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ABSTRACT 

Complications associated with uncontrolled hypertension are considered the major cause of 

premature death worldwide. Fixed-dose combinations (FDCs) offer an alternative approach to 

polypharmacy with the aim to improve patient compliance. Process Analytical Technology 

(PAT) is gaining momentum as a non-invasive, predictive tool to control the quality of drugs 

during continuous processing. PAT offers real-time quality control that can be built into the 

production line. However, the vast majority of studies reported in the literature have focused 

on quantifying a single drug during continuous processing. The aim of this study was to 

develop non-destructive, predictive inline PAT tools allowing for the simultaneous 

quantification of two antihypertensive drugs, Hydrochlorothiazide (HCTZ) and Ramipril 

(RMP), during the continuous manufacture of FDCs. A calibration set composed of HCTZ and 

RMP at concentration ranges of 6.5 to 40 and 2.5 -15 (% w/w), respectively, were manufactured 

using hot melt extrusion. The extrudates were analysed during the process using inline Raman 

spectroscopy. Optimum wavenumber regions were observed at 200-400 and 630-730 cm-1 for 

HCTZ, and 980-1100 cm-1 for RMP using principal component analysis. Partial least squares 

(PLS) regression was performed to establish the predictive calibration models. The PLS 

developed models showed excellent linearity (R2= 0.986 and 0.974), selectivity (PC1= 98.6% 

and 91.9%) and accuracy (RMSEcv= 1.586 and 0.645 %) for HCTZ and RMP, respectively. 

Additionally, RMSEP values were reported as 1.237 and 1.007 % for HCTZ and RMP, 

respectively, depicting good predictability for drug content in the validation set. The output of 

this study demonstrated that utilisation of the full potential of chemometrics, Raman 

spectroscopy can be used for the simultaneous inline quantification of multiple drugs in 

complex formulations. This facilitates the in-process quality control of FDCs and other 

multicomponent systems during continuous pharmaceutical production.  

  



1. Introduction 

Hypertension is a prevalent global health issue. An estimated 1.4 billion people have 

hypertension globally (Kishore et al., 2018). This is due the fact that most hypertensive patients 

develop no signs; thus, are unaware of their health condition (World Health Organization, 

2019). Furthermore, poor patient compliance due to long term, multiple dosage regimens is a 

major challenge that often leads to a compromised clinical efficiency and a magnification in 

the risk of complications associated with uncontrolled hypertension (Andrews et al., 2019b; 

Kishore et al., 2018). On average, 55% of patients suffering from chronic health conditions 

who fail to adhere to their prescribed drug regimens are hypertensive patients (Abegaz et al., 

2017).  

The use of fixed-dose combinations (FDCs) is emerging as the standard of care for the 

management of chronic diseases. FDCs are drug dosage forms combining two or more active 

pharmaceutical ingredients (APIs) in a single dosage form (Oo and Sy, 2018). They offer a 

potent alternative to simplify complex dosing regimens (US Food and Drug Administration, 

2014). FDCs have substantial advantages including reduced dosing frequency, improved 

medication adherence, and reduced medication costs (Andrews et al., 2019b; Hao et al., 2015). 

Therefore, FDCs were well recognised and highly endorsed by the European Medical Agency 

(EMA) for the management of hypertension (EMA, 2017). Guidance documents were released 

to regulate the strategies used for the development and production of FDC commercial 

products. As a result, FDCs have been produced by major pharmaceutical companies and used 

for a number of different therapeutic areas. More recently, FDCs of antihypertensive 

medications were officially added to WHO’s Essential Medicines List (EML) (Salam et al., 

2019). Combinations from different anti-hypertensive classes were endorsed based on 

worldwide availability and best available evidence. FDCs comprising angiotensin-converting 

enzyme inhibitors (mainly Ramipril) and thiazide diuretics (e.g., Hydrochlorothiazide) were 



the first to be reviewed and recognised by the WHO expert panel as they form one of the most 

commonly used and globally available anti-hypertensive combinations.  

Despite the tremendous advantages FDCs offer, current manufacturing techniques and 

methods/tools used for quality control and assurance are rather complex. Therefore, novel 

technologies have been investigated during the last decade to assess their feasibility for the 

manufacture of FDCs. Hot melt extrusion (HME) has been extensively investigated for the 

production of pharmaceuticals during the last two decades (Tiwari et al., 2016; Wilson et al., 

2012). Several studies have confirmed the potential of HME as an advanced technology 

platform for the manufacture of FDCs (Andrews et al., 2019b; Dierickx et al., 2012). 

Nevertheless, HME has not been widely implemented as a means of routine oral dose 

manufacture in the pharmaceutical industry. Major challenges include regulatory uncertainty 

towards such manufacturing platforms, and the need to reconsider the infrastructure of 

companies to accommodate the emerging view of advanced manufacturing technologies 

(Dadou et al., 2020b; Lee, 2017).  

A Process Analytical Technology (PAT) regulatory framework was introduced by the 

Food and Drug Administration (FDA) as a quality control tool to facilitate the transition into 

continuous manufacturing platforms within the pharmaceutical industry (FDA, 2004). 

Implementing PAT to the production line enables the real-time release testing of materials 

during manufacturing by employing non-destructive technologies (Dadou et al., 2020b; Hisada 

et al., 2020). Thus, the quality of formulations and/or processes can be controlled during 

pharmaceutical process, such as drug quantification, water content and monitoring the solid-

state of drugs (Koide et al., 2020; Nomura et al., 2020). However, the automation of quality 

control methods by integrating PAT to the process is still in its infancy. Rather, offline 

destructive analytical methods are still widely used as routine methods to assess/control the 

quality of end products and/or processes in the current conventional batch methods. 



In our previous work, we confirmed the feasibility of utilising HME as a continuous 

processing platform for the manufacture of FDCs for the management of chronic diseases 

(Andrews et al., 2019b; Kelleher et al., 2018). Additionally, we demonstrated the suitability of 

Raman spectroscopy for the inline quantification of Ramipril during processing by utilising the 

quality by design approach and PAT framework (Andrews et al., 2019a; Dadou et al., 2020b). 

In this work, a FDC composed of Hydrochlorothiazide (HCTZ) and Ramipril (RMP) was 

manufactured using HME for the management of hypertension. To date, work investigated in 

the scientific literature has focused on analysing a single drug/ingredient during continuous 

processing. The aim of this work was to demonstrate the feasibility of utilising inline Raman 

spectroscopy as a non-invasive, PAT tool for the simultaneous quantification of two distinct 

drug entities (HCTZ and RMP) in FDCs manufactured using HME.  

 

2. Materials and Methods 

2.1. Materials 

Ramipril (RMP) was purchased from Kemprotec (Carnforth, England). Hydrochlorothiazide 

(HCTZ) was purchased from Alfa Aesar (Lancashire, England). Eudragit EPO (EPO) and 

Eudragit L 100 (L100) were obtained from Evonik Industries (Darmstadt, Germany). Triethyl 

citrate (TEC) was purchased from Lancaster synthesis Ltd (Morecambe, UK). All other 

chemicals were of analytical grade or equivalent and were used with no further treatment. 

2.2. Hot Melt Extrusion (HME) 

HME was performed using a co-rotating, fully intermeshing twin-screw extruder (Microlab, 

Rondol Technology Ltd, France). Physical mixtures of the drugs, polymers and plasticiser were 

mixed using a mortar and pestle. The ratio of EPO:L100 was kept constant at 1:1 in all 

formulations. TEC concentration was fixed at 7.5% w/w. The polymers to drugs ratio was 

altered based on the content of drugs used as shown in Table 1. The premixed powders were 

then fed into the extruder using a twin-screw powder feeder (Rondol Technology Ltd, France) 



at feed rate of 32 rpm. Extrusion was carried out at a screw speed of 80 rpm and a barrel 

temperature of 106 °C. An in-house designed, 2 mm diameter die was fitted to the end of the 

barrel to accommodate the inline Raman probe. The extrudates produced were collected and 

stored in sealed bags for further analysis.  

2.3. Determination of Drug Content using High Performance Liquid Chromatography (HPLC) 

HPLC analysis was performed using an Agilent 1260 Infinity Series HPLC (Agilent 

Technologies, Cheadle, UK). A Kinetex® C18 column (150 mm × 4.6 mm, phenomenex, 

Torrance, USA) was used as the stationary phase. 10 μL of each sample was injected to the 

column using an auto-sampler. The mobile phase consisting of an aqueous solution of 0.1M 

sodium perchlorate adjusted to pH 2.5 using phosphoric acid (mobile phase A), and acetonitrile 

(mobile phase B) was pumped to the system under gradient mode at varied flow rates between 

0.8 and 1.5 mL/min. Detection was achieved using a UV detector at a wavelength of 210nm. 

The area under the peak of each drug was used to calculate its concentration in the sample.   

HPLC offline was used as the reference method of analysis to quantify RMP and HCTZ in the 

extrudates. Following extrusion, pelletised extrudates were placed, separately, in volumetric 

flasks and dissolved in the mobile phase to obtain a final concentration of the drugs within the 

range used to prepare the calibration curves. Aliquots were withdrawn from the prepared 

samples, filtered through hydrophilic PTFE syringe filters (0.45 μm, Fisher Scientific Ireland 

Ltd., Dublin, Ireland) then transferred into the HPLC vials and analysed.  

2.4. Raman Spectroscopy Measurements  

A portable benchtop Raman Rxn1 spectrometer (Kaiser Optical Systems, Ann Arbor, MI, 

USA) equipped with an Invictus NIR diode laser was used to collect Raman Spectra. A high 

temperature and pressure immersion HME Kaiser Probe (RAMAN RXN™ Probe) was 

installed into the extruder die for inline measurements. All Raman spectra were recorded using 

a Kaiser Optical Systems at a laser power of 400 mW and wavelength of 785 nm. Spectra were 



collected every 30 seconds during extrusion using a resolution of 2 cm-1 and a total exposure 

time of 20 seconds. Data collection was automated using iC Raman software (version 4.1, 

Mettler Toledo, US). Prior to performing inline measurements, Raman spectra were collected 

offline for raw materials individually, using the same Raman settings, to identify the 

characteristic Raman shifts and wavenumber regions for each component in the FDC. 

2.5. Principal Component Analysis (PCA) 

The analysis of the Raman spectra collected during extrusion was achieved using SIMCA 

software (version 15, Umetrics, Umeå, Sweden). To reduce random noise and baseline drift in 

the signal, particularly at high temperature, Standard Normalised Variate (SNV) or first 

derivative (1D) pre-processing spectral filters were considered. For both filters, Multiplicative 

Scatter Correction (MSC) and 15-point quadratic Savitzky-Golay (SG) were further applied to 

the spectra. Analyses were performed on different spectral regions to identify the regions and 

pre-processing filters that best represent/quantify each drug in the extrudates. Principal 

Component Analysis (PCA) was performed to identify the principle components that capture 

the variation in spectra collected for each drug during HME.  

2.6. The Development of Inline Raman based Calibration Models 

A calibration set composed of formulations C1 to C5 (Table 1) was used to develop the 

calibration models from inline Raman spectra. FDCs of HCTZ and RMP were manufactured 

at theoretical concentration range of 6.5 to 40 (% w/w) and 2.5 -15 (% w/w), respectively, to 

cover a wide range of the therapeutic relevant doses available in commercial products. SIMCA 

software (version 15, Umetrics, Umeå, Sweden) was used to build the calibration models. 

Partial Least Square (PLS) calibration models were established by regressing the inline Raman 

spectra collected during HME from the calibration set, against the corresponding actual 

concentrations measured using offline HPLC. Separate PLS calibration models were 

established for HCTZ and RMP. 



2.7. Validating and Evaluating PLS Calibration Models 

The software (SIMCA) built-in cross-validation tool was used for the internal validation of the 

model. For external validation, a validation set was manufactured using HME process 

conditions and Raman settings previously described (formulations V1– V3, Table 1). The 

actual concentrations of drugs in the extrudates were measured using offline HPLC and used 

for external validation. Validation terms including selectivity, linearity, accuracy and precision 

were assessed to meet the validation criteria required by existing guidelines (EMA, 2009; FDA, 

2015). Parameters used to evaluate the PLS model performance were the coefficient of 

determination of (R2) of calibration models, principal components (PC) of the loading plots, 

root mean squared error of estimation (RMSEE), root mean squared error of cross validation 

(RMSEcv) and root mean square error of prediction (RMSEP). On the other hand, relative 

standard deviation (RSD, %) was calculated for the validation set and used to evaluate 

precision. In addition, the relative bias between the true value of each measurement (HPLC) 

and the corresponding value predicted using the PLS calibration models was estimated using 

Eq. (1) (Harting and Kleinebudde, 2018).  

𝑅𝑒𝑙𝑎𝑡𝑖𝑣𝑒 𝑏𝑖𝑎𝑠 (%) =  
(ŷ𝑖− 𝑦𝑖)

𝑦𝑖
 × 100  [1] 

where yi is the true value calculated by HPLC and ŷi is the predicted value. 

  



3. Results and Discussion 

This work follows on from previous publications by our group wherein Raman spectroscopy 

was successfully employed as a PAT tool for the inline quantification of Ramipril (RMP) 

during HME (Andrews et al., 2019a; Dadou et al., 2020b). This was achieved by optimising 

the quality attributes affecting RMP stability during HME with the aid of QbD framework. In 

addition, the quality of RMP was monitored during the process through a validated Raman 

based PAT tool. The outcome enabled the use of HME as a continuous processing platform for 

the manufacture of thermolabile drug products, e.g., RMP. Herein, we have investigated the 

feasibility of using inline Raman as a PAT tool for the simultaneous quantification of RMP and 

Hydrochlorothiazide (HCTZ) in fixed dose combinations (FDC). Formulation composition and 

process conditions previously optimised through the validated design space (Dadou et al., 

2020b) were adopted in this study for the manufacture of HCTZ-RMP based FDC using HME. 

3.1. HPLC analysis of RMP and HCTZ 

Having a well-established offline analytical technique is essential for the development of a 

robust and reliable Raman spectroscopic method for the inline quantification of APIs (Harting 

and Kleinebudde, 2018). Therefore, HCTZ and RMP were first analysed using offline HPLC 

as a reference method. The HPLC method developed in our previous work was utilised in this 

study (Andrews et al., 2019a). Initially, drugs were dissolved and analysed separately to 

distinguish the retention time of each drug, and then a mixture of drugs in solution was analysed 

to ensure that both drugs can be detected (data not shown). A calibration curve was constructed 

for HCTZ with a concentration range of 5 – 100 μg/mL. HCTZ was detected at retention time 

of 1.91±0.02 min. Linearity was observed with a goodness of fit (R2) of 0.999. For RMP, a 

concentration range of 5 – 50 μg/mL was used to establish the calibration curve. Retention time 

was observed at 4.33±0.04 min. The calibration curve showed a goodness of fit (R2) of 0.997. 

The developed HPLC method was able to detect the two drugs (HCTZ and RMP) 



simultaneously in the FDC extrudates. Well-resolved peaks associated with pure HCTZ and 

RMP were observed (Figure S1).  

3.2. Offline Raman spectroscopy 

Raman spectroscopy was used in this work as a PAT tool due to its high capability to analyse 

drugs in a rapid, non-invasive manner using a wide range of physical forms of samples (Dadou 

et al., 2020a). Moreover, a Raman probe can be conveniently installed in the extruder die, 

allowing for inline measurements (Andrews et al., 2019a). In order to assess the feasibility of 

using inline Raman spectroscopy to distinctively quantify RMP and HCTZ, it was important 

to examine if any of the specific Raman shifts assigned to characteristic groups of each drug 

can be unequivocally captured in the spectra. Initially, offline Raman spectra were obtained for 

raw drugs (RMP and HCTZ) and a physical mixture of blank formulation (polymers and 

plasticiser) to identify the characteristic shifts and wavenumber regions for each drug showing 

no overlaps with other FDC components (Figure 1). Raman shifts representing characteristic 

groups of RMP molecule were observed at 1004 cm−1 and 1654 cm−1. The Raman region 

surrounding the 1004 cm−1 shift, assigned to the aromatic ring, was chosen to quantify RMP in 

this study since it was the most intense peak and showed no overlapping with other Raman 

shifts obtained for HCTZ and/or excipients included in the formulation. Additionally, a 

wavenumber region that includes this shift (950-1250 cm−1) was successfully employed in our 

previous studies to quantify RMP during HME.  

For HCTZ, the most intense shift was observed at 265 cm−1. In addition, a well resolved peak 

was detected at 709 cm−1. Therefore, the wavenumber regions surrounding the two peaks (200-

400 and 630-730 cm−1) were considered to select the region(s) that better corresponds to HCTZ 

content in the spectra collected during HME.  

 

3.3. Optimisation of Wavenumber Region Selection from Inline Raman Spectra 



Spectral pre-treatment is a vital tool in chemometrics in order to eliminate random noise and 

to reduce baseline drift in the signal, due to the high pressure and temperature in the extruder 

(Dadou et al., 2020b). Additionally, spectral pre-treatment improves the accuracy and precision 

of chemometrics based methods of quantification by enhancing spectral information (Eriksson 

et al., 2013). Standard normalised variate (SNV) and first derivative (1D) spectral pre-treatment 

filters were considered and applied on the inline Raman spectra collected during extrusion. For 

both filters, data were further processed using multiplicative scatter correction (MSC) and 

Savitzky-Golay (SG) filters. Raman spectra obtained offline for HCTZ, RMP and blank 

formulation following pre-treatment are shown in Figure 1 (b, c). It is evident that the same 

distinctive regions of each drug in raw spectra are still observed in the pre-treated spectra, thus 

can be employed for the optimisation. 

Principal component analysis (PCA) was performed to aid in selecting appropriate spectral 

filters and wavenumber regions that can extract the information associated with the response 

(drug content in this case) needed to establish the inline Raman based calibration models. PCA  

is utilized to visualise the partition in the dataset collected for samples (observations) and try 

to find pattern/categories based on latent variables known as Principal Components (PCs) 

(Pauli et al., 2019). In this work, Raman spectra obtained from the calibration set during the 

HME process were used as the dataset (x-variables), whereas the concentrations of the drugs 

(HCTZ and RMP) were assigned as the response (y-variables). PCA was performed for each 

drug individually to gain an overview on the distribution of the observations and optimise the 

wavenumber region that can capture the variation in the spectra associated with drug content. 

For HCTZ, PCA was initially performed on the wavenumber region that showed the most 

intense Raman shifts (200-400 cm−1), namely Region 1. It can be observed from Figure 2 that 

the intensity of the peaks in Region 1 are directly proportional to the concentration of HCTZ 

in the calibration formulations. This was valid for both SNV and 1D spectra. PCA scatterplots 

(Figure 3) showed that the main scores of the observations are oriented along the first principal 



component (PC1) with the highest PC1 score corresponded to the extrudates containing 40% 

w/w of HCTZ (blue) while a low value of PC1 was associated with HCTZ concentration of 

6.5% w/w (orange). It is evident that the data is following a simple trend where observations 

are oriented along PC1 axis with HCTZ concentration. However, the partition of the data is 

poor. It can be remarked that SNV spectra of higher concentrations of HCTZ occupied narrow 

space in the scatterplots with clear overlapping (Figure 3a). Although better data partition was 

observed at lower concentrations of HCTZ (6.5 and 12.5 % w/w), observations representing 

the same concentration are highly scattered. On the other hand, 1D spectra showed poor 

partition for all HCTZ concentrations except for the highest concentration (C5, 40% w/w). 

Results obtained clearly indicate the complexity of developing a well-resolved PCA model for 

HCTZ using a single Raman wavenumber region which imply that Region 1 is not sufficient 

to describe HCTZ in the FDC extrudates.  

After further investigation, the wavenumber region of 630-730 cm−1 was selected as Region 2 

considering the significant variation observed in Raman signals (x-variable) with the response 

(HCTZ % w/w) as outlined in Figure 2 c,d. Region 2 was pre-processed using the same spectral 

filters and was combined to Region 1 to highlight HCTZ content in the manufactured FDCs. 

PCA score scatterplots acquired from the two regions are shown in Figure 3 c,d. It can be 

observed that a better partition and clustering of the observations was achieved when the two 

regions were combined for both pre-processing filters compared to the corresponding spectra 

collected from Region 1. This was more evident when SNV was applied as the pre-processing 

filter (Figure 3c). PC1 was able to capture the variation in Raman spectra caused by the 

differences in HCTZ content in the FDC calibration formulations. The absence of off-limits 

points from the 95% confidence interval limits and the clear discrepancy between the spectra 

collected for the formulations having different HCTZ concentrations indicate a strong 

correlation between the Raman signals in the regions selected and the responses (HCTZ %, 

w/w). Additionally, a loading plot obtained for SNV spectra (Figure 4) showed that PC1 was 



able to capture 98.6% of Raman spectral variation in Regions 1 and 2 combined. This further 

confirms that combining SNV spectra of the two regions (200-400 and 630-730 cm-1) provides 

a better representation of HCTZ content (% w/w) in the inline Raman spectra and results in a 

responsive variable.  

Similarly, two regions were considered for the optimisation of characteristic wavenumber 

region(s) for the quantification of RMP in the FDCs. Region 1 depicts the wavenumber region 

950-1250 cm-1 which was optimised in our previous work. It is evident from Figure 5 a,b that 

Raman shifts observed in the region 950-975 cm-1 were inversely proportional to RMP content 

(% w/w) in the formulation. It can be observed from Figure 1 that there is an overlap between 

Raman signals of RMP and HCTZ at wavenumber values higher than 1100 cm-1, and 

furthermore with excipients at wavenumber regions lower than 980 cm-1. This explains the 

inverse relation between Raman shifts in the region 950-975 cm-1 and RMP content as it 

represents the ratio of excipients in the formulation as it decreases when RMP concentration 

was increasing in the FDC. On the other hand, the intensity of Raman shifts in the region 1110-

1130 cm-1 showed no correlation with RMP concentration in the calibration set. PCA 

scatterplots (Figure 6) further confirm of the unsuitability of Region 1 to quantify RMP in the 

manufactured FDCs. Data presented in Figure 6 a, b show poor partition with some off-limits 

observations from the 95% confidence interval. The scores obtained for formulations 

containing high RMP contents C4 and C5 showed better partition than formulations C1-3 when 

SNV pre-processing filter was applied. For 1D spectra, all observations were highly scattered 

regardless of RMP concentration in the calibration set. Moreover, some observations in C5 

showed off-limits scattering from the 95% confidence interval.  

Therefore, a narrower wavenumber region excluding the above-mentioned overlapping regions 

was considered (980 – 1100 cm-1) for the quantification of RMP in FDC and was assigned as 

Region 2. The intensity of Raman shifts in Region 2 was shown to be directly proportional to 

RMP concentration in calibration formulations (Figure 5 c, d). This was valid for both SNV 



and 1D pre-processed spectra. PCA score scatterplots presented in Figure 6 (c, d) showed 

improved partition of the data when the selected Raman region was narrowed. The score scatter 

plots showed a clear distinction between the observations from different calibration mixtures. 

Observations having the highest PC1 score corresponded to the extrudates containing 15% w/w 

of RMP (blue) while a low value of PC1 was associated with RMP content of 2.5% w/w (red). 

Clusters corresponding to RMP content in formulations C1-3 were observed in the negative 

values of PC1, whereas clusters representing RMP % w/w in C4 and C5 of were localised in 

the positive side of PC1. This was evident in both SNV and 1D spectra. SNV pre-processing 

filter was selected to establish the predictive calibration model for RMP since it was used for 

the development of HCTZ calibration model. Loading plot obtained for Region 2 of SNV 

spectra (Figure 7) showed that PC1 was able to capture 91.9% of spectral variation. This 

confirms that inline Raman SNV spectra of Region 2 (980 - 1100 cm-1) corresponded to the 

variation in RMP content (% w/w) in the FDCs. 

To further confirm the suitability of the selected wavenumber region(s) and pre-processing 

filters for the quantification of RMP and HCTZ, calibration models were established for each 

spectral region/filter investigated using partial least squares regression. Results obtained for 

performance indicators (Table S1) support the results obtained from PCA and imply the 

suitability of selected regions (Region 1-2 for HCTZ and Region 2 for RMP) and filter (SNV) 

for the purpose of measuring the quantity of drugs during HME. 

3.4. The Development and Validation of a Raman-Based PAT Method  

FDA and EMA guidance documents endorse the use of chemometrics, in particular partial least 

squares (PLS) predictive models, to fully realise the potential of PAT tools (FDA, 2015). In 

order to have accurate predictions of API(s) content during the process, reliable models 

offering high predictability are required (EMA, 2009). In this work, a calibration set composed 

of five formulations (C1-5) as outlined in Table 1 was extruded. Raman spectra were collected 

during the HME process. Twenty spectra were collected from each formulation. Thus, a total 



of 100 spectra (5 concentration levels × 20 spectra per concentration) comprising 3226 × 100 

data points were used to establish the Raman based calibration models. The actual 

concentration of HCTZ and RMP in the manufactured FDCs were measured post-extrusion 

using offline HPLC as a reference method of analysis. PLS models were established by 

regressing the dataset obtained from inline Raman measurements against the actual 

concentration of each drug as measured using HPLC. For HCTZ, a PLS calibration model was 

developed using the SNV pre-processed spectra for Raman Regions 1 and 2 (200-400 and 630-

730 cm-1, respectively). SNV pre-processing filter was selected to establish the predictive PLS 

model for RMP using Raman Region 2 (980 - 1100 cm-1). Developed PLS models are presented 

in Figure 8. 

To ensure the best fit of regressed data is achieved, different numbers (2-5) of principal 

components (PCs) were considered for each calibration model (Table 2). Metrics used to 

evaluate models performance when varying the number of PCs were the residual errors of 

estimation (RMSEE) and cross-validation (RMSEcv) of the calibration models in addition to 

residual errors of prediction (RMSEP) of the validation set. Large differences between RMSEE 

and RMSEcv denotes poor accuracy of the calibration model. In addition, high values of 

RMSEP indicates poor predictability of the models and signifies the need for further 

optimisation. Since RMSEP indicates the predictability of the models based on an external 

validation set, it is considered as the most relevant error parameter when developing a model 

and will be used to decide the number of PCs to include in the PLS model of each drug. For 

the development of a PLS calibration model for HCTZ, two PCs were not sufficient to quantify 

HCTZ accurately. Reported values for RMSEE and RMSEcv exceeded 2%. No significant 

differences were observed in the values obtained for coefficients of determinations (R2X and 

R2Y) and model validity (Q2) when 3 - 5 PCs were used. Four PCs were chosen for HCTZ 

calibration model, since the difference between the values reported for RMSEE and RMSEcv 

was low and, more importantly, RMSEP value was minimal indicating more accuracy in 



predicting HCTZ concentration in the unknowns. Similarly, the PLS model of RMP was 

established using three PCs, since the gap between RMSEE and RMSEcv terms and the value 

of RMSEP were increasing when more PCs were added implying a drop in model accuracy 

(Table 2). 

Specificity, which depicts the ability of the method to identify the analyte of interest from other 

components in the formulation, was evaluated by comparing the original spectra collected 

offline for drugs and excipients. As shown in Figure 1, there is no overlap in the Raman regions 

selected for each drug and the second drug or the excipients, used to formulate the FDCs. 

Furthermore, loading spectra obtained from PLS models developed for HCTZ (Figure 4) and 

RMP (Figure 7) confirmed the selectivity of the models developed as such PC1 was able to 

capture 98.6% and 91.9% of the variation in the spectra associated with the change in HCTZ 

and RMP concentrations in the calibration set, respectively. 

Linearity was estimated from the established PLS calibration models for each drug. The 

predicted values of HCTZ and RMP from Raman spectra were plotted, separately, against the 

corresponding measured values using the reference HPLC method (Figure 8). The PLS 

calibration models showed good correlation between the measured/true and predicted 

concentrations of the drugs in the calibration set. Coefficient of determination (R2), slope and 

intercept were the metrics used to assess linearity. Results obtained (Table 3) clearly indicate 

excellent linearity for both models. The slope values were 1 whereas the values of the intercept 

were very close to zero. The regressed lines were able to fit 98.6 and 97.4% of the observations 

associated with HCTZ and RMP models, respectively.  

The accuracy of a method of analysis is reflected in the agreement between the actual and the 

predicted values (ICH, 2005). Herein, accuracy was reported as RMSEE, RMSEcv and 

RMSEP for each model. RMSEE and RMSEcv were calculated using the calibration set 

whereas the validation set was used to calculate RMSEP. The values calculated for RMSEE, 

RMSEcv and RMSEP from each model are reported in Table 3. Small differences between 



RMSEE and RMSEcv were observed indicating high accuracy of both models. Similarly, an 

excellent predictability was evident for the two models as RMSEP values calculated for HCTZ 

and RMP in the validation set were 1.237 and 1.007%, respectively. This indicates the ability 

of the developed models to predict unknowns accurately. 

3.5. Evaluation of the predictive performance of the developed PLS based PAT models 

To evaluate the predictive performance and precision of the developed PLS calibration models, 

Raman spectra were collected inline from a validation set composed of FDCs manufactured at 

concentration levels of HCTZ and RMP different from the calibration set (V1-3, Table 1). 

Raman spectra were acquired at predetermined time intervals during the extrusion process and 

samples of produced extrudates, that match the time at which the spectra were obtained, were 

collected and analysed for drugs content. The prediction performance of the developed PLS 

calibration models were assessed by reporting RMSEP values for the drugs at each time point. 

Additionally, relative bias was estimated for the drugs at each concentration level to quantify 

the deviation from the actual values measured using HPLC. A deviation of ±10 % from the true 

value was deemed acceptable (Saerens et al., 2014). On the other hand, relative standard 

deviation (RSD) was calculated to evaluate precision by measuring the variance between the 

predicted concentration of the drugs from triplicate measurements at each time point for the 

same sample. The PLS developed models for both drugs showed high precision and 

predictability of drugs concentration in the FDCs manufactured (Table 4). Moreover, PCA 

scatterplot generated from the Raman spectra obtained inline for formulations V1-3 (Figure 9) 

shows good partition of the data in the plane. The main scores of the observations are oriented 

along PC1 with drug concentration (for both drugs) which confirms the capability of the 

developed models to capture the variation in the spectra associated with drug concentration in 

the validation set. Calculated relative biases and RSD values were below 10% for all samples 

(Table 4). However, it was observed that the values become lower when higher concentration 

of drug is included in the validation set. Relative biases reported for RMP and HCTZ in V1 



were 27 and 10 times higher than V3. Additionally, RSD values obtained from V1 were almost 

twice the values of V3 for both drugs. The observed drop in relative biases values in V2 and 

V3 can be explained by the well-known weak scatter effect of Raman; limiting its sensitivity 

for lower concentrations of analysts. Nevertheless, reported values of relative bias were within 

the accepted limit (≤ 10%). 

A paired t-test was considered to further investigate the predictive performance of the PLS 

models and outline any significant difference in the predicted concentrations of the drugs in 

the validation set when correlated to the true values measured using HPLC. The difference was 

considered significant at p-values lower than 0.05. Results reported in Table 5 revealed that 

there were no significant differences between the drugs content measured using HPLC and 

predicted from the established PLS models (p > 0.05). Results obtained reveal the excellent 

predictability of the developed PAT methods and their high accuracy in predicting the 

concentration of HCTZ and RMP in the FDCs. This further confirms the high potential of inline 

Raman spectroscopy and its suitability as an in-process method of quantification to monitor 

the quality of the product and/or process.  



4. Conclusion 

The feasibility of quantifying two drugs (HCTZ and RMP) during the hot melt extrusion of 

fixed dose combinations was confirmed in this study. Results obtained indicate that a careful 

selection of the spectral range that can identify each drug unequivocally in the FDC is of 

paramount importance for the development of reliable PAT predictive models. Raman spectra 

collected inline for a HCTZ-RMP based FDC were converted into principle components maps 

with the aid of chemometrics. When suitable Raman regions were selected and proper pre-

processing spectral filters were applied, variations in the spectra associated with the levels of 

HCTZ and RMP in the FDC were successfully captured and mapped into clusters. Reliable 

calibration models were established across therapeutically relevant dosages of the drugs using 

PLS regression. Furthermore, validation requirements in accordance to current international 

standards were met. Reported values for the errors of estimation, cross validation and 

prediction were low confirming the high accuracy of the developed PLS models in predicting 

drugs concentrations with acceptable deviation from true values, which were verified by offline 

HPLC measurements. The output of this study allows in-process quality control of multiple 

drugs, facilitating the integration of continuous processing platforms as means of manufacture 

of FDCs in the pharmaceutical industry. Furthermore, it allows the implementation of PAT 

tools as routine methods of analysis within the laboratory with a high potential of replacing the 

current conventional, destructive offline methods.  
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Figure 1. Raman spectra collected offline for pure drugs (HCTZ and RMP) and physical mixture 

of excipients only (Blank). Data represent: (a) raw, (b) SNV, and (c) 1D spectra. 



 

Figure 2. Changes in the intensity of Raman shifts with the concentration of HCTZ at: (a) Region 1 using SNV filter, (b) Region 1 using 1D filter, (c) Region 

2 using SNV filter, and (d) Region 2 using 1D filter. Colour code on the right hand side denotes HCTZ concentration (% w/w) in the calibration set. Region 

1 (200-400 cm-1) and Region 2 (630-730 cm-1). 



 

Figure 3. PCA score scatterplots generated from the inline Raman spectra collected for HCTZ at: (a) Region 1 using SNV filter, (b) Region 1 using 1D filter, 

(c) Regions 1-2 using SNV filter, and (d) Regions 1-2 using 1D filter. Colour code on the right side represents HCTZ concentration (% w/w) in the calibration 

set (C1, orange; C2, yellow; C3, green; C4, cyan; C5, blue). Region 1 (200-400 cm-1) and Region 2 (630-730 cm-1).  



 

 

Figure 4. Loading plot of the first principal component obtained from the SNV Raman based PLS 

calibration model developed for HCTZ using Regions 1 and 2 combined. 



 

Figure 5. Changes in the intensity of Raman shifts with the concentration of RMP at: (a) Region 1 using SNV filter, (b) Region 1 using 1D filter, (c) Region 

2 using SNV filter, and (d) Region 2 using 1D filter. Colour code on the right side denotes RMP concentration (% w/w) in the calibration set of formulations. 

Region 1 (950-1250 cm-1) and Region 2 (980-1100 cm-1). 



 

Figure 6. PCA score scatterplots generated from the inline Raman spectra collected for RMP at: (a) Region 1 using SNV filter, (b) Region 1 using 1D filter, 

(c) Regions 2 using SNV filter, and (d) Regions 2 using 1D filter. Colour code on the right side represents RMP concentration (% w/w) in the calibration 

set formulations (C1, red; C2, yellow; C3, green; C4, cyan; C5, blue). Region 1 (950-1250 cm-1) and Region 2 (980-1100 cm-1).  



 

 

Figure 7. Loading plot of the first principal component obtained from the SNV Raman based PLS 

calibration model developed for RMP using Region 2. 

 

 
 

  



 

 
 

Figure 8. The developed Raman based PLS calibration models of HCTZ (blue) and RMP (red). 

 

  



 

 

 

Figure 9. PCA score scatterplots obtained for the validation set using the PLS calibration models 

developed for the quantification of: (a) HCTZ and (b) RMP. 

 

 

  



Table 1. Formulations used to develop and validate Raman based PLS calibration modelsa 

Formulationb HCTZ RMP EPO L100 TEC 

C1 6.5 2.5 41.75 41.75 7.5 

C2 12.5 5 37.5 37.5 7.5 

C3 25 10 21.25 21.25 7.5 

C4 31.5 12.5 25.75 25.75 7.5 

C5 40 15 18.75 18.75 7.5 

V1 10 4 39.25 39.25 7.5 

V2 19 7 33.25 33.25 7.5 

V3 28 11 26.75 26.75 7.5 

a All values reported are in weight percentage (% w/w) 
b Formulations C1-C5 were used as the calibration set whereas V1-V3 as the validation set 

 

  



Table 2. Model performance indicators for the HCTZ and RMP developed PLS models* 

№ of PCs R2X R2Y Q2 RMSEE RMSEcv RMSEP 

HCTZ       

2 0.994 0.968 0.966 2.066 2.076 1.396 

3 0.995 0.980 0.975 1.645 1.787 1.517 

4 0.996 0.986 0.980 1.403 1.587 1.237 

5 0.996 0.989 0.978 1.235 1.726 1.200 

RMP       

2 0.951 0.943 0.939 0.875 0.886 1.035 

3 0.960 0.974 0.968 0.588 0.645 1.007 

4 0.965 0.980 0.965 0.525 0.671 1.012 

5 0.968 0.982 0.962 0.498 0.736 1.010 

* PCs, principal components, R2X, R2 predicted; R2Y, R2 observed; Q2, model validity; RMSEE, root mean square 

error of estimation; RMSEcv, root mean square error of cross validation; RMSEP, root mean square error of 

prediction  
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Table 3. Overview of validation parameters obtained for the calibration set of HCTZ and RMP 

using the established Raman based PLS calibration models 

 Linearity Accuracy 

 R2 Intercept Slope RMSEE (%) RMSEcv (%) RMSEP (%) 

HCTZ 0.986 1.19e-6 1 1.403 1.586 1.237 

RMP 0.974 1.05e-6 1 0.589 0.645 1.007 
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Table 4. Intraday precision and predictability calculated for the validation set using the 

established PLS calibration models of HCTZ and RMP* 

  HCTZ RMP 

Formulation RSD RMSEP Relative bias RSD RMSEP Relative bias 

V1 3.70 1.362 8.88 9.02 1.017 9.90 

V2 4.67 1.440 2.11 2.36 0.881 4.93 

V3 1.68 0.977 0.88 3.86 0.883 0.36 

* RSD, relative standard deviation; RMSEP, root mean square error of prediction. All values are percentage (%). 
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Table 5. Concentration of HCTZ and RMP in the validation set as predicted from the established 

PLS calibration models and measured using HPLC 

  HCTZ RMP 

Formulation Actual* Predicted* p-value Actual*  Predicted* p-value 

V1 10.19 ± 0.40 11.09 ± 0.41 0.132 3.79 ± 0.18 4.16 ± 0.37 0.355 

V2 19.48 ± 1.05 19.06 ± 0.89 0.629 6.35 ± 0.14 6.03 ± 0.14 0.185 

V3 27.00 ± 2.03 26.76 ± 0.45 0.865 9.72 ± 1.12 9.69 ± 0.34 0.960 

* Values reported are in weight percentage (% w/w) and represent the average ± SD (n=3). 
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