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Advancements in optics and miniaturisation have resulted in multi- and hyperspectral imaging systems becoming more approachable in terms of 

cost, practicality and useability. Globally, the majority of farms are considered to be small farms (<2 hectares). Many spectral imaging applications 

have been associated with agricultural commodities over the years. However, due to the cost, technology hurdles and complex statistical modelling 

methods, these applications have mainly been implemented in larger monoculture settings where the method development time required can be 

met with and substantiated through higher profits gained and reduced labour in the long term. Recent years have seen advancements in spectral 

imaging technologies as well as open-source systems that have the potential for application on smaller, more diversified farms. There are many 

hurdles to face before spectral imaging technologies see widespread application on smaller farms, but technologies are advancing rapidly. Here, 

the current state of spectral imaging in small farm applications is evaluated, along with the potential for low-cost and open-source spectral imaging 

systems. Emphasis is placed on challenges which require addressing prior to approachable spectral imaging for the small farm.
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Introduction
The world’s population continues to grow while 
the number of farmers continues to decrease.1,2 
Mechanisation and technological advances in the last 
few decades have reduced the amount of labour neces-
sary to maintain an operational farm. With a rise in the 
interest of hyper-localised cuisine there is an uptick in 
the number of small farms.3 The term, small/family farm, 
can have a variety of meanings, land sizes, production 
outputs or income. In general, small farms are consid-
ered to be less than 2 hectares.4 The US Department of 

Agriculture classifies a small farm as generating an income 
of less than $250,000 annually.5 Recent data reports 
that there are approximately 690 million farms world-
wide, with small farms (less than 2 hectares) accounting 
for 84 % of all farms and producing approximately 35 % 
of the world’s food.4 Agricultural operations have been 
a platform for advances in spectral imaging. However, 
due to the cost and specialised experience needed to 
establish and maintain spectral imaging technologies, 
previous applications have focused on automating larger 
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monocrop farm processes such as soy, blueberries or 
corn.6‒8

While large farms commonly focusing on a monocul-
ture production have their own set of unique challenges 
to face in any growing season, smaller farms tend to 
be confronted with many and varied problems over the 
course of a growing season, associated with the need 
for production of a multitude of crops. In general, the 
goal of precision agriculture is to aid the growers and 
ease the requirement on labour while increasing quality 
of produce or livestock. In larger, monoculture farming 
operations farmers have typically relied on technolog-
ical advances more so than smaller farms for a variety 
of reasons, including initial cost or amount of use. An 
investment of time by either the operator or the company 
producing the precision agricultural methods needs to 
be met with sufficient demand for justification of the 
time necessary to establish models and properly validate 
them. This is unequivocally easier to accomplish when you 
are developing one method for a monoculture farming 
system versus multiple methods for a smaller farm with 
crop diversity. However, as technology advances new 
opportunities arise for precision agricultural methodolo-
gies based on spectral imaging to be implemented on a 
smaller farming system.

A cornerstone of precision agriculture has been diffuse 
reflectance spectroscopy (DRS), which has a long-estab-
lished history in the agricultural field, especially within 
the near infrared (NIR) spectral range.9 In recent years, 
portable spectroscopic tools have become more cost 
approachable (<US$2000), offering similar results to 
benchtop counterparts, although typically are associ-
ated with lower levels of sensitivity and a reduced spec-
tral range.10 Third-party software companies have begun 
to market the spectrometers to application-specific 
end-users, though concerns about overstated perfor-
mance capabilities is a potential pitfall. Technological 
advancements in recent years are driving the target 
market of portable and handheld spectroscopy applica-
tions from expensive lab-based methods towards lower-
cost instrumentation that can be applied for everyday field 
use or citizen science-based methods. Corresponding to 
the rapid advancement is the concern that the tech-
nology is advancing more rapidly than a comprehensive 
understanding of the subject matter and there is a lack of 
proper validation models.

Hyperspectral imaging (HSI) collects spectral data, typi-
cally in the visible or NIR ranges and pairs the information 
with a set of images collected at each wavenumber. This 
creates three-dimensional data arrays, where m and n are 

spatial axes and λ is the spectral information.11 This gener-
ates an image stack where each pixel has a corresponding 
spectrum within the entire image. Analogous to the tech-
nological pathway of the DRS spectrometers in the last 
decade, portable hyperspectral imaging systems are 
becoming more affordable in recent years, with multiple 
open-source spectral imaging cameras and Smartphone 
attachments appearing in the literature. Currently, these 
require custom-fitted accessories to be 3D printed with 
polylactic acid (PLA) filament and constructed with optics 
and electrical components purchased at low costs online. 
The most expense component is typically a decent quality 
C-mount lens. Some HSI systems are even operated with 
a Raspberry Pi computer (Raspberry Pi Ltd, Cambridge, 
UK) to keep the cost down.

In recent years, much has been written about the 
application of HSI as a tool in the evolution of precision 
agriculture.12–15 With the rise of socioeconomic trends 
emphasising the perceived allure of smaller, localised 
farming operations, spectral imaging as an application 
driven tool has been largely overlooked. This is perhaps 
due to the associated cost and lack of user-friendly func-
tionality. Previous efforts in spectral imaging have been 
geared towards larger scale farming operations. Figure 1 
shows multiple areas that have seen application of spec-
tral imaging methods. These ventures have shown that 
spectral imaging capabilities have offered advantages 
for large-scale production through precision agriculture 
advances.16–20 However, as open-source and lower-
cost spectral imaging applications advance in scope 
and usability, there is potential to incorporate spectral 
imaging for smaller scale farming operations. Here, the 
aim is to evaluate the current state of spectral imaging 
regarding practicality, application and usability on a small 
farm setting, and discuss challenges facing wider spread 
application.

Systemic property management
Biodiversity
Monoculture farming has declined in recent years, while 
spatially heterogenous areas consisting of plant diversity 
are widely accepted to increase crop yields.21 Differences 
in plant biodiversity comes from variations in evolutionary 
histories, genetic backgrounds and environmental condi-
tions, which translates into above ground differences 
in physical transformations and chemical compounds 
that are synthesised by the plants.22 Loss of biodiver-
sity has been connected to often negative impacts on 
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the ecosystem.23 This loss can affect ecosystem stability, 
invisibility or nutrient use and retention.24–27

Typically, smaller farms place a considerable focus on 
biodiversity. This can stem from the need to rotate crops 
and livestock for nutrient cycling in the soil, or from the 
need to diversify revenue streams. The general idea is 
that rotating crops in a specific plot will increase annual 
production yields by reducing weeds, diversifying the 
nutrients in the soil and reducing the soilborne patho-
gens.28–30

Forest farming
Forest farming is one of several types of agroforesty 
farming practices that focuses on producing commod-
ities under forest canopies.31 Forest farming is gaining 
popularity in certain areas of the world, as the price for 
commodities such as ginseng, morel mushrooms and 
certain types of timber such as black walnut can regu-
larly be sold at a premium price. Spectral cameras have 
previously been used to analyse tree canopies in forest 
settings.32 It was found that spectral cameras paired with 
unmanned aerial vehicles (UAV)s were able to detect 
semi-individual tree crowns, dead trees and identification 

of tree species from spectral imaging data. This could 
be of use for scouting potential property to be used as 
forest farming sites for long-term investment crops that 
require years to harvest time, such as ginseng. The age 
of a ginseng plant is a critical indicator of its value, with 
older plants being worth more. Recent work has shown 
that HSI can predict the age of ginseng in years with 
high accuracy.33,34 Portable HSI systems that could be 
durable enough to take into wooded areas would be a 
great value in the identification and age determination 
of ginseng plants. Ginseng can take dozens of years to 
mature and harvesting an immature plant can cause a 
loss of profits over time. Current open-source imaging 
systems are usually 3D printed and set on tripods. This is 
ideal for certain situations, but likely not a hike through 
a wooded area while searching for ginseng. As applica-
tion and market potential grow, more durable imaging 
systems are likely to enter the market or as open-source 
projects.

Water supply
Key to any farming operation is water management, which 
includes finding sources and transferring it to the fields 
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Figure 1. Graphical representation of potential areas that hyperspectral 
imaging (HSI) can be implemented on a small-scale farm.
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that are in need. First, when assessing potential property 
or land for establishing farming operations, existing plat-
forms such as the Landsat program (NASA, Washington 
DC, USA) can be used to locate surface water sources 
on a property. Once sites have been selected and water 
sources are identified, irrigation systems and pumps can 
be installed to transport the water to the crops. Work in 
irrigation water quality with spectral cameras is relatively 
recent. In gardening zones close to saline aquifers, the 
salinity in the irrigated water source can be assessed 
and remediated if necessary.35 Soil moisture content is 
another critical component of water management on a 
farm and can be estimated with spectral imaging methods 
for managing the water availability to the root zone just 
below the surface.36 In terms of small farm applications, 
it may be possible to obtain a low-cost moisture meter 
to assess soil samples, while simultaneously collecting 
spectral images with an open-source spectral imaging 
system. From here, qualitative and, possibly, quantita-
tive modelling could be attempted for rapidly assessing 
new potential crop sites on a farm. As farm production 
continues year after year, spectral imaging can also be 
applied as a means of assessing drainage and erosion 
issues on the property from livestock, rainwater or crop 
management. Comparing remote image cubes over the 
course of time for a property/field would provide insight 
into erosion issues, especially if correlated to soil analyses 
in these specified locations that could yield information 
on soil content over time.

Soil health
In addition to erosion control, the overall health of the soil 
should be able to promote crop growth. Nitrogen is a key 
component of soil health and promotes the production 
of amino acids, proteins and nucleic acids in the plants 
through uptake from the root system. Spectral imaging 
has aided in evaluating the total amount of nitrogen 
available in soil.37 This can prove useful in pairing the 
spatial component of a potential produce growing plot. 
Geographically plotting total nitrogen over a field can 
assist the grower in understanding where soil may need to 
be amended or where the soil is healthy enough to begin 
sowing seed. Arbuscular mycorrhizal fungi (AMF) extract 
phosphorus from the soil through hyphae and share 
the phosphorus with root systems of plants increasing 
nutrient uptake. Recently, X-ray computed tomography 
has been used as a means of mapping hyphae density 
in soil to suggest optimal growing regions.38 This poten-
tially could impact the selection of food crops in forest 

farming. If a spectral camera operating in the NIR or MIR 
range could predict the hyphae density of possible future 
growing plots for something such as ramps or ginseng 
in forest farming, then optimal growing conditions could 
be identified that would produce stronger, healthier and 
faster growing crops. Variation in crop yield has been 
documented through aerial hyperspectral cameras.39 As 
an alternative to labour-intensive grid sampling, remote 
sensing can provide information on quantification of such 
soil attributes as pH, macro and micronutrients, and iron 
content.40 Quantification is typically more challenging 
with spectral imaging than qualitative classification. With 
open-source spectral imaging systems being in the very 
early stages of development it will take some time to 
develop reliable quantification predictive modelling. As 
these technologies advance there is unlimited soil health 
analysis potential with spectral imaging. Collecting soil 
samples from traditional grid searching patterns and 
waiting for results to be calculated from a laboratory can 
be supplemented with real-time processes.

Plant health
Maintaining optimal plant health is essential to producing 
productive crop yields and seeds for the next growing 
season. Typically, early plant stressors are only found after 
applying destructive analysis techniques.41 Vegetable 
plants can be susceptible to a variety of diseases and 
having a screening method in place to detect potentially 
diseased plants before they spread to other plants in 
a garden would be helpful. Because spectral imaging 
systems collect information at many colour bands and, 
potentially, near infrared bands, information on diseased 
plants outside the red, green and blue colour bands 
that we as humans notice is possible. If a suspected 
diseased plant is imaged and detected, it can be iden-
tified and removed from the field before rendering an 
entire crop useless. Previously, HSI has been used to 
identify plants carrying fungal blight in tomato fields in 
hopes of containing the disease spread before consuming 
larger parts of the fields.42 Tomatoes require a signifi-
cant amount of labour involved with planting, staking 
and continuously monitoring for insects such as horn-
worms. Labour involved in harvesting of tomatoes on 
a routine basis, even on a smaller farm is more involved 
than other crops such as soybeans. In these situations, 
blight can quickly spread plant-to-plant and destroy a 
tomato crop, which can significantly damage fiscal yields. 
There is potential for low-cost spectral imaging devices 
to be attached to UAVs and monitor a small field for signs 
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of blight. In addition to plant blights, plant stressors such 
as powdery mildew, water stress or rot can be rapidly 
identified through drone-based spectral images.

Toxin detection
Aflatoxin and other mycotoxins are potentially carcino-
genic by-products of fungi found in grain crops. 
Mycotoxins can be detected by spectral imaging in 
grains.43 Yellow rust or stripe rust can also be found in 
wheat and is difficult to detect by eye. However, early 
disease detection with spectral cameras has been shown 
to be effective.44 Detecting toxins early in the growing 
process is critical to stopping the spread of toxin produc-
tion in the crop. Crop rotation may also show promise in 
reducing these issues, which is something common to 
smaller farming operations. An example of a particular 
crop that can produce toxins are fiddlehead ferns. These 
ferns are often sold to restaurants and home cooks. 
Fiddleheads have toxins that have to go through multiple 
rounds of boiling to remove toxigenic effects before 
consuming. A possible application could work towards 
identification of high amounts of toxins as a food safety 
measure, or qualitatively detect toxins after processing 
the fiddlehead ferns.

Water and food safety
In general, spectroscopy instruments offer agricul-
tural practices many advantages in terms of rapid and 
non-destructive screening for commodities.45 Recent 
advances in low-cost spectrometers have placed market 
entry for handheld spectrometers at approximately the 
same cost as a new cellular phone. Careful consideration 
should be placed on the application at hand when it 
comes to smaller scale farming practices, and if a hand-
held spectrometer could be an appropriate method-
ology or if a spectral camera is of needed. For example, 
a handheld spectrometer may be able to rapidly discrim-
inate between species of pepper seeds. However, if one 
wanted to check seeds for potential fungal issues that 
were not visible with the human eye, a spectral imaging 
system may be of use.46 Also, the data processing require-
ment for spectral imaging is greater than typical spectros-
copy methods, due to the need to save image stacks 
associated with each spectral imaging sample. One needs 
to weigh the pros and cons of the two systems in regard 
to their needs on the farm and determine which is of use 
for a particular application.

Food security and safety on any farm is paramount. 
Blockchain food production systems and traceability have 

advanced in the last 20 years. In the case of a foodborne 
disease outbreak, the causative agents can be theoreti-
cally traced to the source. A common cause of foodborne 
disease outbreak can be the water source.47 Spectral 
imaging applications have also been applied to water 
quality monitoring.48 There is potential application in real-
time source monitoring of water quality with hyperspec-
tral imaging. Regarding a smaller farm, water monitoring 
could potentially be conducted for coliform counts, but, 
first, representative sampling will need to be sorted out 
for a continuous water source. For example, coliforms 
may be detected, but how many image cubes should be 
analysed for a confident level of detection.

Applications involved in water quality safety as well 
as the safety of the farmer’s finished product focus on 
rapid and non-destructive methods.49 These are advan-
tages that spectral imaging can offer. Previously, much 
work has been published about the potential for spectral 
imaging in water and food safety. This can be seen by 
using traditional spectral imaging cameras for imaging 
nutrient-based agar plates for the classification of patho-
genic bacteria colonies.50,51 At a microscopic level, patho-
genic bacteria have been classified by morphological 
features (rods, cocci, corkscrew shapes) and various taxo-
nomical levels such as family, species and serovars.52,53 
Hyperspectral microscopy has also shown comparable 
classification accuracies to gold-standard identification 
methods such as polymerase chain reaction.54 Spectral 
imaging for detecting foodborne pathogens has shown 
promise, but the challenge is again in representative 
sampling. Practical implementation is not at a level where 
an affordable solution could be applied at a small farm 
with stricter limitations on available labour and costs. 
However, advancements in low-cost microscopes such 
as the Foldscope® (Foldscope Inc., Palo Alto, CA, USA)55 
and the Jiusion Microscope (1000×) (London, UK) open 
new low-cost possibilities. Pairing open-source spectral 
imaging systems, such as the one described by Salazar-
Vazques,56 with a standard dissecting stereo micro-
scope, generating image cubes that can be uploaded to 
ImageJ software for analysis could soon open avenues to 
low-cost spectral imaging options for small farm applica-
tion.

Rapid food quality assessment
One of the most common applications for spectral 
imaging in agriculture is the purpose of commodity 
quality grading.57 In the poultry industry, muscle myop-
athies such as woody breast are deemed poor quality 
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and detrimental to consumer preference, with typical 
5‒10 % market occurrence.58 Hyperspectral imaging 
technologies have been implemented to detect woody 
breast conditions in chicken breast fillets. Wold et al.59 
found that an online NIR spectral imaging system was 
able to classify woody breast syndrome at an accuracy 
>99 %.59 While expensive online systems may not be 
practical for a smaller scale farm, as open-source spec-
tral imaging systems advance there is potential for a 
handheld or small stationary system to be implemented 
during onsite processing for a few dozen or hundred 
birds. Similar to how miniaturised and handheld SWIR 
instruments are being implemented for protein charac-
terisation in poultry meat.60 Pork, beef and lamb have 
also all seen spectral imaging applications developed for 
similar quality assessing, marbling and myopathy detec-
tion, analogous to the poultry industry.61–66 Regarding 
smaller scale farming, open-source imaging systems have 
only started to emerge in the past few years. As these 
systems progress so does the potential for improving 
quality production in small-scale agriculture. Secondary 
or further processed cuts of meat are considered value-
added products and with some additional butchery on 
site can increase farm revenue. Spectral imaging systems 
can assist with quality grading of cuts and fat marbling in 
the butchering process by potentially setting up a camera 
mounted to a tripod. This may not yield immediate results 
for the cuts being processed at the moment, but as a 
research tool that can later be modelled to predict which 
cuts can be used for selling as is, or which may be used 
for stew meats, which may benefit from lower and slower 
cooking. There is an inherent cost vs value assessment 
planning requirement with this step of the operation. 
One can determine if the time spent collecting data and 
building models is worth the effort. Future applications 
could see opportunities for spectral imaging to offer 
categorical classification of marbling or muscle myop-
athies at the time of butchering, so that identified cuts 
can be used for further processing where those specific 
characteristics can be remediated into another product 
and not wasted.

The seafood industry has also witnessed many publi-
cations in the use of spectral imaging for seafood quality 
grading and fraud detection, such as mislabelled or adul-
terated fish.67 Aquaculture is trending in small farming 
communities, especially if farmers have access to ponds 
or small lakes where fish can be raised and harvested. 
Spectral imaging technologies here can gauge fish quality 
as they are being harvested for sale from the ponds 
and lakes. In terms of pond/lake management, HSI can 

identify vegetation issues that may correlate to those 
discussed in the systemic property management poten-
tial for HSI.

Spectral imaging hardware
Primary components of a spectral imaging system include 
a light source, wavelength dispersion device and an 
area detector, which obtains both spatial and spectral 
information from the sample.45 High functioning spec-
tral cameras collecting data in the visible, NIR and mid-
infrared (MIR) spectral ranges come at a high cost and are 
typically sold to large corporations and research institu-
tions. Typically, the light source component of a spectral 
imaging system can be a low-cost component, consisting 
of tungsten halogen or LED lamps. More expensive arc 
lamps such as mercury or xenon-based lamps can be used 
in more specific applications. The wavelength dispersion 
device is another key component. In higher cost plat-
forms, acousto-optical and liquid crystal tuneable filters 
may be used, while lower-cost systems operating in the 
visible or shortwave NIR range may employ a simple 
glass diffraction gradient. The area detector of a spectral 
camera is commonly a complimentary metal-oxide semi-
conductor (CMOS) or a charge coupled device camera 
(CCD). As miniaturisation technology progresses, spectral 
imaging platforms are becoming increasing available and 
entering wider consumer markets at more affordable 
pricing each year. Still, a system that is built to be durable 
for application in agricultural settings is going to cost 
US$10,000—30,000. These prices place ready-to-use 
spectral imaging technologies out of the budgetary reach 
of a small-scale farmer. However, in the past few years 
open-source spectral imaging systems are being intro-
duced through published literature. As spectral imaging 
technologies continue to be integrated into real-world 
applications, their value is realised and more attention 
is being placed on low-cost and approachable spectral 
imaging instrumentation.

Several publications exist in the recent literature 
pertaining to building a low-cost spectral camera with 
a 3D printer, optics and hardware purchased through 
online distributors, and some programming abilities, typi-
cally in Python. Salazar-Vazquez and Mendez-Vazquez 
designed an open-source spectral imaging system built 
with low-cost parts and 3D printed components.56 The 
system collects images at 2.07 mm resolution between 
400 nm and 1052 nm. It operates with a tungsten halogen 
lamp, uses a plastic diffraction gradient and is controlled 
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through a Raspberry Pi®. The total cost of building the 
imaging system was around US$500. Open-source proj-
ects also share their design files with the public which 
is streamlining the development of others to develop 
their own spectral imaging systems. Current open-source 
spectral imaging systems are showing potential and are 
necessary in the evolution of the technology to progress 
towards more widespread application usage.

Portability and durability are both key issues for devel-
oping spectral imaging systems that can be used in small 
farm applications. The physical nature of operating a 
small farm can be demanding on tools, and any spectral 
imaging system will need to withstand an occasional bit 
of wear and tear. Another concern is access to proper 
validation tools such as greyscale tiles at varying degrees 
of reflectivity, needed to assure photometric linearity for 
routine or periodic data collection verification checks. 
Low-cost materials or light sources with known spec-
tral peaks may also be used as a wavelength verification 
procedure when appropriate. Verifying the radiometric 
and wavelength position performance of any system is 
crucial to ensure data validity, but perhaps more so with 
open-source spectral imaging systems. As open-source 
technologies have time to progress and evolve more 
application-driven instruments will be developed and the 
potential for readily available portable and durable spec-
tral imaging systems will be accessible.

Spectral imaging software
A commonly discussed barrier to the incorporation of 
spectral imaging platforms is the initial startup costs. 
There are multiple open-source software platforms 
available for processing and analysing the data cubes 
that are collected. Maintaining cost-prohibitive soft-
ware over the course of the imaging system’s lifespan 
can also be a barrier. It would not be advantageous to 
offer an open-source spectral imaging system and then 
design the file outputs to be processed and analysed 
through a high-priced subscription service. The profit 
margin in small-scale agriculture is a concern, and a 
successful incorporation of spectral imaging technol-
ogies will need to focus on open-source analytical 
possibilities. There are obvious cost benefits with this 
option, but several disadvantages must be addressed 
when using open-source applications. First, scripting 
in open-source languages is a learned skill and spec-
tral imaging applications built in these platforms add 
additional complexities due to incorporation of large 

multidimensional data cubes. Therefore, someone with a 
statistical background and experience with open-source 
programming languages will need to establish the soft-
ware applications. On the spot troubleshooting and 
debugging object-based or Java scripting languages can 
be challenging unless the end-user is experienced in the 
language. Second, the inherent advantages and disad-
vantages of open-source platforms results in scripts, 
functions or programs that should be validated for the 
application. This would require testing the potential 
application on a trial set of samples before establishing 
a calibration method.

R-studio is freely available and uses an object-based 
scripting language. Packages can be downloaded and 
installed within the localised R environment that can 
process images. Packages such as “dplyr”, “chemometrics” 
or “mdatools” are freely available in R-studio and are 
beneficial for working with spectral imaging datasets. In 
2014, NIR news published a tutorial series on processing 
spectral images in R.68 Packages that are specific for 
image processing such as “raster”, “imager” or “magick” 
are needed to handle large image sets in the R environ-
ment.

Another object-based language platform similar to R 
where image processing can be accomplished, is Python. 
Also, recent low-cost hyperspectral cameras have been 
developed running operational coding for data collection 
through Python scripting.56 Both of these object-based 
open-source platforms offer the user endless custom-
isable options in terms of ability. However, the learning 
curve can be steep, and the end-user may need some 
understanding of the coding language to troubleshoot as 
needed.

Applications can also be developed by R-studio or 
Python, which can greatly increase the ease of access and 
speed of use. R-studio offers ShinyApps, while Python 
offers Dash. Both allow a user to script out programs that 
relate input and output of user defined programs in an 
easy-to-use graphical user interface (GUI). Results can 
be calculated, and figures can be plotted within the apps, 
giving the user a quick visual representation of the data. 
For example, a user collects images of a basil leaf and 
wants to determine if this is an optimal time to harvest. 
The app could load a calibration model, predict the new 
data extracted from a hypercube and generate a qualita-
tive result in a matter of seconds. Currently, there are no 
elegant cellular-phone based apps for R-studio, although 
these are in stages of development. Servers can maintain 
applications that can be accessed from cell phones with 
wi-fi.
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ImageJ is another open-source software platform for 
image processing developed by the US National Institute 
of Health. There are many basic and advanced built-in 
functions available for extracting regions of interest (ROI)
and analysing the data. Mathematical image processing 
steps such as subtracting backgrounds are easily 
performed. If one needs to alter some of the built-in 
functions or create their own specific functions one 
would need to program in the Java language. Another 
option is pairing ImageJ with R-studio through the Bios7 
platform. This is an open-source platform that can run 
ImageJ and R simultaneously in one user-friendly GUI. 
Bi07 was developed by Marcel Austenfeld for ecological 
modelling and can integrate ImageJ with R-studio in one 
GUI, which may speed up application processes.69 This 
would again require some knowledge in programming to 
setup applications that are of use in a small farm setting.

The previous platforms are all open-source methods 
that require some language-based user understanding. 
Hypertools is another spectral imaging platform that was 
developed for Matlab.70 This is an open-source program 
that can quickly analyse spectral datacubes and addition-
ally perform many multivariate data analysis methods. 
While the package is freely downloadable, the user must 
have Matlab software installed, which costs approxi-
mately US$2000.

In the past few years, many third-party software 
companies have started to produce their own image 
processing programs. One must approach these options 
with caution as there are some defined advantages, such 
as ease of use, but companies can potentially oversell 
their capabilities in multivariate algorithms with buzz 
words. One must also consider the needs of their own 
small farm in considering the image collection and access 
needs. R-studio and Python both offer servers for hosting 
applications. Typically, a small number of applications can 
be hosted on a server at the free level, which could then 
be accessed by multiple people working on the farm at 
various times and locations, assuming they have wi-fi 
connection.

The current state of spectral image analysis programs 
offers benefits and disadvantages in terms of time and 
effort required to initialise applications on the farm. 
Certainly, open-source platforms are an avenue of 
exploring low-cost options for small farm implementa-
tion. Currently, setting up these methods and compli-
cated multivariate analyses in an open-source software 
program would require someone with experience in a 
niche set of analytical skills. Producing a spectral imaging 

analysis program on a small farm would first require 
prioritising need and projected benefit of a spectral 
imaging system. As it may be easier in certain situations 
to deploy a traditional low-cost handheld spectroscopy 
method using the SWIR wavelength region. In situations 
where spectral imaging has a marked benefit and can 
reasonably be deployed, for example, the cost of labour 
and method development is not more costly than the 
savings, priority applications can be flagged. From here, 
applications can be developed one at a time with the 
largest potential application addressed first. Once image 
collection, processing and analysis can be completed the 
programming functions can be loaded and maintained on 
a ShinyApp server.

Data processing and storage
An underlying question that will need to be addressed 
in any practical HSI application on a smaller agricul-
tural setting relates to the storage and processing of 
data. Large data files are generated by spectral imaging 
systems. Typically, collecting, storing and processing 
image stacks is computationally cumbersome, requiring 
large storage spaces. Larger agricultural systems institute 
data management practices, which are often accredited 
by international operating standards (ISO) guidelines. 
Another option is secure cloud-based storage, which 
removes the need for onsite servers to host storage 
options but comes with a monthly cost and needs to be 
assessed for privacy standards. As food safety guidelines 
evolve in coming years for more farm-to-table trace-
ability, data verification and traceability are becoming 
more of a necessity for small and moderate sized farms 
to operate. In the unfortunate situation of a foodborne 
disease outbreak traceability is key, which would include 
any spectral imaging platforms that lend themselves to 
product quality and safety decisions.

Cloud-based storage is likely the most realistic and 
affordable option for small-scale farmers in the short 
term. Both qualitative and quantitative multivariate 
models for processing HSI data can be stored in cloud-
based computing platforms for a monthly fee, then appli-
cations can be accessed with a user-friendly GUI, which 
a end-user could upload data, select processing parame-
ters, then download results to be processed and stored.

Another issue to address is the need for updating 
and maintaining calibration files. Seasonal variation can 
cause calibration files to become less accurate and will 
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likely require data from several years for optimisation, as 
these tend to be living calibration files requiring periodic 
updating. If a program is coded to receive new spec-
tral imaging results and self-updates this would take the 
responsibility from the end-user. However, the realistic 
answer is that there would need to be some monitoring 
of the samples going into the calibration file to update 
over time. Establishing a 95 % confidence interval for 
example and flagging samples that should be further 
investigated by the grower to assure that both natural 
variation is adequately represented and that the outliers 
are truly perturbations in the sampling cycles.

Barriers to marketplace 
application
Perhaps one of the largest barriers to market entry is 
the stigma that precision agriculture has in small farming 
communities. Here, pride and knowledge is passed down 
through generations in traditional agricultural practices, 
which tend to divert from technological-based platforms 
that have been adapted by large-scale monoculture oper-
ations. As time progresses, precision agriculture is being 
integrating into small farming operations. For example, 
hydroponic growing operations can be operated through 
cell phone applications that continuously monitor 
growing conditions. Nutrients can then be put on a time 
release, temperatures can be adjusted for indoor growing 
operations or lighting can be altered for optimal growing 
conditions with sensors relaying information to a cell 
phone or central PC management station. When consid-
ering such hydroponic growing conditions, HSI could be 
incorporated into these production systems to monitor 
plant leaves for signs of disease or stress that may not 
be visible to the human eye until it is too late to attempt 
to remedy a situation. This has the potential to increase 
yield.

Addressing the previously mentioned data processing 
and storage needs of spectral imaging systems on a 
small farm is a necessity. Introduction of cloud-based 
computing services could ease the application of spec-
tral imaging technologies into small farming operations. 
Customisable data processing solutions is a sizable hurdle 
that needs to be addressed as well. Spectral imaging data-
sets can be customised for a particular solution. Third-
party software companies have begun marketing portable 
spectroscopy solutions for potential clients. Occasionally, 
these companies market solutions to challenges such as 

food security that are perhaps outside the scope of what 
is capable with the spectrometer being sold. For example, 
it would be extremely challenging if not impossible for a 
portable NIR spectrometer to address food safety issues 
such as bacterial or allergen presence on food surfaces 
at an adequate limit of detection, while lacking compre-
hensive validation.71 It is certain that as portable spectral 
imaging technologies advance these same challenges of 
overzealous marketing campaigns will be an issue. It will 
be the task of diligent applied spectral imaging methods 
to address the reality of these approaches as they enter 
the marketplace.

Conclusions
As with larger scale monoculture farms, smaller farms 
face a myriad of challenges. Precision agriculture exists 
to ease the burdens placed upon operating a farm and 
being profitable while feeding a community. There is a 
long-documented history of applying spectral imaging 
technologies to agricultural production. Significant strides 
in recent years have been made towards lower costs and 
portable spectral imaging systems. As these technologies 
progress there is an abundance of potential for appli-
cation in smaller farms as well. Here, the challenges for 
technology implementation are different, and as open-
source and low-cost spectral imaging systems evolve and 
advance, there is abundant potential for application that 
can improve the processes of growing food and livestock 
in the years to come.
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