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Abstract. In this paper, we consider Gauthier’s generalized convolution and then
define its binomial analogue as well as alternating binomial analogue. We formulate these
convolutions and give some applications of them.

1. Introduction
The general Fibonacci sequence {G), is defined by the recurrence

relation

T'L*CD

Gn+2 = Gn+1 + Gn, Gn = Aan + B,Bn7

where A, B, «, 8 are the real numbers and o + 8 =1, af = —1.

When A = —B = (a— )", G,, = F,, (nth Fibonacci number). When
A= B =1, G, = L, (nth Lucas number).

For m > 0 and any integers a, b, Gauthier [4] defined the generalized
convolution of the sequence of powers of the consecutive integers,
{(a+n)"}® _ with the general Fibonacci sequence {G,,}** _ and showed
that

i k+a Gp_k—a
k=0

- 2 ! ( Gb a+2+1 — C(l) (a +n+ 1) Gb—a—n-i—l-i—l) >

where for a an arbltrary variable, the set of coefficients
{c;?(v):ogm, Oglgm}
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is the set of Carlitz’s weighted Stirling polynomials of the second kind given
by the closed formula [2]:

) D= S BES

k=0

where S are the Stirling numbers of the second kind (for more details

see [1]).

Related with summation rules for various types of convolutions and, as
a separate area of research, the Stirling numbers and their various generaliza-
tions, we refer to the reference list of [4].

We recall some applications of the results given in [4]:

n
(n + k) Gk =nGpyo+ Gpysg — [2 (TL + 1) G1+ Go] ,
k=0

n
D kG = Gnys —[(n+2) Gy + Gl .
k=0

Some authors have also computed various binomial sums by using binomial
transformation method, for more details see [8, 9], as well as other techniques
such as matrix methods, generating function method and convolution of
exponential generating function methods, for more details see [5, 6, 7].

In this paper, we consider Gauthier’s generalized convolution and then
define its binomial analogue, called the generalized binomial convolution, as
well as its alternating analogue. We formulate these convolutions and give
some applications.

2. A generalized binomial convolution

For m > 0, a, b integers and A, B real numbers, with o+ 5 =1, aff = —1,
define the generalized binomial convolution of the sequence of powers of the
consecutive integers, {(a +n)™ :iofw with the general Fibonacci sequence

{G,}%  and its alternating analogue as follows:

n n
Z " (k+a)" Gp_gp—q and Z (—1)n+k " (k+a)" Gp_g—a,
k k
k=0 k=0
respectively.

Now we give a closed forms for these binomial convolutions:

THEOREM 1. Forn >0,

(2) i (Z) (k+a)" Gy-p—a = i (7) %qgg (a;n) Go—qtn—21;

k=0 =0
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() (@)

where qn (a;n), or briefly gm (a), is given by

m—I
Da)=n') (7;) SO ak 0<i<m.
k=0

Proof. Let D = x% be a differential operator. Consider

(3) i <Z> 2F e = 29 (1 + )"

k=0
If we act m times on the equation (3) with D, for m a nonnegative integer,
then we obtain

(4) (" (k+a)" 28t = D™ (2% (1 + z)").
20

" =2%a® (1 +2)" + (2a + 1) nz (1 + 2)" !
+nn—1)a221+2z)""?
and so the general term being

(5) D™ (2 (1+2)") = Y pi) (a) 2+ (1 + 2)" "

The coeflicients {p,(q? (a) : 0 <1 < m} may be found as follows: First put
m + 1 in place of m in (5) and get

Dm+l (xa (1 + x)n) _ 2 p7(7lz)+1 (CL) xa-&-l (1 + x)n—l.
On the other hand consider the direct action of D on (5)

6) D(D™(z%(1+z)" (me 297 ( 1+x)n—l)

I
NgE

Pl (@) D (1 +2)"™")

~
Il

0

p® (@) ((a+ 12 (1 + )" + (n— 1) 2™ (14 )1

I
NgE

—
Il
o

1
= 2 (a+0pl (@) + (n=1+ 1) plY (@) )2 (1 4+2)" ",
0

3
+

~
Il
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where the last line was obtained by shifting the dummy index in the second
sum of the second line of (6), [ + 1 — [, and by defining pgn_l) (a) =0
and p,(ff 1) (a) = 0. From these two equations just above, by equating
the coefficients of x4+ (1 + m)n_l , we have the following recurrence for the

(@)

coeflicients pny :
P (@)= @+ D)pY (@) + (n—1+1)pl D (@), 0<I<m+1,

where p(lzo) (a) =1, pgn_l) (a) =0, p%n-i—l) (a) =0.

m=0
Now we define a set of new coefficients q#b) via pﬁ,? as follows:

n\ !
= (7) 5 @),
) .

and so we deduce the recurrence relation for the coefficients ¢ :

W (@) =(a+1)q? (@) +nglV (@), 0<1<m,

Qm+1 m m

where q(lzo) (a) =1, qq(n_l) (a) =0, Q7(771n+1) (a) =0.

m=0

The first few polynomials are, for 0 <m < 3:

m=0:q" (a) = 1,
(0)

m=1:¢"(a) = a,q}" (a) = n,

m=2:q;" (a) = a*.q" (a) = 2an + n, 57 (a) = n*,

m=3: q:(,)o) (a) = a?, qgl) (a) = 3a’*n + 3an + n, q§2) (a) = 3an? + 3n?,
¢ (@) = .
It is clear from (1) that
(7) ay) (a) = n'c) ().

Indeed, for [ = 0 and [ = m, it is seen that qﬁg) (a) = a™ and qﬁl’”) (a) =n™,

respectively. For a = 0 and n = 1, the coefficients qf,ll) has the same recurrence
with the Stirling numbers of second kind. For n = 1, the coefficients given in
(7) are the same with Carlitz’s weighted Stirling polynomials of the second
kind as a function of the arbitrary variable a. We return to (4) and make
the following substitution:  — x~1. By (5) and (4), we write

n

® ] (Z) (k+a)™a

k=0

pnll) (a) x0Tt (1 + x_l)n_l

I
NgE

~

0

I
NgE

n\ ! —a—n n—
(}) e @ o,

N
Il
=
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which, multiplying both sides by Aa?, taking = o and using z + 1 = o2,
gives us

n

CNEEDY <Z> (k + a)™ Aab~F=e = Z <z> i’l 4 (a) Aab-e+n-21

k=0 =0

Finally multiplying both sides of (8) by Bz’ but this time set z = 8,
z+1 =32 we get

n

(10) Z <Z) (k4 a)™ Bpb~F"a = i (7) :z 0 (a) BB+

k=0 =0
Combining (9) and (10), the desired result is obtained. =

Considering the fact that

> s ()ab e —at e,

k=0
we have the following result without proof.

THEOREM 2. Forn >0

n

a1 3 0 (M) e+ @) Gora = 5 1 (") 240 (@) G,
0 (1) ta= 20 () Bl @) Gz

k= =0
where q(l) (a) is defined as before.

3. Some applications
Now we present some applications of our results. When m = 0 in (2)
and (11), by q(()o) (a) =1, we get

n

n - n
Z (k)) Go—k—a = Gb—a+n and Z _1)k (k) Go—k—a = Gp—a—2n-

k=0 k=0
If we take m =1 in (2) and (11), by qg )( ) = a, q%l) (a) = n, we get

Z < ) (k+a)Gy—k—q = aGp—gin + NGp_qin—2
—0

=

" n
Z (_1)k <k‘> (k + CL) Gy—t—a = aGp—g—2n — NGh_q—2n+1-

k
When a =n and b = 2n in (2) and (11), we have

12 () e X (1) Gal ) G

=0
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09 3 0 () e G = B0 () 016

respectively.

Especially when m = 1 in (12) and (13), by q§0) (n) =n, qgl) (n) =n, we
obtain

Z() (k+n) Gpnr = n (Gan + Gan-1)) »

M (-1 (Z) (k+n) Gy =n(G_p —Grn).

Especially for the Fibonacci case, from the results above, we get
n
Z <k’> (k+mn)Fyp =nLay 1,
k=0

and n

Z ( ) (k+n) Fy_p = nFpy1.

Now, setting a = O and b=nin (2) and (11) gives the usual number theo-
retic convolution of m'™" power of the consecutive integer sequence {n™m}>
with the general Fibonacci sequence {G,,}"

n=—0u

n=—oo"

(N & (n l'
k=0 1=0
= m n\ !
I ) S (l)n,qn? (0) i
k=0 =0
respectively.

When m = 1in (14) and (15), by qgo) (0) =0 and qgl) (0) = n, we have

n

- n k(N
kZ_:() <k> an,k = nGg(n_l), Z (—1) <k’> an,k = —nGl_n.

k=0
Similarly, when m = 2 in (14) and (15), by q(o) (0) =0, qgl) (0) = n and
2 () = n2
g5 (0) = n*, we get

n

Z (Z) k2ank =n (G2(n—1) + (TL - 1) G2(n—2)) )

k=0

i (—1) (Z) K2Gnk =1 (0 — 1) Gaep — Gi_n) .

k=0



(1
2]
3]
4]

5]
[6]
7]
18]
Bl

Generalized binomial convolution 385

References

M. Abramowitz, I. A. Stegun, Handbook of Mathematical Functions, Dover Publications,
New York, 1972.

L. Carlitz, Weighted Stirling Numbers of the first and second kind-I, Fibonacci Quart.
18(2) (1980), 147-162.

L. Carlitz, Weighted Stirling Numbers of the first and second kind-II, Fibonacci Quart.
18(3) (1980), 242-257.

N. Gauthier, Convolving the m'™ powers of the consecutive integers with the general
Fibonacci sequence using Carlitz’s weighted Stirling polynomials of the second kind,
Fibonacci Quart. 42(4) (2004), 306-313.

E. Kilig, H. Prodinger, Some double binomial sums related to Fibonacci, Pell and
generalized order-k Fibonacci numbers, Rocky Mountain J. Math. 43(3) (2013), 975-987.
E. Kilig, Y. Ulutas, N. Omiir, Formulas for weighted binomial sums with the powers of
terms of binary recurrences, Miskolc Mathematical Notes 13(1) (2012), 53-65.

E. Kili¢, N. Omiir, Y. Ulutas, Binomial sums whose coefficients are products of terms
of binary sequences, Utilitas Math. 84 (2011), 45-52.

R. Witula, Binomials transformation formulae of scaled Lucas numbers, Demonstratio
Math. 46 (2013), 15-27.

R. Witula, D. Stota, Central trinomial coefficients and convolution type identities,
Congr. Numer. 201 (2010), 109-126.

E. Kilig

TOBB ECONOMICS AND TECHNOLOGY UNIVERSITY
MATHEMATICS DEPARTMENT

06560 ANKARA, TURKEY

E-mail: ekilicQetu.edu.tr

I. Akkus

KIRIKKALE UNIVERSITY
FACULTY OF ARTS AND SCIENCE
DEPARTMENT OF MATHEMATICS
71450 KIRIKKALE, TURKEY

E-mail: iakkus.tr@gmail.com

N. Omiir, Y. T. Ulutag
KOCAELI UNIVERSITY
MATHEMATICS DEPARTMENT
41380 IZMIT, TURKEY

E-mail: neseomur@kocaeli.edu.tr

turkery@kocaeli.edu.tr

Received February 18, 2015; revised version July 13, 2016.



