
the latent space. We also add patient diagnosis informa-

tion through which we embed cancer types and pa-
tients in a joint latent space to both push patients
closer if they have the same cancer and push molecu-
larly similar cancer types closer. This could help tailor
treatments to patients by placing them within a can-
cer ‘‘space’’ since cancer is a heterogeneous disease
and a given cancer type might manifest differently in

FIG. 1. (a) Input to our matrix factorization embedding model: relational data between entities. Each edge
corresponds to a type of link and to a subobjective of our joint factorization model (see Supplementary
Table S2 for notations). The squares group entities that are embedded in the same joint latent space.
(b) Illustration of the NMTF factorization subobjectives corresponding to the edges in the gray box in (a). Each
group of entities is associated in the decomposition to a factor that is shared across all subobjectives involving
that group of entities. Through the joint decomposition of all relational data, we derive embeddings for each
entity in three latent spaces, indicated by the gray boxes, with dimensions k1, k2, and k3. (c) We predict
associations relevant to cancer types with boosted decision trees taking as input, for instance, the
concatenation of the embeddings of a cancer type and of a gene and predicting if the two are linked. NMTF,
non-negative matrix tri-factorization.
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different people. This may aid characterizing cancer of
each patient as accurately as possible to personalize
treatment options.

Because of the heterogeneity of our input data, our
integration framework is based on joint optimization
of different variants of NMF: classical NMF, NMTF,
and SNMTF. Each variant, described in Supplementary
Methods section, is best fitted for the decomposition of
a different type of relational data. In particular, we use
SNMTF to factories the PPI network and the drug sim-
ilarities matrix, NMTF to factorize patient molecular
data and drug–target data, and NMF for the remaining
data. Each edge in Figure 1a corresponds to a subobjec-
tive of our embedding framework, that is, a specific
NMF decomposition. In the joint decomposition, each
group of entities is associated with a factor that is shared
across all subobjectives involving that group of entities.
For instance, the patient factor is shared by all subob-
jectives that involves patient-specific data (diagnoses,
gene expressions, and somatic mutations). An entity’s
embedding is obtained from the factor of the associated
group of entities.

Through our integrative framework, we derive em-
beddings for all entities (cancer types, patients, genes,
pathways, complexes, and drugs) that best fit the full
context of the framework, that is, the input relational
data. Each entity’s embedding, in one of the three la-
tent spaces learnt by our framework, encapsulates the
information from the input data that is relevant to
that entity; thus, we say that this representation is con-
text aware. Our framework has three hyperparameters,
denoted by k1, k2, and k3, which correspond to the
dimensionalities of the latent spaces. To find suitable
values for these hyperparameters, we perform a grid
search with k1 2 f2, 5, 10, 15, 21g, k2 2 f70, 80, 90,

100, 110g, and k3 2 f40, 50, 60, 70, 80g. The former
is a coarse grid over the range of possible values. For
the latter two, due to the large range of possible values,
the intervals are restricted around the value

ffiffiffiffiffiffiffiffi
n=2

p
,

where n is either the number of genes or the number
of drugs.

ffiffiffiffiffiffiffiffi
n=2

p
corresponds to a heuristic commonly

used to set the number of clusters.21

As the selection criterion, we measure if each patient
tends to be embedded in the latent space closer to their
diagnosis than to other cancer types. We quantify this
with the macro-F1 score of the classifier that associates
to each patient the closest cancer type in the latent
space in terms of cosine distance. We found that the
following hyperparameters values maximize this met-
ric: k1 = 21, k2 = 70, and k3 = 40. Supplementary

Figure S1 shows the sensitivity of different metrics to
the choice of the hyperparameters, which we discuss
in the rest of the article.

Each iteration of our integrative model takes around
10 seconds, depending on hyperparameters, on 8 CPUs
(Intel Xeon E5-2650 v3 @ 2.30 GHz) with 16G of
RAM. With n denoting the total number of entities,
our matrix factorization-based framework has time
complexity O(n3) and memory complexity O(n2).

Predicting cancer type associations
To extract new knowledge for each cancer type, we use
our context-aware embeddings to suggest cancer–drug
and cancer–gene associations. We cast the problem as a
link prediction task for which we train boosted decision
trees to predict known associations from our entities’
embeddings. After our training step, we use the trained
classifiers to predict new associations (see Supple-
mentary Methods section). As pre-processing, we nor-
malize all embeddings to have a unit norm. The
normalization step is crucial for the transfer of a link
predictor from one type of entity to another that we
discuss in the next section. For each possible cancer–
drug pair (or cancer–gene pair), we define the pair’s
representation by the concatenation of the embeddings
of its components, that is, the concatenation of the
cancer’s embedding vector with the drug’s embedding
vector defines the feature vector of the pair. Finally,
we use boosted decision trees for link prediction, taking
as input a pair’s representation and output the associ-
ation’s scores of its component (Fig. 1c). We choose
boosted decision trees due to their simplicity and high
performances in a number of competitions.22

In the first validation step, we systematically evaluate
the performance of our approach with a 10-fold cross-
validation using both the area under the receiver operat-
ing characteristic (AUROC) and the area under the pre-
cision recall curve (AUPRC) and compare our results to
state-of-the-art methods for link prediction. The two
metrics are often used in concert as they characterize dif-
ferent aspects of the results. Notably, AUPRC gives ro-
bust evaluations in imbalanced settings. The splits used
for the 10-fold cross-validation are performed on the
set of known links and considering all nonreported
links as part of the negative set of links. Note that we
do not use any balancing strategy during training. Fur-
thermore, we perform an ablation study on patient–
gene data (Supplementary Fig. S6), that is, we compare
the results obtained with those obtained with framework
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using less patient data to demonstrate the interest of con-
sidering both expression and mutation data jointly.

In the second step, we investigate the top 10 drugs and
genes associated with cancer types by our methodology.
Each pair is scored based on the average of the standard-
ized scores given by 10 classifiers trained for the cross-
validation (see Supplementary Methods section for de-
tails). In this step, we only consider drugs and genes that
were thus far not associated with any cancer type in the
ground-truth data (introduced in each subsection) to
avoid trivial cases of information transfer from one cancer
to another, which typically happens when one drug or one
gene is associated with a majority of cancers. We perform
a manual literature curation to validate the top results.

Results and Discussion
Patient and cancer embeddings are
medically relevant
To evaluate the biomedical relevance of our joint
patient and cancer embeddings, we observe that the
macro-F1 score is close to 0.8 for our optimal set of
hyperparameters (Fig. 2a), indicating that the majority
of patients are embedded closer to their diagnoses than
to other cancer types. In addition, we evaluate if pa-
tients group in the latent space with respect to either
cancer type or a sampled tissue. To this end, we use
hierarchical clustering with cosine distance to group
patients in k groups (where k is either the number of
cancers or the number of tissues) and compute the ad-
justed rand index (ARI) to measure the link between

FIG. 2. (a) Macro-F1 score quantifying the relationship between a patient and its cancer type (green) and ARI
measuring the link between patient clustering for each model and cancer type labeling (orange) and tissue-
sampled labeling (blue). (b) t-SNE plot representing the embedding of patients and cancer types in the latent
space. The larger circled markers correspond to the embeddings of cancer types, and the smaller ones
represent the embeddings of patients. Colors and shapes indicate cancer types (see Supplementary Table S1
for abbreviations meanings). (c) Percentages of gene clusters enriched in GO-BP, GO-CC, GO-MF, and driver
annotations. (d) Average cosine distance between genes and associated pathways and complexes
(intrapathway and intracomplex) and nonassociated pathways and complexes (exo-pathway and exo-
complex). ARI, adjusted rand index; BP, biological processes; CC, cellular component; GO, Gene Ontology; MF,
molecular function; t-SNE, T-distributed stochastic neighbor embedding.
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the clustering and the ground truth labeling (either
cancer types or sampled tissues; see Fig. 2b). We ob-
serve that patients do not cluster well with respect to
sampled tissues, having ARI below 0.2. However, we
observe ARI 0.7 with respect to cancer type, indicating
that our clusterings resemble diagnostic labeling with
some discrepancies. These results are expected, as the
inclusion of patient diagnosis data in the framework
implies a constraint that aims to embed each patient
close to their diagnosis and subsequently to other
patients having the same disease. Note, however, that
some patients do not fit well with the rest of their co-
horts. This is an important observation, as it suggests
that those patients might need different care options
from the majority of their cohort and further motivates
personalizing treatments to individual patients.

As an illustration, we visualize our latent space
embeddings using T-distributed stochastic neighbor
embedding (t-SNE). t-SNE is a machine learning algo-
rithm for nonlinear dimensionality reduction, well
suited for visualization in a two-dimensional space
of high-dimensional data.23 We observe as expected
that patients tend to cluster according to cancer
type, with the cancer type itself being also embedded
nearby (Fig. 2c). In addition, we observe that some
cancers are grouped in a meaningful way. For in-
stance, both brain cancers, glioblastoma multiforme
and lower grade glioma, form one group. The cluster
in the center contains mostly squamous cell carcinomas,
head and neck squamous cell carcinoma, cervical squa-
mous cell carcinoma, and lung squamous cell carcinoma
(LUSC). Both cancers that affect kidneys, kidney renal
papillary cell carcinoma and kidney renal clear cell
carcinoma, are also grouped. Moreover, rectum
adenocarcinoma, colon adenocarcinoma, and stom-
ach adenocarcinoma—which are cancers affecting rec-
tum, colon, and stomach, respectively—form another
cluster. We also observe that some patients having a spe-
cific type of cancer do not group with the majority of the
cohort. Note that the same observations hold when
using Uniform Manifold Approximation and Projection
algorithm24 instead of t-SNE (Supplementary Fig. S7).

We further investigate if our framework learns a
meaningful latent space that translates into actionable
representations for new unseen patients. We perform
a 10-fold cross-validation in which 90% of patients of
each cancer type are used to derive the embeddings
of all entities in the framework. We then project the
remaining 10% of patients in the derived cancer/
patient latent space (see Supplementary Methods sec-

tion). First, we test if these patients are placed close
in space to their diagnosis (quantified as above, see
Supplementary Table S5). This gives a macro-F1
score of 0:77� 0:03, which is close to the score
obtained with all patients included in the framework
(~0:8). This shows that new patients are placed in the
latent space according to their diagnoses with accuracy
similar to that for patients included in the framework.

We also test if the unseen patients tend to be embed-
ded closer to patients having the same diagnoses. For
this, we use a k-nearest neighbor classifier with k = 10

(see Supplementary Methods section) and measure its
macro-F1 score (Supplementary Table S1). We observe
a score of 0:88� 0:02, which shows that the large ma-
jority of new patients are embedded in the latent space
closer to patients diagnosed with the same type of can-
cer. Both results show that our latent space is robust
in the sense that we can derive an embedding for
new patients that is consistent with that of known
patients and cancer types. We also observe that the
k-nearest neighbor algorithm gives a more robust diag-
nosis classifier than finding the closest cancer in the la-
tent space. This means that the local neighborhood of a
patient in the latent space is a better diagnosis indicator
than a global predictor derived from cancer types’ em-
bedding. This suggests the presence of patient sub-
groups within a cancer type that display substantially
different molecular behavior.

Overall, our analysis shows that the patients/cancers
latent space is consistent with known biology. Fur-
thermore, our framework has the advantage of relaxing
the hard clustering derived from patients diagnoses
through patient’s molecular similarity, highlighting
that a patient’s molecular profile can be more simi-
lar to the profiles of patients with different cancers
than to the profiles of patients with the same diagnosis.
This observation motivates further the need for pan-
cancer perspectives in precision medicine.

Our gene latent space is biologically relevant
To evaluate the biological relevance of our genes em-
beddings, we cluster them in k2 group using cosine
distance-based hierarchical clustering, and measure
the enrichments of the clusters in terms of Gene Ontol-
ogy (GO) annotations and in terms of cancer driver
genes (see Supplementary Methods section for details,
Supplementary Table S3). We consider all three sub-
types of GO annotations: Biological Processes (GO-
BP), Cellular Component (GO-CC), and Molecular
Function (GO-MF), separately. The significance of
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the enrichments is computed with a hypergeometric
test with Benjamini-Hochberg correction for multiple
hypothesis testing and a significance threshold of 0.05.
We observe that, regardless of the GO subtype, above
80% of clusters are significantly enriched in at least
one annotation (Fig. 2c and Supplementary Fig. S2 for
cluster size and number of enriched annotations).

We further evaluate the meaningfulness of our re-
sults by performing 10,000 randomized tests where
clusters’ sizes are held constant, but genes are randomly
assigned. We obtain 0% of clusters enriched with ran-
dom cluster assignment at least 9650 times out of
10,000 repeats (empirical p-values 0.035) for each
type of annotation. These results show that genes
with similar function are embedded closer in the latent
space and thus our genes’ embeddings significantly
capture known biology. Interestingly, we also observe
that around 10% of the clusters are enriched in cancer
driver genes, indicating that cancer drivers are embed-
ded closely, that is, clustered, in the latent space. This
highlights the link between the gene latent space and
the cancer context that we made a part of our frame-
work. Furthermore, it underlines the relevance of our
embeddings for the identification of putative cancer-
related genes, discussed in the following section.

In addition, we perform an ablation study on the gene
interaction data input to investigate the effect that each
dataset has on enrichment scores (Supplementary
Fig. S3). For each model, all hyperparameters are se-
lected following the same procedure outlined above.
First, we observe that adding any gene data is better
than not adding them from the point of biological anno-
tation enrichment. For instance, the model without any
PPI, complex, or pathway data has 40% of gene clusters
enriched in GO-BP annotations, while every model with
at least one data source has above 80% of gene clusters
enriched for the same annotations. However, there is
no clear best model among the ones with diverse com-
binations of the data, each scoring similar enrichment
values with different models performing slightly better
for different annotations. Thus, different combinations
of data do not seem to lead to significantly different per-
formances, but keeping all data in the model enables
analysis of each class of entities.

Finally, as pathways and complexes are embedded in
the same latent space, we investigate their positioning
with respect to genes. In particular, we evaluate if a
gene is embedded closer to its associated higher-order
entities, that is, pathways and complexes, than to
those to which it has not been associated yet. To this

end, we compute the cosine distances in the latent
space between a gene and its associated pathways and
complexes, termed ‘‘intrapathway’’ and ‘‘intracomplex’’
distances, as well as the distances between the gene and
all nonassociated pathways and complexes, termed
‘‘exo-pathway’’ and ‘‘exo-complex’’ distances. We ob-
serve that genes are embedded closer, on average, to
their associated higher-order entities than they are to
those that they are not associated to (Fig. 2d), with aver-
age distance below 0.5 between a gene and associated en-
tities and above 0.9 between a gene and nonassociated
entities. These results are significant according to a
Mann–Whitney U statistical test ( p-value ~0 in both
cases) and underline the relevance of the joint embed-
ding of genes with related higher-order molecular
structures in the same latent space. This also suggests that
our framework could be used for identifying new genes
that are involved in or interact with pathways and pro-
tein complexes, which we leave for future work.

Cancer type associations
Our model predicts relevant treatment. To predict
cancer–drug associations, we train decision trees to
identify known associations that we collect from Drug-
Central25 (last updated October 2018). DrugCentral
contains 93 associations in total between our sets of
cancer types and drugs. We define our positive set
with DrugCentral treatment options and consider all
nonreported associations for our negative set. Our
classifier takes as input the concatenation of the nor-
malized embeddings of a drug and a cancer type and
outputs their association score.

We compare our results to four baseline methods:
non-negative matrix factorization reconstruction
(NMFR), measure-based bidirectional random walks
(MBiRW),26 Drug Repositioning Recommendation
System (DRRS),27 and bounded nuclear norm regulari-
zation (BNNR)28 (see Supplementary Methods section
for implementation details). These methods rely on the
assumption that similar diseases share treatment, and
conversely, that similar drugs can treat the same dis-
ease. MBiRW uses random walks to derive repurposing
hypothesis by discovering neighborhoods in similarity
networks. DRRS and BNNR embed drugs and diseases
in low-dimensional latent spaces with the underlying
hypothesis being that missing links emerge from
those latent spaces using the inner product. Our
method makes similar assumptions, but takes more in-
formation into consideration, notably drug targets as
well as protein interactions. Furthermore, by using
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boosted decision trees on the latent spaces, our model
gains more flexibility and representative power over
the simple inner product.

We observe that our approach significantly out-
performs the competing methods (Fig. 3a). BNNR
achieves slightly better AUROC scores (~0:99 com-
pared to our ~0:97), but it scores significantly lower
than our framework in terms of AUPRC (~0:25 com-
pared to our ~0:5). These results show the relevance
of our method when compared to the state-of-the-art
drug repurposing approaches. We analyze further the
results of our approach through literature curation
for the top-scoring drugs that are not associated with
any cancer types in DrugCentral.

Among the top 10 drugs that are the most associated
to cancer types by our classifiers (Fig. 3b), a majority is
recorded in DrugBank as investigational or approved
for the treatment of some cancers. The approved pre-
dicted drugs either are not present in DrugCentral, as
their approval postdates the DrugCentral release, or

target a cancer type not considered in this study. We
discuss below supporting information for our top 3
predicted drugs. We provide validations of all of our
predictions in the Supplementary Data.

DB05916 (CT-011) targets gene PDCD1, which has
immunomodulating and antitumor activities. CT-011
is currently being investigated for the treatment of
tumors and unspecified cancers.29 DB14707 (Cemipli-
mab) is an FDA-approved drug for the treatment of
advanced cutaneous squamous cell carcinoma.29 Our
classifier suggests that it could be used to treat lung
cancer and notably LUSC. DB05101 (Matuzumab) is
an investigational drug that targets EGFR gene, which
is often associated with cancers, including lung cancers.30

The manual literature curation highlights that our
predicted drugs are often investigated or approved for
the treatment of forms of cancer and that their targets,
or mechanisms of actions, can be linked to the specific
cancer types we predict. Overall, the analysis strongly
supports our methodology.

FIG. 3. Performances of our cancer–drug association predictor (left column) and cancer–gene association
predictor (right column). The bar charts give the performances of our classifiers measured with 10-fold cross-
validation in terms of AUROC and AUPRC. The tables give the top 10 associations between cancers and drugs
(b) and genes (d) that are not associated with any cancer in our data. Drugs or genes highlighted in bold font
have been associated to cancer. The support column in the bottom right table indicates which database lists a
link between the gene and cancer. AUPRC, area under the precision recall curve; AUROC, area under the
receiver operating characteristic.
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Our framework identifies genes relevant to cancer
types. Based on known cancer genes from IntOGen,31

we train classifiers to identify associations between genes
and cancer types. In total, IntOGen reports 1129 associ-
ations between our sets of cancer types and genes. These
interactions constitute our positives set. All nonreported
associations are considered part of our negatives set. As
above, a decision tree takes as input the concatenation
of the normalized embeddings of a gene and a cancer
type and outputs their association score.

We compare the performance of our method with
the following state-of-the-art methods: NMFR,
network-based integration (NBI),32 LOTUS,33 and
Subdyquency.34 The methods were developed to pre-
dict cancer-related genes in slightly different contexts
and are adapted to our problem here (see Supplemen-
tary Methods section for details). The baselines rely on
the ‘‘guilt-by-associations’’ where genes that are linked
to a disease, but are not necessarily mutated or differ-
entially expressed, can be identified in biological net-
works through links to known disease genes. NBI and
Subdyquency use random walks to exploit proximities
on networks to identify such genes. LOTUS uses kernels
to capture similarities between cancers and between
genes, combining the two kernels to feed to a Support
Vector Machine algorithm. Our approach draws from
similar ideas, combining both factorization to augment
entity proximities through latent space embedding and
machine learning model. Furthermore, our approach
can integrate additional protein interaction data, nota-
bly functional protein interaction (pathways).

We observe that our approach outperforms the com-
peting methods (Fig. 3c) in terms of AUROC, which
is over 0.9 for our method compared to below 0.8 for
the other approaches, and in terms of AUPRC, which
are around 0.4 for our approach compared to below
0.25 for the other methods. We further evaluate if our
approach accurately captures known cancer-related
genes that are reported in Candidate Cancer Gene
Database (CCGD), but not in IntOGen. We perform
this analysis both globally and on a per cancer basis
(note that 14 cancer types have data for this test). We
observe that our method ranks highly associations
between genes and cancer types in CCGD, notably giv-
ing AUROC scores above 0.59 ( p-values < 10� 7) for
all cases (Supplementary Fig. S4). Below we look at the
top 10 genes that are identified by our method (Fig. 3d).
We use the Cancer Gene Census (CGC)35 and CCGD36

to find known associations, as well as literature cura-
tion (both databases were accessed in August 2019).

We observe that our top 10 scoring genes are listed
in either the CCGD or the Cancer Gene Census
(CGC) as linked to at least one form of cancer. Further-
more, the pairs MDM2–LIHC, HERC1–COAD,
HERC1–READ, SMC3–LAML, NCOA3–BRCA, and
CHD6–BRCA are associated in CCGD. In addition,
KAT2B (PCAF) activity has been linked to cancers,
and in particular, to breast cancers, in the litera-
ture.37–39 MDM2 has also been associated with breast
cancer.40 SP1 expression has been linked to breast can-
cer in multiple prior studies.41–43

For each of these three genes, we stratify our breast
invasive carcinoma (BRCA) cohort into two groups:
patients having higher than average expression of the
gene and patients having lower than average
expression of the gene. We compute a logrank statisti-
cal test (with 0.05 cutoff) and observe that for each of
the three genes, the patient groups have signifi-
cantly different survival rates with p-values 0.002 for
KAT2B, 0.026 for MDM2, and 0.039 for SP1 (see
Supplementary Fig. S5a–c for Kaplan-Meir plots). For
each of the three genes, higher expressions are associ-
ated with lower survival rates. We provide validations
for the remaining predictions in the Supplementary
Data. Note that BRCA is overrepresented in the results.
However, the global validation results (Supplementary
Fig. S4) do not indicate a bias toward BRCA and a
possible explanation for this observation is that BRCA
is associated with more driver genes than the other can-
cer types in this study (96 driver genes compared to no
more than 74 for other cancer types).

The literature curation highlights that each gene
identified through our approach is relevant to the asso-
ciated cancer type, with support through existing re-
search and databases, as well as statistical evidence
for a connection between gene expression level and pa-
tient prognosis. Thus, this supports our methodology.

Repurposing boosted decision trees
Links between types of entities are not always known or
available (e.g., associations between cancer type and
protein complexes or associations between patients
and drugs), which prevents us from using the same
methodology to derive new knowledge. However, our
framework allows for extrapolating those links from
known associations between other types of entities.
Our approach relies on the previously observed fact
that, by design, some entities are embedded in the
same latent spaces (e.g., genes, pathways, and com-
plexes or cancer types and diseases). We have further
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shown, in the first section, that the relative location in
the latent space of related entities was biologically con-
sistent, that is, related entities are closer to each other
than nonrelated entities. Based on these observations,
we postulate that a classifier trained from the embed-
dings of a given type of entities can be repurposed to
predict from the embeddings of another type of enti-
ties. For instance, decision trees that learnt to
associate genes to cancer types can be used to predict
which biological pathways or protein complexes could
be associated with which cancer types. This could effec-
tively provide insights into the impact of cancers onto
cells by identifying affected higher-order cellular struc-
tures and functions. We focus below on the analysis of
top associations between biological pathways and can-
cer types. Similar results can be obtained for protein
complexes and are discussed in Supplementary Results
section and Supplementary Table S6.

The association score between a cancer type and
a biological pathway is obtained by simply feeding
the concatenation of the normalized embeddings of
both entities to the 10 decision trees trained to predict
cancer–gene associations. The average of the standard-
ized scores across all decision trees gives the final asso-
ciation score.

Comparative Toxicogenomics Database (CTD) da-
tabase44 gives associations between diseases and path-
ways based on shared associated genes and can be
used for global validation. We achieve an AUROC
score of 0:65� 0:01 and an AUPRC score of
0:66� 0:01, which indicate predictions significantly
better than random ( p-value ~0) for our repurposed
decision trees. However, note that 52% of all possible
associations between our set of cancer types and our
set of pathways are reported in the database. This
indicates that the condition for association used by
CTD might not be sufficiently stringent. This motivates
the following manual literature curation to validate
our top 10 scoring biological pathways (see Table 1).
We discuss the first three predicted pathways below
and provide validations of all remaining predictions
in the Supplementary Data.

MAPK1 (ERK2) activation pathway (R-HSA-112411)
and MAPK3 (ERK1) activation pathway (R-HSA-
110056) have been linked to numerous cancers, such
as breast cancer, as discussed in the previous section,
and colorectal cancer.45 The ERK MAPK pathway is
critical for cell proliferation and thus is naturally often
connected to cancers. Cellular responses to stress path-
way (R-HSA-2262752) is a subpathway of the cellular

responses to external stimuli pathway (R-HSA-
8953897).46 Anticancer treatments are often successful
when able to induce apoptosis through external stimuli
that induce cellular stress.47 For instance, tumor sup-
pressor gene P53 can be stimulated through cellular
stress.48 Thus, perturbation to those pathways might
lead to cancer onset and resilience to treatment.

The literature review highlights the ability of our
repurposing approach to identify associations between
biological pathways and cancer types that are sup-
ported by the existing literature. Thus, this analysis
underlines the ability of our framework to extract bio-
logical pathways associated with cancer.

Predicting patients’ responses to cancer drugs
We collect data on patient responses to cancer drugs from
TCGA.4 We only consider patients and drugs that are
present in our dataset. The task corresponds to a binary
classification where we predict if a patient’s response to a
drug is positive or negative. A response is considered
positive if TCGA reports a complete response of the pa-
tient, and negative otherwise. As we are interested in
finding drugs that improve the state rather than maintain
a status quo, or degrade the state, we believe it is reason-
able to use a binary variable for this task. We further dis-
card 100 entries corresponding to combinations of drugs
as our model is not suitable for the analysis of these data.
From the remaining data, we only consider drugs that
have both positive and negative response. After process-
ing, we have 2589 patient–drug pairs. We split these data
in train, validation, and test sets with a 70%/10%/20%
partition, repeating the experiment 10 times and measur-
ing AUROC and AUPRC scores.

Table 1. Top 10 biological pathways associated
to cancer types

Pathway Predicted for

R-HSA-112411 All cancers
R-HSA-2262752 BRCA
R-HSA-5654688 BRCA; GBM; BLCA; LGG; PAAD; LAML; LUSC;

STAD; SKCM; LUAD; UCEC
R-HSA-5654699 BRCA
R-HSA-8953897 BRCA
R-HSA-110056 BRCA
R-HSA-389357 BRCA
R-HSA-5654719 BRCA
R-HSA-9603381 BRCA
R-HSA-8866910 BRCA

BLCA, bladder urothelial carcinoma; BRCA, breast invasive carcinoma;
GBM, glioblastoma multiforme; LAML, acute myeloid leukemia; LGG, low
grade glioma; LUSC, lung squamous cell carcinoma; SKCM, skin cutane-
ous melanoma; STAD, stomach adenocarcinoma; UCEC, uterine corpus
endometrial carcinoma.
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We train a boosted decision tree model to predict
patients’ responses to drugs. As above, the input to
the model is the concatenation of the normalized em-
bedding of a patient and a drug. The output can be
interpreted as the success probability of the treatment.
Our approach performs well, achieving AUROC score
of 0:869� 0:013 and AUPRC score of 0:855� 0:014.
This result suggests that our model is able to capture
some common biological mechanisms that govern re-
sponse to cancer drugs.

To analyze this claim further, we investigate which
features the models use most to predict response.
First, we compute the gain, that is, the relative impor-
tance, associated with each feature in each 1 of the 10
models trained. For each feature, we take the average
gain across models as a final feature importance
score. Note that we have both patient and drug fea-
tures; thus, we have two vectors of feature importance
scores, ipatients and idrugs. In a second step, we use the
central matrices from the NMTF decompositions in
our objective to link each feature to both genes and
pathways. Specifically, we compute the projection of
entity x in either drug or patient space with
Gp

x = GxSt, where St is either Sdt, for the drug space,
or Sexpþ Smut, for the patient space. We can then
rank the importance of genes, or pathways, by taking
the product of the projected embeddings with the fea-
ture importance vectors. Interestingly, the two rank-
ings of genes that we obtained retrieve driver genes
in IntOGen. We consider all driver genes regardless
of cancer type and compute the AUROC and AUPRC
scores of the two rankings. We obtain AUROC 0.72
and 0.63 ( p-values < 10� 20) and AUPRC 0.08 and
0.04 in drug and patient space, respectively, which in-
dicate significant correlations between the set of driver

genes and the rankings. We take a closer look at the
highest ranked genes and pathways (Table 2).

Interestingly, eight of the genes identified in Table 2
have been linked to cancer response to general, or spe-
cific treatments (HSP90AA1,49 PIK3CA,50 EGFR,51

PTEN,52 PRKACA,53 KRT19,54 CLDN4,55 and
AGR256), and the remaining two have been associated
to cancer prognosis (KRT857 and KRT1858). Put to-
gether, the results indicate that our model assigns
meaningful importance to features. This is further cor-
roborated when investigating the predicted pathways.
We observe that most pathways are linked to external
signaling, notably G protein-coupled receptors sig-
naling. Signal transduction is naturally critical to
drug response, as it is the route through which
drugs interact with a cell.59,60 The state of the extra-
cellular matrix also plays an important role, as it
can prevent the penetration of small molecules into
the cell, thus impairing pharmacologic treatments.61

Thus, our model learns to weigh meaningful features
that relate to biological processes involved in drug
mechanisms of actions.

Conclusion
We introduce a two-step framework to perform data
integration, feature reduction, and classification to un-
cover cancer-related knowledge. First, we develop an
integrative NMF model to jointly embed entities in
multiple connected latent spaces based on heteroge-
neous, diverse relational data between those entities.
Note, that due to the wide range of data incorporated
in our framework and the different levels of noise pres-
ent in each, balancing strategies of the diverse objective
functions should be investigated to improve the results
further. Our model can easily be modified to accom-
modate such an approach.

We show that relative positions of entities in our latent
spaces are consistent with what we know about them. For
instance, we show that genes group in functional do-
mains and are close to associated higher-order molecular
structures (pathways and complexes) embedded in the
same latent space. Patients tend to be closer to other pa-
tients having the same diagnosis and to the diagnosis
itself. By taking a pan-cancer approach, we are able to
identify groups of patients with similar molecular mani-
festations spanning various cancers, confirming that can-
cer classification may need to be rethought on a global
scale and the need for initiatives such as PCAWG.7

Based on known drug indications for the treatment of
each cancer type and known cancer type driver genes,

Table 2. Top 5 genes and biological pathways associated
to drug response prediction-based feature importance
in both drug and patient spaces

Drug space Patient space

Genes HSP90AA1 KRT19
PIK3CA KRT8
EGFR KRT18
PTEN CLDN4
PRKACA AGR2

Pathways Signal transduction Extracellular matrix organization
Signaling by GPCR Transport of small molecules
GPCR downstream

signaling
Degradation of the extracellular

matrix
Metabolism Signal transduction
G alpha (i) signaling

events
Response to elevated platelet

cytosolic Ca2 +
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we train decision trees through which we can predict rel-
evant new associations for each cancer type. Due to the
joint embedding of different entities in the same latent
space, we hypothesized that decision trees trained to
identify associations with one type of entities could be
repurposed to derive associations with other, less-studied,
entities. In this way, we can uncover biological mecha-
nisms affected by each cancer type, such as genes whose
expressions are significantly correlated with patient’s sur-
vival (Supplementary Fig. S5). We also identify pathways
that can be linked to cancer in the literature. Furthermore,
our results suggest that cellular response to stress (path-
way R-HSA-2262752) plays an important role in breast
cancer. Similarly, we find that FGFR signaling mediated
by SHC (pathways R-HSA-5654688, R-HSA-5654699,
and R-HSA-5654719) is implicated with multiple cancer
types; the precise role of SHC in these pathways has not
been elucidated yet.

Interestingly, our work opens the door for actionable
precision medicine. Through the joint embedding of
cancers and patients, decision trees trained on high-
level knowledge about cancer types can be repurposed
to help identify patient-specific information, such as
potential drug treatment. Furthermore, our model is
able to capture the underlying information relevant
to the characterization of patients’ response to drug
treatment. However, as the biological validation of
such predictions is difficult, requiring cell line experi-
ments or clinical trials, we leave it for future work.

Our framework is general and flexible and can ac-
commodate additional and different data. New families
of entities can be naturally added to the framework and
could be illustrated by new nodes in Figure 1a. For
instance, microbiomics, which is known to impact re-
sponse to drugs,62 can be easily included in the gen-
eral framework by adding a new node representing
microbes in Figure 1a. Additional data connections be-
tween entities already in the framework, such as gene
methylation data or gene copy number variation data,
would add subobjectives to the optimization problem
(represented by edges in Fig. 1a). While we focus on
cancer in this study, our work paves the way for general
cross-disease analysis, which could be useful to identify
treatment repurposing based on molecular similarities
among medical conditions. Alternatively, tasks such
as drug side effects or drug combination synergy pre-
diction can be addressed using the embedding frame-
work as a basis with a specific machine learning
model (e.g., boosted decision trees), taking the embed-
ding as inputs.
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4. Tomczak K, Czerwińska P, Wiznerowicz M. The cancer genome atlas
(TCGA): an immeasurable source of knowledge. Contemp Oncol. 2015;19:
A68.

5. International Cancer Genome Consortium. International network of
cancer genome projects. Nature. 2010;464:993.

6. Nik-Zainal S, Davies H, Staaf J, et al. Landscape of somatic mutations in
560 breast cancer whole-genome sequences. Nature. 2016;534:47–54.

7. ICGC/TCGA Pan-Cancer Analysis of Whole Genomes Consortium.
Pan-cancer analysis of whole genomes. Nature. 2020;578:82–93.

8. Andor N, Graham TA, Jansen M, et al. Pan-cancer analysis of the extent
and consequences of intratumor heterogeneity. Nat Med. 2016;22:
105–113.

9. Ashley EA. Toward precision medicine. Nat Rev Genet. 2016;17:507–522.
10. Ge H, Walhout AJ, Vidal M. Integrating ‘‘omic’’ information: a bridge be-

tween genomics and systems biology. Trends Genet. 2003;19:551–560.
11. Leiserson MD, Vandin F, Wu H-T, et al. Pan-cancer network analysis

identifies combinations of rare somatic mutations across pathways and
protein complexes. Nat Genet. 2015;47:106–114.
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Abbreviations Used
ARI¼ adjusted rand index

AUPRC¼ area under the precision recall curve
AUROC¼ area under the receiver operating characteristic

BLCA¼bladder urothelial carcinoma
BNNR¼bounded nuclear norm regularization

BRCA¼ breast invasive carcinoma
CCGD¼Candidate Cancer Gene Database
CESC¼ cervical squamous cell carcinoma

COAD¼ colon adenocarcinoma
CTD¼ comparative toxigenomics database

DRRS¼Drug Repositioning Recommendation System
GBM¼ glioblastoma multiforme

GO-BP¼Gene Ontology-Biological Processes
GO-CC¼Gene Ontology-Cellular Component
GO-MF¼Gene Ontology-Molecular Function

HNSC¼ head and neck squamous cell carcinoma
ICGC¼ International Cancer Genome Consortium
KIRC¼ kidney renal clear cell carcinoma
KIRP¼ kidney renal papillary cell carcinoma

LAML¼ acute myeloid leukemia
LGG¼ low grade glioma

LUSC¼ lung squamous cell carcinoma
MBiRW¼measure-based bidirectional random walks

NBI¼ network based integration
NMF¼ non-negative matrix factorization

NMFR¼ non-negative matrix factorization reconstruction
NMTF¼ non-negative matrix tri-factorization

PCAWG¼ Pan-Cancer Analysis of Whole Genome
PPI¼ protein–protein interaction

READ¼ recum adenocarcinoma
SKCM¼ skin cutaneous melanoma

SNMTF¼ symmetric non-negative matrix tri-factorization
SNV¼ single-nucleotide variants

STAD¼ stomach adenocarcinoma
TCGA¼ The Cancer Genome Atlas
t-SNE¼ T-distributed stochastic neighbor embedding
UCEC¼ uterine corpus endometrial carcinoma

UMAP¼Uniform Manifold Approximation and Projection
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