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We consider the effect of coupling an otherwise chaotic population to a refuge. A rich set of dynamical

phenomena is uncovered. We consider two forms of density dependence in the active population: logistic

and exponential. In the former case, the basin of attraction for stable population growth becomes fractal,

and the bifurcation diagrams for the active and refuge populations are chaotic over a wide range of

parameter space. In the case of exponential density dependence, the dynamics are unconditionally stable

(in that the population size is always positive and finite), and chaotic behavior is completely eradicated for

modest amounts of dispersal. We argue that the use of exponential density dependence is more

appropriate, theoretically as well as empirically, in a model of refuge dynamics. & 2002 Elsevier Science (USA)
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1. INTRODUCTION

Non-linear maps have contributed greatly to our
understanding of population dynamics over the past 25
years (May, 1976). The famous bifurcation diagram of
the logistic map (i.e., the discrete time analog of the
logistic model) encapsulates the related ideas of period
doublings in steady-state populations as the reproduc-
tive rate is increased, and fully chaotic dynamics as the
reproductive rate exceeds a critical value.

In more recent years, workers have utilized non-linear
maps in a spatially explicit context by constructing
coupled map lattices (CML) (Kaneko, 1992; Sol!ee et al.,
1992). In these models, a spatial system is represented by
a grid on each site of which is placed a non-linear map.
The maps are coupled together to represent spatial
dispersal. On varying the dispersal parameter, along
with the reproductive rate, a wide range of dynamical
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behavior is observed (see for example, Hassell et al.,
1991).

Given the complexity of CML, it is difficult to
understand these different dynamical phases even
qualitatively. In an attempt to unravel the complexity
of spatially explicit models, we introduce here the
simplest spatial generalization of a non-linear map. This
is a two-site system, with density-dependent regulation
at one site, and density-independent dynamics at the
other. The second site is coupled to the first via
dispersal. To our knowledge this model has not been
studied before. There have been many studies of two-site
systems, but in all cases the populations of both sites are
updated under density-dependent regulation (see for
example, Vandermeer (1997), and in the chaos literature
Maistrenko et al. (1999), and references therein). A
particular class of these two-site systems has been
intensively studied in the context of source–sink
dynamics (Hanski, 1999). A continuum version was
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FIG. 1. Schematic illustration of the refuge model. The active

population on the left (with density xn) has internal dynamics

generated by a map f ðxn; lÞ: There is dispersal with rate e from the

active population to the refuge, and dispersal in the opposite sense with

rate e0: The organisms in the refuge (with density yn) also suffer

constant attrition with rate m:
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studied by Holt (1985) who found a globally stable
equilibrium for the two-patch populations, and the
bifurcation structure of a discrete version was carefully
analyzed by Gyllenberg et al. (1996). Our model is
expected to be simpler than these others, since one site
has purely linear dynamics.

We have introduced our model in very general terms.
In the rest of this article we shall focus on systems in
which there is no reproduction or intra-specific competi-
tion whatever in the second site. We shall only consider
dispersal to and from the second site, and mortality. We
shall loosely describe this class of systems under the
heading ‘‘refuge models’’ (Chesson, 1983, 1984). We
shall refer to the first site (with density-dependent
regulation) as the ‘‘active’’ site, and the second site as
the ‘‘passive’’ site. It is well appreciated that a refuge can
have profound effects on the population dynamics of the
simplest model systems (see for example, Edelstein-
Keshet (1988) and references therein). In spite of this, we
are unaware of any previous studies of the simple refuge
model outlined here. [We note, however, that a
mathematical model similar to ours has recently been
studied within the matrix approach to metapopulation
dynamics (Vandermeer and Carvajal, 2000).]

Despite its simplicity, we expect our model to be a
good starting point for the description of refuges. As an
example, we consider a plant population that has an
actively growing fraction and a dormant seed bank (for
example, Cohen, 1966; Bosbach et al., 1982; Archbold,
1989). The active fraction may be modeled in a spatially
implicit manner with a non-linear map. In each cycle,
the plant population will lose a certain proportion of
seeds to the seed bank. In a likewise manner, the seed
bank will lose a certain proportion of its seeds to
germination and recruitment to the active population. In
the seed bank, seeds are passive, undergoing neither
growth nor death through density-dependent competi-
tion (although one expects there to be a certain density-
independent attrition due to loss of viability, predation,
etc.). One may also use the refuge concept for a large
number of other population systems, including the well-
studied example of the resting stage of eggs of micro-
crustaceans (Hairston, 1987; Hairston et al., 1996), or
long-lived adults of amphibians with strong density
dependence in the larval stage (Wilbur, 1996). Another
potential application of the refuge model is as a simple
description of population dynamics at a range margin,
where viable populations are coupled to sinks (with no
density dependence).

The immediate questions that arise are: how does the
refuge affect the dynamics of the active population? If
there is chaos in the absence of the refuge, will the
dispersal to the refuge enhance or diminish the chaotic
behavior? We make some first steps to answering these
questions in this article.

In the next section, we introduce our model in the
form of a two-dimensional map. We shall make certain
simplifying assumptions, and present two elementary
analytic observations. The remainder of the article will
deal with results obtained via numerical iteration of the
map. In Section 3, we study the system in which the
active population has an intrinsic dynamics governed by
the logistic map. We find a range of very rich behavior,
but our conclusion is that the logistic map is inap-
propriate for use in a refuge model. In Section 4, we go
on to study the exponential map. In this case, we find
that a modest amount of dispersal is sufficient to remove
the chaos completely from the system. We present our
conclusions in Section 5.

2. THE REFUGE MODEL

We wish to consider the simplest possible model of an
active population coupled to a refuge. We consider
discrete time steps, with each time step consisting of two
stages: birth/death and dispersal. The birth/death stage
is modeled in the active population using a non-linear
map corresponding to density-dependent reproduction.
Only death is allowed in the refuge, with a density-
independent rate m: In the dispersal stage individuals
move between the active population and the refuge with
rates e (emigration from the active site) and e0

(immigration to the active site). The reader is referred
to Fig. 1 for a schematic representation of the model.

Let us denote the density of the active population at
time step n by xn; and the density of the refuge
population by yn: (We reserve the symbol t for the
underlying continuous time.) The above model may then
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be written in the following way. For the birth/death
stage we have

*xxn ¼ f ðxn; lÞ;

*yyn ¼ ð1� mÞyn; ð1Þ

where we generally take f ðx; lÞ ¼ lxgðxÞ; such that g is a
function describing the density dependence of reproduc-
tion, and l is the reproductive rate in the absence of
density dependence. For the dispersal stage we have

xnþ1 ¼ ð1� eÞ *xxn þ e0 *yyn;

ynþ1 ¼ ð1� e0Þ *yyn þ e *xxn: ð2Þ

We may combine these two stages into a combined
map by eliminating the intermediate populations *xxn and
*yyn to obtain

xnþ1 ¼ ð1� eÞf ðxn; lÞ þ e0ð1� mÞyn; ð3Þ

ynþ1 ¼ ð1� e0Þð1� mÞyn þ ef ðxn; lÞ: ð4Þ

The model is completely defined by supplying the initial
population densities ðx0; y0Þ:

In what follows we shall simplify the model further by
(i) neglecting attrition in the refuge (i.e., we set m ¼ 0)
and (ii) taking equal dispersal rates e ¼ e0: These choices
are made purely on the grounds of simplicity, and the
investigation of non-zero attrition and asymmetric
dispersal are certainly worthy of future study.

The two-dimensional map now takes the form

xnþ1 ¼ ð1� eÞf ðxn; lÞ þ eyn; ð5Þ

ynþ1 ¼ ð1� eÞyn þ ef ðxn; lÞ: ð6Þ

This is the form of the model we shall use for our
computer experiments.

There are two equivalent ways to rewrite this map
which are worthy of note. First, one may eliminate the
refuge density by iterating Eq. (5) to time step nþ 2: On
substitution of Eqs. (5) and (6) one finds

xnþ2 ¼ ð1� eÞðf ðxnþ1; lÞ þ xnþ1Þ � ð1� 2eÞf ðxn; lÞ: ð7Þ

Second, one may explicitly solve Eq. (6) for the refuge
density in terms of the active site densities. By repeated
iteration one finds

yn ¼ ð1� eÞny0 þ e
Xn�1

m¼0

ð1� eÞn�m�1f ðxm; lÞ: ð8Þ

This solution may be substituted into Eq. (5) to give

xnþ1 ¼ ð1� eÞf ðxn; lÞ þ eð1� eÞny0

þ e2
Xn�1

m¼0

ð1� eÞn�m�1f ðxm; lÞ: ð9Þ
Naturally, this last expression is completely equivalent
to the two-step process given in Eq. (7).

Before proceeding to the computer-aided iteration of
the map, we shall make two analytic statements. The
first concerns the existence of a single stable equilibrium.
If we impose ynþ1 ¼ yn ¼ y and xnþ1 ¼ xn ¼ x; it is clear
from (6) that y ¼ f ðx; lÞ: Substituting this into (5)
immediately gives x ¼ y ¼ f ðx; lÞ: Thus, if an equili-
brium exists, the active and refuge populations will be
equal, and thus the effect of dispersal is irrelevant. The
dynamics of the active population is unaffected by the
refuge. A more subtle issue is the stability of this
equilibrium. To make a detailed statement one must
work with a given form of f ðx; lÞ: We shall just mention
here that the presence of the refuge shifts the range of l
for which the equilibrium is stable, and in some cases
can even change the nature of the instability from period
doubling to a transition to quasi-periodicity (which will
in turn give way to chaos as l is further increased).

The second statement concerns the effect of very weak
dispersal, i.e., e51: The effect of weak dispersal on the
active population is one of a weak perturbation, and
indeed, we can see from Eq. (5) that for e51;

xnþ1 � f ðxn; lÞ: ð10Þ

However, the effect of weak dispersal on the refuge is a
strong perturbation. We refer the reader to Eq. (8). For
e51; ð1� eÞN ¼ expð�N logð1� eÞÞ � expð�NeÞ;
where N ¼ n� m� 1: For Ne51 this factor is approxi-
mately unity, while for Ne41 this factor is negligible.
Thus, for large n; we can rewrite Eq. (8) as

yn � e
Xn�1

m;jn�mje51

f ðxm; lÞ: ð11Þ

So we are summing over 1=e terms, and multiplying by e;
which essentially defines a time average. Making use of
Eq. (10), we may rewrite Eq. (11) as

yn � hxi; ð12Þ

where the angular brackets indicate a time average. We
expect this relation to become exact in the limit of n !
1 and e ! 0þ:

This result is intuitively appealing. For weak dispersal
the refuge is essentially sampling the active population,
and thus for large times we would expect this sampling
to lead to a refuge population which is a time average of
the active population. This result is borne out by our
computer experiments, reported in the following two
sections.



FIG. 2. Bifurcation diagrams for the active population xn and the

refuge population yn using the logistic map; for e ¼ 0:0001 (a and b),

e ¼ 0:1 (c and d), and e ¼ 0:9 (e and f).
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3. DENSITY DEPENDENCE VIA THE
LOGISTIC MAP

We now turn to numerical iteration of the model, as
given in Eqs. (5) and (6). We shall report our results in
the order in which our research progressed. The results
of this section were obtained using the classical one-
parameter logistic map (in which the population density
is scaled to the maximum population size):

f ðx; lÞ ¼ lxð1� xÞ: ð13Þ

Our first investigations centered on plotting the
bifurcation diagrams for the active and refuge popula-
tion densities as the growth rate l was increased, for a
given value of the dispersal rate e: This was repeated for
various values of e: Special care was taken to run the
system for a long period before data were taken, to
avoid including long-lived transient effects. For a very
small dispersal rate of e ¼ 0:0001; the bifurcation
diagram of the active site is hardly altered from its
familiar form (Fig. 2a). The diagram for the refuge
shows essentially a unique population density for a
given value of l (Fig. 2b), which is in accord with our
result of the previous section; namely, that for small
dispersal, the refuge will reflect the time average of the
active population. We have confirmed this by plotting
the time average of the active population, and it is
practically indistinguishable from the refuge population.

For a dispersal rate of e ¼ 0:1; the range of l over
which stable dynamics exists is seen to increase, and the
refuge now has a more complicated dynamics, with
clearly visible period doublings and chaotic regions
(Figs. 2c and d). Increasing the dispersal rate yields
bifurcation diagrams for the active and refuge sites
which become more and more alike, and which are
identical at the symmetry point e ¼ 1=2 (in which case
the bifurcation diagrams closely resemble the zero
dispersal bifurcation diagram for the active site, but in
which stable dynamics exist for the extended range l 2
ð0; 7ÞÞ:

For e > 1=2 we see an abrupt change in behavior, with
the period doublings disappearing. As the single
equilibrium becomes unstable, the system adopts
quasi-periodic behavior. This has been explicitly
checked by studying trajectories. As l is increased this
quasi-periodicity gives way in turn to fully chaotic
dynamics. A further increase in l reverts the system to a
4-cycle, which then re-enters a chaotic regime via period
doubling. Such transitions have previously been seen in
studies of two coupled population oscillators (Vanderm-
eer and Kaufmann, 1998). These features are especially
apparent for a large value of the dispersal rate e ¼ 0:9
(Figs. 2e and f). Note how similar the diagrams are. For
the largest possible dispersal rate e ¼ 1; where the
populations of the active and refuge sites swap each
time step, each site may be described by the pure ðe ¼ 0Þ
bifurcation diagram.

In the dynamics of the single-site logistic map, there is
a finite range of l over which the population remains
bounded. In our units, this range is l 2 ð0; 4Þ: Now that
we have two parameters, we can expect that there is a
region in the ðl; eÞ plane, within which the populations
remain bounded. We use as a criterion for bounded
populations the condition that the active and refuge
populations are non-negative. All of the above bifurca-
tion diagrams were obtained with what we believed to be
‘‘generic’’ initial conditions ðx0; y0Þ ¼ ð0:8; 0:1Þ: Using
these initial conditions, we searched in the ðl; eÞ plane
for regions in which the populations are bounded. We
found a single large region of this type, but with an
extremely complicated boundary. Expanded pictures of
different boundary regions show that these can be
outlying peninsulas with presumably fractal features



FIG. 3. Peninsulas (a) and barrier reef structures (b) in the

boundary region between bounded dynamics (dark points) and

unbounded dynamics (white points) in the ðl; eÞ plane with initial

conditions ðx0; y0Þ ¼ ð0:8; 0:1Þ:

FIG. 4. Regions of bounded dynamics (dark points) in the space

of initial conditions ðx0; y0Þ for the parameter values (a) ðl; eÞ ¼
ð5:3; 0:722Þ which lies near the peninsula in Fig. 3a and (b) ðl; eÞ ¼
ð5:3; 0:32Þ which lies near the barrier reef in Fig. 3b. Panel 4(c) shows

the region of bounded growth for the same parameter values as panel

(a) but allowing negative population densities.
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(Fig. 3a), or tiny disconnected islands forming a
‘‘barrier reef’’ structure (Fig. 3b).

Given the complexity of the region of bounded
dynamics it seemed clear that we could expect these
structures to change if we varied the initial conditions,
and this is exactly what we found. There is in fact no
‘‘generic’’ initial condition for this system. We chose
parameter values ðl; eÞ ¼ ð5:3; 0:722Þ and (5.2, 0.32)
(which correspond to the peninsula and barrier reef
structures, respectively), and looked for regions of
bounded dynamics in the space of initial conditions.
The results showed that these regions appear fractal
(Figs. 4a and b).

For a given initial condition, and given values of ðl; eÞ;
it is simply not obvious a priori whether the map will
lead to negative populations (and hence unbounded and
unrealistic dynamics). For this reason we believe the
logistic map is an inappropriate map for refuge
dynamics. A reasonable model of refuge dynamics
should have preferably an in-built mechanism disallow-
ing negative population densities, or at the very least an
easily determined range of parameters which lead to
non-negative populations. The logistic map does not
satisfy these basic requirements. On these grounds, one
may question the use of logistic maps in more elaborate
spatially explicit models, such as CML.

If we relax our requirement of bounded dynamics to
demanding that the absolute values of the active and
refuge populations remain finite, then the fractal basins
become simple compact regions (Fig. 12). It is the
biologically motivated imposition of non-negative po-
pulation densities that generates the fractal basins.

4. DENSITY DEPENDENCE VIA THE
EXPONENTIAL MAP

From our experience with the logistic map, we then
chose a map which disallows negative populations. The
natural choice was the exponential map, quite apart
from the other compelling reason to use it; namely that
it is commonly approximated in empirical observations
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of density-dependent population regulation (Ricker,
1954; Wilbur, 1976).

We write this map in the form

f ðx; lÞ ¼ lx expð�xÞ: ð14Þ

Note, for small x this map has the same form as the
logistic map.

We first studied the bifurcation diagrams for a small
value of the dispersal rate, e ¼ 0:01 (Figs. 5a and b).
For intermediate values of l we see chaotic dynamics,
but for l > 65 the chaos disappears, and the dynamics is
cyclic. Note the strangely disconnected form of the
bifurcation diagram (Fig. 5a). For this small value of e;
the refuge is essentially time averaging the active
population. We note that the disconnected periodic
FIG. 5. Bifurcation diagrams for the active population xn as a function

e ¼ 0:25 (e), e ¼ 0:5 (f), e ¼ 0:048 (g), and e ¼ 0:049 (h). (b) The bifurcatio
cycles seen for large values of l are sensitive to the initial
values of the population densities. However, the system
is inherently stable for all values of the initial densities,
in that the population number is always finite and
positive.

For e ¼ 0:04 the dynamics of the active site still has a
fairly substantial region of chaotic dynamics (Fig. 5c),
whereas for e ¼ 0:05 the whole region gives way to 4-
and 8-cycles (Fig. 5d). These clusters of stable cycles
have been noted before, and the phenomenon is dubbed
automonotonicity (Stone, 1993) or ‘‘period bubbling’’
(Vandermeer, 1997). For moderate values of the
dispersal rate, e ¼ 0:25 and 0.5, the dynamics are very
simple (Figs. 5e and f). The transition from chaotic to
cyclic behavior is very sharp (Figs. 5g and h). It is
of l for the exponential map with e ¼ 0:01 (a), e ¼ 0:04 (c), e ¼ 0:05 (d),

n diagram for the refuge population yn for e ¼ 0:01:



Population Dynamics with a Refuge 127
interesting that a modest dispersal rate of 0.05 is
sufficient to remove the chaotic dynamics from this
system.

5. CONCLUSIONS

We have introduced a model of an active population
coupled to a refuge, as might be realized by a plant
population coupled to a seed bank. We have exclusively
considered symmetric dispersal rates between the two
populations, and ignored attrition within the refuge. For
static populations to exist, the populations of the active
site and the refuge must be equal. We found that for
small dispersal rate, and large times, the refuge
population is static and represents a time average of
the active population.

With density-dependent reproduction in the active
population modeled using the logistic map, we found
that the effect of dispersal led to many new features such
as (i) a new route to chaos via quasi-periodic cycles, (ii)
fractal boundaries between bounded and unbounded
dynamics in the reproductive-rate/dispersal-rate para-
meter space, and (iii) fractal, and possibly riddled
(Neubert, 1997), basins of attraction in the space of
initial population densities. The latter, in particular, led
us to seriously question the utility of the logistic map in
the refuge model, since it is a priori unclear whether for a
given choice of initial densities the dynamics will remain
bounded.

Using an exponential map to model the density
dependence, much of the complexity due to fractal
basins and the like disappeared since this map leads to
dynamics which are unconditionally stable. We found
‘‘period bubbling’’ for very small values of the dispersal
rate, and the complete suppression of chaos for modest
values of the dispersal rate (around e � 0:05).

Our results show that the presence of a passive refuge
can greatly stabilize a population that otherwise would
exhibit chaotic dynamics. This effect is seen most
markedly when the relationship between density and
per capita reproductive success is negative exponential,
rather than linear as in the classical logistic map, where
negative population numbers are theoretically possible.
The logistic map has also been criticized because
empirical studies have shown that the majority of plants
(Harper, 1977) and animals (Hassell, 1978) show non-
linear density dependence of their reproductive rates.

Given the simplicity of our model, one should be
careful in applying our results to real ecological
situations. However, there are a number of broad
qualitative features emerging from our model which
might be of relevance to real systems. First, we have seen
that if the rate of dispersal between the active popula-
tion and the refuge is weak, then no matter how chaotic
or strongly fluctuating the dynamics in the active
population, the refuge population will be static, being
nothing more than a time average of the active
population. This fact may play a significant role in the
utility of a refuge. If a refuge is too strongly coupled to
the active population, then a sustained period of stress
in the active population would also drain the refuge.
However, with weak dispersal, the refuge will be
relatively robust over such periods, and the active
population will be able to subsequently recover through
immigration from the refuge.

Indeed, although the type of model we have presented
largely plays a heuristic role in ecology, the ‘‘ease’’ with
which a refuge can dampen chaotic dynamics in our
model suggests that the process might be important in
nature, and deserves further investigation. Many organ-
isms are characterized by the presence of a refuge within
which there is no reproduction. The most obvious
examples are organisms with resting stages such as
plants and their seeds, micro-crustaceans and
their diapausing eggs, and many soil-transmitted
pathogens. Another type of life cycle that is
approximated by our theory is that characteristic of
organisms with severe density dependence in the juvenile
stage, but with a long-lived adult stage. Examples
include many amphibians with ‘‘complex’’ life cycles
(Wilbur, 1980).

It may be possible to infer the properties of the refuge
by measurements of the active population dynamics. As
we saw in Section 2, the dynamics of the model can be
written purely in terms of the active population via the
second-order difference equation (7). Thus, by observing
the dynamics of the active population, and assuming a
second-order map, one can in principle infer a value of
the dispersal rate e: If this is found to be small, one
would infer the refuge population to be static, whereas if
this parameter is found to be larger, then the refuge
population dynamics would more closely mirror that of
the active population. This may be useful in situations
where one knows of the existence of the refuge, but
where there is no way to empirically study its popula-
tion.

Concerning future work, an important next step is to
study the effect of asymmetric dispersal rates, and non-
zero attrition. It is also interesting to construct a
spatially explicit model of a seed bank in the depth
dimension, by introducing a population density for each
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soil stratum. This is equivalent to coupling an active site
to a chain of passive sites, all of which are coupled via
dispersal. One may then investigate the effect of the seed
bank stratification on the dynamics of the active site,
and, perhaps more interestingly, the depth dependence
of the density profile within the seed bank. In such a
model one may need to introduce the underlying
continuous time t for the seed bank dynamics on
grounds of realism.
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