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Abstract:
Merging databases is a strategy of paramount interest especially in medical research. A common problem in
this context comes from a variable which is not coded on the same scale in both databases we aim to merge.
This paper considers the problem of finding a relevant way to recode the variable in order to merge these two
databases. To address this issue, an algorithm, based on optimal transportation theory, is proposed. Optimal
transportation theory gives us an application to map the measure associated with the variable in database A
to the measure associated with the same variable in database B. To do so, a cost function has to be introduced
and an allocation rule has to be defined. Such a function and such a rule is proposed involving the information
contained in the covariates. In this paper, the method is compared to multiple imputation by chained equations
and a statistical learning method and has demonstrated a better average accuracy in many situations. Applica-
tions on both simulated and real datasets show that the efficiency of the proposed merging algorithm depends
on how the covariates are linked with the variable of interest.
DOI: 10.1515/ijb-2018-0106
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1 Introduction

Nowadays, sharing and producing information from heterogeneous sources becomes a major issue and is an
important and ubiquitous challenge in the Big Data era. This question is now widely found not only in medical
field but also in spatial data processing, finance, robotics, and in many other fields where the need of global
and quality knowledge is required to make a better decision. The main issue when merging databases is to
associate, mix and include databases from different sources in order to provide an enriched synthetic database.
The underlying idea is more information is extracted from merged database than we would obtain from using
the databases separately [1, 2].

In the field of database fusion, different techniques are widely used to produce combinations of heteroge-
neous data from different sources [3], especially probabilistic models [4], Hidden Markov Models [5], technique
of least square, multi-agent systems [6], logical reasoning [7] and, probably the best known, the Bayes rule [8,
9].

In this paper, one focuses our attention to a specific issue related to database fusion: variable recoding prob-
lem. When two databases have to be merged, it is usual and problematic to observe a categorical variable that
is not coded in the same scale in both databases. This problem may occur in many situations: for example, a
change in the associated collection questionnaire for asking the same information between two waves of re-
cruitment (for different subjects) or two waves at different ages (for same subjects) in two different studies, or
different questionnaires for asking the same information (for different subjects).

The motivation of this investigation comes from the analysis of a french longitudinal cohort of children:
ELFE study [10]. A variable of interest is the answer of the question: “how would you rate your overall health?”.

Valérie Gares is the corresponding author.
© 2020 Walter de Gruyter GmbH, Berlin/Boston.
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During the first baseline data collection wave (January to April 2011), the different possible answers are pro-
posed in a five point ordinal scale: “excellent”, “very well”, “well”, “fair”, “bad” and during the second base-
line data collection wave (May to December 2011), there are a five other point ordinal scale: “very well”, “well”,
“medium”, “bad” and “very bad”. This difference in coding information yields to difficulties to compare these
two waves. A preliminary step of recoding appears to be an appealing strategy.

The problem can be formalized in terms of two databases A and B: the first contains the observations of
P + Q covariates (𝑋1, … , 𝑋𝑃+𝑄) measured on nAunits, the second the observations of a subset of P covariates
(𝑋1, … , 𝑋𝑃) measured on nB units. Consider a variable Y observed by means of YA on database A and by means
of YB on database B (see Table 1).

Table 1: Statement of the database merging problem.

Database A Database B

X1 … XP + Q YA YB X1 … XP YA YB

1 Observed Unobserved 1 Unobserved Observed
… …
… …
nA nB

To make inference and analysis of the merged database, it is therefore necessary to find a common scale of
assessment. The objective is thus to complete YAon database B and/or complete YBon database A.

This issue can be seen from different points of view involving different families of techniques:

1. Statistical matching. The problem could be seen as a specific data integration problem which could be as-
similated to record linkage or more particularly to statistical matching. Indeed, by supposing that YA and
YB are two distinct variables observed in two different databases A and B. This problem refers to statistical
matching and several methods exist to solve it [11, 12]. At the so-called micro level, the aim is to generate a
common database in which all the variables are filled-in by imputing YA in database B (and/or vice versa)
by means of information extracted from the set of common covariates X. However, these methods are based
on imputation procedures (declination of hot-deck approaches) and require the conditional independence
assumption (independence between YA and YB given X). This assumption remains a strong drawback for
their applicability, while the use of external auxiliary information, as described in [13], still remains a seldom
usable alternative. In our specific context, YA and YB are samples representing the same information, the
conditional independence assumption is obviously not satisfied and using these procedures nevertheless
could lead to important estimation bias.

2. Imputation procedures. The variable recoding issue could be viewed as a classical missing data problem.
In this context, the missingness process is clearly considered missing at random (MAR) following Rubin’s
classification [14]. This problem has been widely studied in the literature and many existing methods for
imputing missing data exist. A popular approach for multiple imputations, known for its flexibility and
its ability to generate plausible values, is MICE algorithm (Multivariate Imputation by Chained Equations,
[15]) which generates multiple imputations for incomplete datasets by itering conditional densities using
Gibbs sampling (fully conditional specification).

3. Supervised learning procedures. Classification learning could be also considered to solve this problem.
Indeed, considering a first step consisting in predicting the outcome for example YA in database A from
common covariates and a second step consisting in predicting YA in database B with the same covariates
using parameters estimated in the first step [16, 17].

4. Methods for latent variables. As YA and YB refers to the same information Y this can be interpreted as a
latent variable. The objective of those methods is to model a common latent variable Y[18, 19].

By construction, many methods from these families listed below only account for the information contained in
database A to complete YB and contained in database B to complete YA. The information contained in YA on
database A (resp. YB on database B) may be better exploited. Assuming that the distribution of YA (resp. YB) is
the same in database A and B, the theory of optimal transportation (see [20] for a survey) exhibits a map that
pushes the distribution of YA forward to the distribution of YB. Using that map and the link between covariates
and outcome, new algorithm of recoding, called the OT-algorithm (Optimal Transportation algorithm) can be
constructed. To do so, we have to assume that the covariates explain the outcomes YA and YB similarly in the
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two databases. Compared to this family of methods, the algorithm proposed presents the advantage to consider
all the information contained in the two databases in only one model. In the authors’ knowledge, this is the first
attempt to use optimal transportation theory in this context.

In order to challenge OT-algorithm, various methods, chosen from the previously introduced families, have
been taken as comparators: the polytomous logistic regression (PR) [21], supervised learning procedures which
generalizes logistic regression to multiclass outcomes and MICE as the current reference method among the
imputation procedures. The aim of the other methods evoked is slightly different.

This article is organized as follows: a brief review of Optimal Transportation theory together with the ap-
plication to the variable recoding problem is described in Section 2. Section 3 details OT-algorithm based on
Optimal Transportation. The assessments of the average accuracies of the algorithm are investigated in Sec-
tion 4 by means of simulation studies. The first simulation study is based on a “deterministic decision rule”
in order to investigate the intrinsic average accuracies of the OT-algorithm. Indeed, this algorithm is based on
an estimation procedure which necessitates sufficiently large sample sizes for databases A and B. The minimal
size is evaluated in Section 4.1. The second simulation study in Section 4.2 is based on a “stochastic decision
rule” in order to link the average accuracy of the OT-algorithm with the correlation between covariates and
outcome. The average accuracies of the OT-algorithm are compared with multiple imputation technique and
to polytomous logistic regression. Section 5 is the application of OT-algorithm on a real dataset. Finally, some
concluding remarks are given in Section 6.

2 Optimal transportation

Consider a pile of sand distributed with density f, that has to be moved to fill a hole (of the same total vol-
ume) according to a new distribution, whose density is prescribed and is g. Consider a map T describing this
movement, T(x) represents the destination of the particle of sand originally located at x. The Optimal Trans-
portation problem consists in finding a map T such that the average displacement is minimal (a cost function
c measuring the displacement from x to y has to be introduced at this point). This is the original statement of
the Tranportation problem due to Gaspar Monge [22].

2.1 Abstract statements of the optimal transportation problem

Consider 𝕏 and 𝕐 two Radon spaces. Given µ a probability measure on 𝕏, ν a probability measure on 𝕐 and
𝑐 ∶ 𝕏 × 𝕐 ⟶ [0, ∞] a Borel-measurable function (the cost function), Monge’s formulation of the optimal trans-
portation problem consists in finding a map (transport map) 𝑇 ∶ 𝕏 → 𝕐 that realizes the infimum:

{ �
∫𝕏

𝑐(𝑥, 𝑇(𝑥))d𝜇(𝑥) ∣ 𝑇∗(𝜇) = 𝜈} , (1)

where T*(µ) denotes the so-called push-forward measure of µ (the image measure of µ by T).
A map T that attains this infimum is called an “optimal transportation map”. Monge’s formulation of the

optimal transportation problem may be ill-posed, because sometimes there is no T satisfying T*(µ) = ν. This
happens for example when µ is a Dirac measure but ν is not. Monge’s formulation of the transportation problem
is a strongly non-linear optimization problem and to find a solution requires rigid assumptions on the regularity
of T and on the cost function.

Kantorovich’s formulation [23] consists in finding a measure γ ∈ Γ (µ, ν) that realizes the infimum:

{ �
∫𝕏×𝕐

𝑐(𝑥, 𝑦)d𝛾(𝑥, 𝑦)∣ 𝛾 ∈ Γ(𝜇, 𝜈)} , (2)

where Γ(µ,ν) denotes the set of measures on 𝕏 × 𝕐 with marginals µ on 𝕏 and ν on 𝕐 . This is related to optimal
coupling theory. Kantorovich’s formulation plugs the problem in a linear setting and the solution is achievable
thanks to compacity argument. It can be shown [20] that a minimizer for this problem always exists as soon as
the cost function c is lower semi-continuous.
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2.1.1 The discrete case on the line

In the discrete case, the Optimal Transportation problem is known as Hitchcock’s problem [24]. The measures
are defined by weighted Dirac measures (δx denotes Dirac measure at point x):

𝜇 =
𝑅

∑
𝑟=1

𝑎𝑟𝛿𝑝𝑟
and 𝜈 =

𝑆
∑
𝑠=1

𝑏𝑠𝛿𝑞𝑠

where {𝑝1, … , 𝑝𝑅} (resp. {𝑞1, … , 𝑞𝑆}) are the locations of point masses of measure µ (resp. ν) and ar (resp. bs) are
the weights verifying ∑𝑝

𝑟=1 𝑝𝑟 = ∑𝑞
𝑠=1 𝑞𝑟 = 1.

The Optimal Transportation problem in this setting consists in finding a measure γ which satisfies eq. (2).
In this context, γ is a S × R matrix and for any r and any s, γr,s represents the joint probability (𝑝𝑟, 𝑞𝑠) → ℙ(𝑋 =
𝑝𝑟, 𝑌 = 𝑞𝑠), where X ~ µ and Y ~ν and can be seen as a map from modality pr of X to modality qs of Y. The cost
function is, in this setting, a S × R matrix (𝑐(𝑝𝑟, 𝑞𝑠), 𝑟 = 1, … , 𝑅 ; 𝑠 = 1, … , 𝑆). The problem consists in finding
γ that minimizes:

𝑅
∑
𝑟=1

𝑆
∑
𝑠=1

𝛾𝑟,𝑠 𝑐(𝑝𝑟, 𝑞𝑠),

under the following constraints, for any r and any s,

𝛾𝑟,𝑠 ≥ 0,
𝑅

∑
𝑟=1

𝛾𝑟,𝑠 = 𝑏𝑠 and
𝑆

∑
𝑠=1

𝛾𝑟,𝑠 = 𝑎𝑟.

2.2 Application to database merging

In the sequel, our attention focuses on the discrete setting which is the most common and the hardest to handle
setting.

2.2.1 General considerations

Consider two databases A and B we aim to merge. The same covariates are assessed on both databases. Denote
X = (𝑋1, … , 𝑋𝑃) the set of P covariates observed in both databases A and B and X𝐴

𝑖 (resp. X𝐵
𝑗 ) the values of

X observed for patients i of database A (resp. j of database B). Our attention focuses on a variable Y evaluated
in both databases but not assessed on the same variable. Denote YA the assessment of Y on database A and
YB the assessment of Y on database B. For example Y could be measured by a three-category discretization
on A and by a four-category discretization on B. Table 1 with Q = 0 illustrates the appearance of the databases
we are describing. In order to merge those databases, we have to complete YA on database B and/or complete
YB on database A. Note that the problem is not reversible when the number of modalities is not the same.
Let µ be the distribution of YA and ν the distribution of YB. Distribution µ (resp. ν) is assumed discrete with
modalities {𝑝1, … , 𝑝𝑅} (resp. {𝑞1, … , 𝑞𝑆}). We denote by ind(A) = {1, … , 𝑛𝐴}, ind(B) = {1, … , 𝑛𝐵} and ind(A ∪ B
= {1, … , 𝑛𝐴 + 𝑛𝐵}.

2.2.2 Assumptions

In order to properly plug our problem in an Optimal Transportation framework, two assumptions have to be
fulfilled.

– Assumption 1 :

– (𝑌𝐴
𝑘 , 𝑘 ∈ ind(A ∪ B)) are i.i.d with same distribution µ,

– (𝑌𝐵
𝑘 , 𝑘 ∈ ind(A ∪ B)) are i.i.d with same distribution ν.

Assumption 1 imposes that the unobserved valued of YA (resp. YB) on database B (resp. A) comes from the
same distribution as YA (resp. YB) on database A (resp. B).
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– Assumption 2 : (𝑌𝐴
𝑘 |X𝐴

𝑘 , 𝑘 ∈ ind(A ∪ B)) (resp. (𝑌𝐵
𝑘 |X𝐵

𝑘 , 𝑘 ∈ ind(A ∪ B))) are i.i.d with same distribution as
𝑌𝐴|X𝐴 (resp. 𝑌𝐵|X𝐵).

Assumption 2 demands that the covariates explain the outcomes YA and YB similarly in both databases. Notice
that Assumption 2 cannot be verified from the data. That allows us to define a relevant cost function in Section
2.2.3 below.

2.2.3 Cost function

The problem reduces to the choice of a relevant cost function between modality pr of µ and modality qs of ν. To
define such a cost, our attention restricts to patients satisfying modality pr in database A and patients satisfying
modality qs in database B. A natural way to do so is to consider a cost function between a modality pr in database
A and a modality qs in database B which is small if these modalities refer to the same individuals and which is
large if these modalities refer to different individuals. As distribution of YA and YB are never observed for the
same individuals, this function refers to the distance between covariates vectors of individuals in database A
having modality pr and individuals in database B having modality qs. Thus, considering d a distance on ℝ𝑃, a
relevant cost function is defined as:

𝑐(𝑝𝑟, 𝑞𝑠) = 𝔼 [𝑑(X𝐴,X𝐵)|𝑌𝐴 = 𝑝𝑟, 𝑌𝐵 = 𝑞𝑠] if ℙ[𝑌𝐴 = 𝑝𝑟, 𝑌𝐵 = 𝑞𝑠] ≠ 0
= 0 otherwise

where X𝐴 and X𝐵 are independent.
The choice of the distance d depends on the type of the covariates. This may necessitate a preliminary trans-

formation of the covariates. For example, in the case of only categorical covariates were considered, the Ham-
ming distance from the associated complete disjunctive tables can be used. In the case of continuous covariates,
one can use directly the Euclidean or Manhattan distance. Finally, in the case of mixed types of covariates, a
distance for mixed data could be used (e. g. the Heterogeneous Euclidean-Overlap Metric [25], the Value Differ-
ence Metric [26], or the Mahalanobis distance) or a distance for continuous covariates applied on the coordinates
extracted from a factor analysis of mixed data [27].

3 Algorithm for variable recoding: OT-algorithm

Consider γopt, the optimal joint distribution of (𝑌𝐴, 𝑌𝐵) defined, as explained in Section 2.1.1 as the solution to
Hitchcock’s problem, solution to the linear programming: γopt is the minimum of:

𝛾 = {𝛾𝑟,𝑠, 𝑟 = 1, … , 𝑅, 𝑠 = 1, … , 𝑆} →
𝑅

∑
𝑟=1

𝑆
∑
𝑠=1

𝛾𝑟,𝑠 𝑐 (𝑝𝑟, 𝑞𝑠) ,

under the following constraints:

⎧{{
⎨{{⎩

∑𝑅
𝑟=1 𝛾𝑟,𝑠 = 𝜇𝑠, ∀𝑠 = 1, … 𝑆

∑𝑆
𝑠=1 𝛾𝑟,𝑠 = 𝜈𝑟, ∀𝑟 = 1, … 𝑅

𝛾𝑟,𝑠 ≥ 0, ∀𝑟 = 1, … 𝑅, ∀𝑠 = 1, … 𝑆.
�

The keypoint of the method is to consider an estimator of γopt. To do so, it is natural to consider the empirical
distributions of µ and ν given by the estimator ̂𝑎𝑟 (resp. ̂𝑏𝑠) defined as:

( ̂𝑎𝑛𝐴
)𝑟 = 1

𝑛𝐴

𝑛𝐴

∑
𝑖=1

𝕀{𝑌𝐴
𝑖 =𝑝𝑟}, 𝑟 = 1, … 𝑅 (3)

( ̂𝑏𝑛𝐵
)𝑠 = 1

𝑛𝐵

𝑛𝐵

∑
𝑗=1

𝕀{𝑌𝐵
𝑗 =𝑞𝑠}, 𝑠 = 1, … 𝑆 (4)
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and to consider as estimator of γopt, a solution �̂�𝑜𝑝𝑡
𝑛𝐴,𝑛𝐵 to the Hitchcock’s problem associated with an estimator

of the cost function, solution to the linear programming: �̂�𝑜𝑝𝑡
𝑛𝐴,𝑛𝐵 is the minimum of:

𝛾 = {𝛾𝑟,𝑠, 𝑟 = 1, … , 𝑅, 𝑠 = 1, … , 𝑆} →
𝑅

∑
𝑟=1

𝑆
∑
𝑠=1

𝛾𝑟,𝑠 ̂𝑐𝑛𝐴,𝑛𝐵
(𝑝𝑟, 𝑞𝑠),

under the following constraints:

⎧{{
⎨{{⎩

∑𝑅
𝑟=1 𝛾𝑟,𝑠 = ( ̂𝑏𝑛𝐵

)𝑠, ∀𝑠 = 1, … 𝑆
∑𝑆

𝑠=1 𝛾𝑟,𝑠 = ( ̂𝑎𝑛𝐴
)𝑟, ∀𝑟 = 1, … 𝑅

𝛾𝑟,𝑠 ≥ 0, ∀𝑟 = 1, … 𝑅, ∀𝑠 = 1, … 𝑆
�

with, for any 𝑟 = 1, … , 𝑅 and 𝑠 = 1, … 𝑆,

̂𝑐𝑛𝐴,𝑛𝐵
(𝑝𝑟, 𝑞𝑠) = 1

𝜅𝑟,𝑠

𝑛𝐴

∑
𝑖=1

𝑛𝐵

∑
𝑗=1

𝑑(X𝐴
𝑖 ,X𝐵

𝑗 )𝕀{𝑌𝐴
𝑖 =𝑝𝑟 ,𝑌𝐵

𝑗 =𝑞𝑠} if 𝜅𝑟,𝑠 ≠ 0

= 0 otherwise

and 𝜅𝑟,𝑠 = ∑𝑛𝐴
𝑖=1 ∑𝑛𝐵

𝑗=1 𝕀{𝑌𝐴
𝑖 =𝑝𝑟 , 𝑌𝐵

𝑗 =𝑞𝑠}.
Notice that Assumption 1 insures that the estimators (3) and (4) are unbiased and Assumption 2 makes the

introduction of the estimated cost relevant.
The proposed OT-algorithm splits in two parts.
Step 1. Estimation �̂�𝑜𝑝𝑡 of the optimal joint distribution of (𝑌𝐴, 𝑌𝐵)

– Compute ( ̂𝑎𝑛𝐴
)𝑟’s and ( ̂𝑏𝑛𝐵

)𝑠 ’s the empirical distributions of µ and ν given by (3) and (4).

– Compute the matrix of distances between each pair of patients of database A and database B.

– Compute the matrix of costs for each pair of modalities (𝑝𝑟, 𝑞𝑠) thanks to eq. (5).

– Solve the Hitchcock’s problem defining �̂�𝑜𝑝𝑡
𝑛𝐴,𝑛𝐵 .

Step 2. Affectation of a predicted value �̂�𝐵 for each patient of database A comes from a nearest neighbor
algorithm accounting for a distance constructed from covariates

– Compute, for any r = 1,…, R and s = 1,…, S:

𝑁𝑟,𝑠 = 𝐸𝑛𝑡(𝑛𝐴 × �̂�𝑟,𝑠)

where Ent(x) denote the integer part of x. Nr,s stands for the number of subjects having modality pr for YA

and qs for YB in database A.

– Consider, for any r and any s:

𝒩𝑟,𝑠 = {(𝑖, 𝑗)|𝑦𝐴
𝑖 = 𝑝𝑟, 𝑦𝐵

𝑗 = 𝑞𝑠}
𝒩𝑟 = ∪𝑆

𝑠=1𝒩𝑟,𝑠 = {𝑖|𝑦𝐴
𝑖 = 𝑝𝑟}

– Consider ( ̃𝑟, ̃𝑠) = argmax𝑟,𝑠 𝒩𝑟,𝑠
– For any 𝑖 ∈ 𝒩 ̃𝑟,

* if card(𝒩 ̃𝑟) ≤ 𝒩( ̃𝑟, ̃𝑠) then 𝑌𝐵
𝑖 = 𝑞 ̃𝑠 (all the subjects are recoded in 𝑞 ̃𝑠),

* else we have to identify which patients in 𝒩 ̃𝑟 will be recoded in 𝑞 ̃𝑠. The patients selected are the ones
closer to this modality in terms of average distance to modality 𝑞 ̃𝑠 defined as:

𝑐𝑖(𝑝 ̃𝑟, 𝑞 ̃𝑠) = 1
∑𝑛𝐵

𝑗=1 𝕀{𝑦𝐵
𝑗 =𝑞 ̃𝑠}

𝑛𝐵

∑
𝑗=1

𝑑(X𝐴
𝑖 ,X𝐵

𝑗 ) 𝕀 (𝑦𝐵
𝑗 = 𝑞 ̃𝑠) ,

* Remove patient that has been recoded at this step and repeat the procedure,
– Removed patients of modality (𝑝 ̃𝑟, 𝑞 ̃𝑠) and repeat the procedure.
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4 Simulation studies

In this section the average accuracy of the algorithm defined in Section 3 are assessed by means of simulation
studies. Database A of size nA and database B of size nB are constructed by 𝑛𝐴 + 𝑛𝐵 random generations of the
P covariates according to predefined distributions. Denote parameter 𝐹 = 𝑛𝐵/𝑛𝐴, the ratio between the sizes of
the two databases. The construction of variables YA and YB for the 𝑛𝐴 + 𝑛𝐵 patients depends on the generation
plan. The values of YB for patients 1 to nA and the values of YA for patients nA + 1 to 𝑛𝐴 + 𝑛𝐵 allow us to assess
the average accuracies of the algorithm defined in Section 3 by comparing these values to the predicted ones
̂𝑦𝐵 in database A (resp. ̂𝑦𝐴 in database B).

4.1 Performance of the OT-algorithm : effect of sample size

4.1.1 Simulation design

The Optimal Transportation algorithm is based on estimated values of the parameters of the distributions of
YA and YB. Obviously, the sizes of the databases are thus parameters of potential importance in the average
accuracies of the algorithm. In order to investigate this question, a simulation study is performed by consid-
ering a deterministic construction of variables YA and YB. As our attention focuses on the databases sample
size, P is fixed to two covariates (𝑋1, 𝑋2). To construct (𝑋1, 𝑋2), consider (𝐶1, 𝐶2) a two-dimensional Gaussian
distribution with mean (0, 0), cor(𝐶1, 𝐶2) = 0.2, var(𝐶1) = var(𝐶2) = 1. X1 is the discretization of C1 in two
modalities and is so Bernoulli-distributed B(π1) with π1 = 0.4, X2 is the discretization of C2 in two modalities
and is so Bernoulli-distributed B(π2) with π2 = 0.3. The construction of 𝑌𝐴

𝑖 and 𝑌𝐵
𝑖 for any patient i, is defined

by the following rules, which endows YA and YB with three and four modalities respectively:

If 𝑋1
𝑖 = 1 and 𝑋2

𝑖 = 1 then 𝑌𝐴
𝑖 = 3 and 𝑌𝐵

𝑖 = 4,
If 𝑋1

𝑖 = 1 and 𝑋2
𝑖 = 0 then 𝑌𝐴

𝑖 = 2 and 𝑌𝐵
𝑖 = 3,

If 𝑋1
𝑖 = 0 and 𝑋2

𝑖 = 1 then 𝑌𝐴
𝑖 = 3 and 𝑌𝐵

𝑖 = 2,
If 𝑋1

𝑖 = 0 and 𝑋2
𝑖 = 0 then 𝑌𝐴

𝑖 = 1 and 𝑌𝐵
𝑖 = 1.

4.1.2 Simulation scenarios

In order to investigate the role of sample sizes nA and nB, different scenarios are considered. First, the ratio F is
fixed as 1 (well-balanced scenarios) and nA varies over {50, 100, 500, 1000, 5000}. Second, the size nA is fixed as
1000 and F varies over {0.25, 0.5, 0.75} (unbalanced scenarios).

4.1.3 Methods

For the cost function involved in OT-algorithm, as categorical covariates have been considered, Hamming dis-
tance has been used.

4.1.4 Results

The assessment of the average accuracy of the OT -algorithm is evaluated by means of the parameter Perf(OT),
the Average Prediction Accuracy, defined as:

𝑃𝑒𝑟𝑓 (𝑂𝑇) = 1
𝑛𝐴

𝑛𝐴

∑
𝑖=1

𝕀{ ̂𝑦𝐵
𝑖 =𝑦𝐵

𝑖 } + 1
𝑛𝐵

𝑛𝐵

∑
𝑖=1

𝕀{ ̂𝑦𝐴
𝑖 =𝑦𝐴

𝑖 } (5)

where ̂𝑦𝐵 and ̂𝑦𝐴 are the predicted values from the OT-algorithm.
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The results for well-balanced scenarios and results for unbalanced scenarios are collected in Table 2. The
results are expressed in terms of mean over 100 independent runs of the algorithm together with the corre-
sponding standard errors.

Table 2: Assessment of the effect of sample size on the average accuracy of the OT-algorithm from deterministic databases
(mean ± standard error over 100 independent simulations runs). On the left, Well-balanced scenarios, varying nA. On the
right, unbalanced scenarios varying F for nA fixed to 1000.

nA Perf(OT) F Perf(OT)

50 0.89 ± 0.06 0.25 0.95 ± 0.02
100 0.92 ± 0.04 0.50 0.96 ± 0.02
500 0.96 ± 0.02 0.75 0.97 ± 0.01
1000 0.97 ± 0.01
5000 0.99 ± 0.01

From Table 2, the average accuracy of the OT-algorithm increases as the sample size nA and the ratio F increases.
The average accuracies exceed more than 89 % in all considerated scenarios. The OT-algorithm gives better
average accuracy in a well-balanced design than in an unbalanced context. The OT-algorithm demonstrates
acceptable average accuracy in this deterministic context. Since we consider an estimation problem, this is not
surprising: the larger the sample size (nA and nB) is, the better the quality of the estimates is.

4.2 Performance of the OT-algorithm: effect of association between covariates and outcome

4.2.1 Simulation design

By construction, the average accuracies of the OT-algorithm are linked to the dependence of YA and YB with
the covariates. This second simulation study highlights the link between those average accuracies and the
main parameters which depend on the generated databases. To do so, a more complicated simulation design is
considered involving P = 3 covariates (𝑋1, 𝑋2, 𝑋3). Those covariates are constructed from (𝐶1, 𝐶2, 𝐶3), a three-
dimensional 𝒩 ((0, 0, 0);Σ) Gaussian distribution with:

Σ = ⎛⎜⎜⎜
⎝

1 𝜌 𝛿
𝜌 1 𝜇
𝛿 𝜇 1

⎞⎟⎟⎟
⎠

.

X1 is the discretization of C1 in two modalities in order to be B(π1) Bernoulli-distributed. 𝑋1 = 𝕀{𝐶1>𝑡1} where
t1 is chosen such as 𝜋1 = ℙ(𝐶1 > 𝑡). X2 is the discretization of C2 in three modalities in order to be ℳ(𝜋21, 𝜋22)
multinomially-distributed. 𝑋2 = 𝕀{𝑡21<𝐶2<𝑡22}+𝕀{𝐶2>𝑡22} where t21 and t22 is chosen such as 𝜋21 = ℙ(𝑡21 < 𝐶2 < 𝑡22)
and 𝜋22 = ℙ(𝐶2 > 𝑡22). Finally, 𝑋3 = 𝐶3 and is normally-distributed.

The construction of 𝑦𝐴
𝑖 and 𝑦𝐵

𝑖 for any patient i, is defined by the following rules including an error term on
the determination of YA and YB. Consider Y to be a continuous outcome defined by:

𝑌 = 𝐶1 + 𝐶2 + 𝐶3 + 𝜎𝑈,

with U following a standard normal distribution. YA is the discretization of Y by quartiles in database A and
YB is the discretization of Y by tertiles in database B.

The data observed are covariates (𝑋1, 𝑋2, 𝑋3), YA for nA subjects in database A and YB for nB subjects in
database B.

Scenarios consists in choosing values for parameters 𝜌, 𝛿, 𝜇, 𝜋1, 𝜋21, 𝜋22, 𝜎 . Parameters ρ, δ, µ, σ are related to
the parameter R2 which measures the association between covariates and the outcome and is defined as:

𝑅2 = var(𝐶1 + 𝐶2 + 𝐶3)
var(𝑌) . (6)

= var(𝐶1 + 𝐶2 + 𝐶3)
var(𝐶1 + 𝐶2 + 𝐶3 + 𝜎𝑈),

= 3 + 2𝜌 + 2𝛿 + 2𝜇
3 + 2𝜌 + 2𝛿 + 2𝜇 + 𝜎2 .

(7)
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This relation (7) allows us to calibrate the model in order to obtain a given R2 which appears to be the parameter
of paramount importance for the relevancy of the algorithm.

4.2.2 Simulation scenarios

In order to assess the average accuracies of the algorithm as a function of the sample size nA, the correlation
between the three covariates Σ, the association measure between the covariates and the outcome R2, different
scenarios are considered:

– Scenarios (Sn) investigate the effect of the sample size nA by fixing F = 1, R2 = 0.5, 𝜌 = 𝛿 = 𝜇 = 0.2, π1 = 0.5,
𝜋21 = 𝜋22 = 0.3 and varying nA ∈ {50, 100, 500, 1000, 5000}.

– Scenarios (SF) investigate the effect of the ratio F between the sample sizes of the datasets A and B by fixing
nA = 1000, R2 = 0.5, 𝜌 = 𝛿 = 𝜇 = 0.2, π1 = 0.5, 𝜋21 = 𝜋22 = 0.3 and varying F in {0.25, 0.5, 0.75, 1}.

– Scenarios (SR) investigate the effect of R2 by fixing nA = 1000, F = 1, 𝜌 = 𝛿 = 𝜇 = 0.2, π1 = 0.5, 𝜋21 = 𝜋22 = 0.3
and varying R2 in {0.2, 0.4, 0.6, 0.8}.

– Scenarios (Sρ) investigate the effect of ρ by fixing nA = 1000, F = 1, R2 = 0.5, δ = µ = 0.2, π1 = 0.5, 𝜋21 = 𝜋22 = 0.3
and varying ρ in {0.2, 0.4, 0.6, 0.8}.

4.2.3 Method

As discussed in the Introduction, the following methods have been selected as comparison methods with OT-
algorithm:

1. Among the supervised learning methods, polytomic regression (PR) has been chosen and supposed to fit 2
different models :

– one model for outcome YA adjusted on covariates X. Parameters are estimated using individuals in
databases A than predict YA for individuals in databases B.

– one model for outcome YB on the same covariates X. Parameters are estimated using individuals in
databases B than predict YB for individuals in A.

2. Among imputation models, MICE has been selected. The algorithm generates multiple imputations for incom-
plete datasets by itering conditional densities using Gibbs sampling. For a given outcome, all other columns
in the database were included as the default set of predictors to make the results comparable to those ob-
tained with the OT-algorithm. Five imputed datasets were generated and the pooled results were retained
to impute the appropriate targets. The structural parts of the imputation models and the error distributions
have been specified according to the types of the covariates: we used the Predictive Mean Matching (pmm)
method when the covariates were continuous and the polytomous regression method when the covariates
were categorical.

For the cost function involved in OT-algorithm, as mixed covariates have been considered, Euclidian distance
has been applied on the coordinates extracted from a factor analysis of mixed data.

Notice that the results are obtained by R version 3.2.5 and especially the packages ’MICE’ for multiple im-
putation by chained equation [28], ’FactoMineR’ for factor analysis of mixed data [29], ’linprog’ for simplex
algorithm and ’MASS’ for polytomic regression.

4.2.4 Results

The assessment of the average accuracy of the different algorithms (MICE, PR and OT) is assessed by means of
the following indicators:

– Average accuracy of method m noted Perf(m) defined by:

Perf(𝑚) = 1
𝑛𝐴

𝑛𝐴

∑
𝑖=1

𝕀(( ̂𝑦𝐵
𝑖 )𝑚 = 𝑦𝐵

𝑖 ) + 1
𝑛𝐵

𝑛𝐵

∑
𝑖=1

𝕀(( ̂𝑦𝐴
𝑖 )𝑚 = 𝑦𝐴

𝑖 ). (8)

where ( ̂𝑦𝐵)𝑚 and ( ̂𝑦𝐴)𝑚 are the predicted values from the algorithm m.
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– Conc(𝑚1, 𝑚2) defined as:

Conc(𝑚1, 𝑚2) = 1
𝑛𝐴

𝑛𝐴

∑
𝑖=1

𝕀(( ̂𝑦𝐵
𝑖 )𝑚1

= ( ̃𝑦𝐵
𝑖 ))

𝑚2

+ 1
𝑛𝐵

𝑛𝐵

∑
𝑖=1

𝕀(( ̂𝑦𝐴
𝑖 )𝑚1

= ( ̃𝑦𝐴
𝑖 )𝑚2

). (9)

evaluates the concordance of predicted values between both algorithms.

The main results for simulation studies with scenarios (Sn), resp. (SF), (SR) and (Sρ) are summarized in Figure
1, resp. Figure 2, Figure 3 and Figure 4 which are the plots of the average (over the 100 simulation runs) of
Perf(OT), Perf(MICE) and Perf(PR) over the coefficient nA (resp. F, R2 and ρ).

The results for Conc(𝑚1, 𝑚2) for scenarios (Sn), (SF), (SR) and (Sρ) are collected in Table 3. The results are
expressed in terms of mean over 100 independent runs of the algorithm together with the standard error of the
different indicators defined above.

Table 3: Estimation of the average accuracy of OT, MICE and PR algorithms together with concordance criteria. (mean ±
stardard error over 100 independent simulation runs).

(a) Scenarios (Sn) varying nA and fixing F = 1, R2 = 0.5, 𝜌 = 𝛿 = 𝜇 = 0.2, π1 = 0.5,
𝜋21 = 𝜋21 = 0.3.

nA Conc(OT,MICE) Conc(OT,PR)

50 0.50 ± 0.10 0.52 ± 0.06
100 0.48 ± 0.09 0.52 ± 0.04
500 0.48 ± 0.04 0.54 ± 0.02
1000 0.48 ± 0.03 0.53 ± 0.02
5000 0.48 ± 0.02 0.53 ± 0.01
10000 0.48 ± 0.01 0.53 ± 0.01

(b) Scenarios (SF) varying F and fixing nA = 1000, R2 = 0.5, 𝜌 = 𝛿 = 𝜇 = 0.2, π1 = 0.5,
𝜋21 = 𝜋21 = 0.3.

F Conc(OT,MICE) Conc(OT,PR)

0.25 0.52 ± 0.04 0.56 ± 0.02
0.5 0.49 ± 0.03 0.54 ± 0.02
0.75 0.49 ± 0.03 0.54 ± 0.02
1 0.48 ± 0.03 0.53 ± 0.02

(c) Scenarios (SR) by varying R2 and fixing nA = 1000, F = 1, 𝜌 = 𝛿 = 𝜇 = 0.2, π1 = 0.5,
𝜋21 = 𝜋21 = 0.3.

R2 Conc(OT,MICE) Conc(OT,PR)

0.2 0.36 ± 0.03 0.43 ± 0.02
0.4 0.44 ± 0.03 0.50 ± 0.02
0.6 0.51 ± 0.02 0.57 ± 0.02
0.8 0.58 ± 0.02 0.63 ± 0.02

(d) Scenarios (Sρ) by varying ρ and fixing nA = 1000, F = 1, R2 = 0.5, δ = µ = 0.2, π1 = 0.5,
𝜋21 = 𝜋21 = 0.3.

ρ Conc(OT,MICE) Conc(OT,PR)

0.2 0.48 ± 0.02 0.53 ± 0.02
0.4 0.49 ± 0.03 0.55 ± 0.02
0.6 0.52 ± 0.03 0.60 ± 0.02
0.8 0.54 ± 0.02 0.61 ± 0.02
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From Figure 1, the average accuracy of prediction of OT, MICE and PR algorithms, increases as the sample size
nA increases in well-balanced design situations. The OT-algorithm always provides better average accuracies
(>66 %) than those obtained with the MICE algorithm and PR (<51 %). When the sample size is too small (less
than 500), the average accuracies of all algorithms are unstable and reaches stability when nA is greater than
500. Multiplying the sample size by 100 (from nA = 50 to nA = 500), generates a higher average accuracy gain
for the OT-algorithm (10 %) than for the MICE algorithm (only 4 %) and PR (only 4 %). From Table 3(a), the
concordance rates between MICE and OT stays low (a little more than 50 %) whatever the considered scenario
and remains stable when the sample size n varies.

Figure 1: Boxplot of average accuracy distribution for the three methods (OT, MICE and PR) on non determinist data.
F = 1, R2 = 0.5, 𝜌 = 𝛿 = 𝜇 = 0.2, π1 = 0.5, 𝜋21 = 𝜋22 = 0.3, varying nA.

From Figure 2, the average accuracy of prediction of OT, MICE algorithms and PR decreases as the ratio F
increases (6 % decrease with OT, 5 % with MICE, 5 % with PR when F varies from 1 to 0.25). From Table 3(b),
the concordance rates between MICE and OT and PR and OT stays low (a little less than 50 % for MICE and a
little less than 50 % for PR) in each case but is stable across values of the ratio F.
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Figure 2: Boxplot of average accuracy distribution for the three methods (OT, MICE and PR) on non determinist data.
nA = 1000, R2 = 0.5, 𝜌 = 𝛿 = 𝜇 = 0.2, π1 = 0.5, 𝜋21 = 𝜋22 = 0.3, varying F.

According to Figure 3, the average accuracy of prediction of OT and MICE algorithms decreases as the R2

increases, and the covariates better predict the outcome (4 % increase with OT, 62 % increase with MICE and
53 % increase with MICE when R2 varies from 0.2 to 0.8). This gives opposite results than those observed in the
determinist context but is coherent with the construction of the OT-algorithm. We can notice that the MICE and
PR mean tends to approximate the OT average accuracy curve. From Table 3(c), the concordance rates between
the three algorithms increases as R2 increases. When the R2 criterion is close to 0.8, the average accuracies
are very close to those obtained in the deterministic context, because the covariates explain a large part of the
variability of the outcome.

Figure 3: Boxplot of average accuracy distribution for the three methods (OT, MICE and PR) on non determinist data.
nA = 1000, F = 1, 𝜌 = 𝛿 = 𝜇 = 0.2, π1 = 0.5, 𝜋21 = 𝜋22 = 0.3, varying R2.
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From Figure 4, the average accuracy of prediction of the OT and MICE algorithms and PR remain stable as
the ratio ρ increases. The variation of correlation between covariates does not influence the average accuracy
whatever the used algorithm. From Table 3(d), the concordance rates between MICE and OT and PR and OT
stay low (a little more than 50 %) in each case but remain stable as the coefficient of correlation ρ varies.

Figure 4: Boxplot of average accuracy distribution for the three methods (OT, MICE and PR) on non determinist data.
nA = 1000, F = 1, R2 = 0.5, δ = µ = 0.2, π1 = 0.5, 𝜋21 = 𝜋22 = 0.3, varying ρ.

To conclude, in each table, the standard errors of average accuracy of the OT and MICE algorithms and PR
remain stable. The OT-algorithm demonstrates a better average accuracy than the MICE algorithm and PR
overall. It always gives good predictions for more than 66 % of the simulated data in each scenario. Notice that
“overlapping issues”, classical problem in classification, which appears when the values of the covariates is the
same for two different subjects and the value of outcomes are different. This explain the 20 % of subjects which
are not well classified in the best situation R2 = 0.8 and n = 1000.

5 ELFE database: application to a real-life dataset

The ELFE (Etude Longitudinale Francaise depuis l’Enfance) project is a nationally representative french cohort
started in 2011, included more than 18 000 children, followed from birth. The aim is to explain how various
contextual factors (such as perinatal conditions and environment) affect children’s developmental health and
well-being over time, and into adulthood. During the first baseline data collection wave (between January and
April 2011), the mother’s health status of the participating children was collected using a question (“How would
you rate your overall health”) MHS containing categories on a five point ordinal scale: “excellent”, “very well”,
“well”, “fair”, “bad” which corresponds to the standard scale used in French Cohorts. However, during the
second baseline data collection wave (May to December 2011), the health state of the mother MHS was col-
lected using the same question containing categories on a different five point ordinal scale: “very well”, “well”,
“medium” “bad” and “very bad” , the standard scale used currently in many European cohorts (see Table 4 for
details).

Table 4: ELFE study. Description of the modalities of the outcome MHS at each wave.

MHS First wave Second wave

Modality Coding Number (%) Coding Number (%)

1 “excellent” 950 (42.54) “very well” 1834 (16.20)
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2 “very well” 1047 (46.89) “well” 4374 (38.64)
3 “well” 212 (9.49) “medium” 4586 (40.51)
4 “fair” 22 (0.99) “bad” 478 (4.22)
5 “bad” 2 (0.00) “very bad” 49 (0.43)

In order to unify the database by means of a recoding of variable MHS by OT-algorithm the data of the first
wave is consider as database A (nA = 2233) and data of the second wave is consider as database B (nB = 11321).
Three covariates coded in the same way in both databases are selected for their ability to predict the outcomes:

– AGE (continuous): the mother’s age at baby birth in years.

– PL (categorical with six modalities): the health state of the mother and her physical limitations reported for
a duration of at least six months.

– CMH (categorical with three modalities): the chronic mother health problem at two months of baby age.

– MGH (categorical with five modalities): the mother’ general health

As mixed covariates has been considered, the cost function involved in OT-algorithm is based on the Euclidian
distance applied on the coordinates extracted from a factor analysis of mixed data.

The association between the outcome and the covariates are tested independently in each dataset by using
standard chi-square tests of independence for categorical covariates and student tests for continuous covariates.
Each obtained p-value is less than 10–14. The same results hold by ascending inclusion in an ordered logistic
regression.

Table 5 do not show any significant difference between covariates distribution at wave 1 and wave 2 except
age. Assumption 1 is thus realistic.

Table 5: ELFE study. Description of covariates at each wave. Modalities together with the numbers at each wave (%) for
each categorical covariates and mean ± standard error for continuous covariate AGE. Comparison of the distribution for
each covariate by means of an adequate test. The modalities for the MHS variable are not the same at wave 1 and wave 2.

Covariate Modalities Wave 1 Wave 2 p-value

MGH 1 1047 (46.89) 5238 (46.27) 0.22
2 1002 (44.87) 5159 (45.57)
3 170 (7.61) 861 (7.61)
4 12 (0.54) 58 (0.51)
5 2 (0.09) 5 (0.04)

PL Severely limited 18 (0.81) 64 (0.57) 0.20
Limited 140(6.27) 657 (5.80)
No 2075 (92.92) 10600 (93.63)

CMH Yes 285 (12.76) 1433 (12.66) 0.99
No 1948 (87.24) 9888 (87.34)

AGE 30.77 ±  4.68 31.10 ± 4.80 0.002

Table 6 gives the coupling distribution given by the first step of OT-algorithm. The results of recoding of
MHS in database A and database B by the OT-algorithm are given in terms of confusion matrix between the two
completed scales which is the matrix G where Gi,j denotes the number of individuals coded i in the European
and recoded j in the French coding. G is presented in Table 7. The tridiagonal structure observed for this matrix
reflects a good re-allocation of the values from one outcome to another. The values on the diagonal and on the
first lower diagonal represents 89.2 % of the recoding.

Table 6: ELFE study results. Coupling �̂� distribution. In rows, European coding, in columns, French coding.

“very
well”

“well” “medium” “bad” “very bad”

“excellent” 0.162 0 0 0 0
“very well” 0.263 0.123 0 0 0
“well” 0 0.346 0.059 0 0
“fair” 0 0 0.036 0.006 0.001
“bad” 0 0 0 0.004 0
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Table 7: ELFE study results. Confusion matrix of the recoding by means of the OT-algorithm (number (%)). In rows, Eu-
ropean coding, in columns, French coding.

“very
well”

“well” “medium” “bad” “very bad”

“excellent” 2196 (16.2) 588 (4.3) 0 (0) 0 (0) 0 (0)
“very well” 2982 (22.0) 1666 (12.3) 773 (5.7) 0 (0) 0 (0)
“well” 0 (0) 3917 (28.9) 801 (5.9) 80 (0.6) 0 (0)
“fair” 0 (0) 0 (0) 405 (3.0) 75 (0.6) 20 (0.1)
“bad” 0 (0) 0 (0) 0 (0) 51 (0.4) 0 (0)

6 Results and discussion

In this paper, OT-algorithm is introduced. That algorithm aims to recode variables. Variable recoding is a usual
issue which appears when a variable is not coded on the same scale in two different databases while merging
or at two different times while comparing. OT-algorithm splits in two steps. The first step is based on optimal
transportation theory specifying the optimal numbers of transitions from a scale to another and a second step,
an allocation rule, based on average distance between covariates.

OT-algorithm is based on two assumptions:

– First, the distribution of the variable of interest is the same in both databases. This assumption is realistic
when merging databases from two waves of recruitment but has limitations when merging two cohorts for
example from different countries. This has already been studied in North American NHANES study and
the French National Health Survey. The distribution of the outcome “self-rated health” is not distributed
identically in the two databases. Poor self-rated health is more frequently reported in France [30].

– Second, the covariates explains the outcome in the same way in both databases. This assumption cannot
be evaluated from data but example of situation where this assumption is not acceptable are numerous.
For example in [30] a comparison of the outcomes “functional limitations” and “self-rated health” in these
shows that “functional limitation” is more strongly associated with “poor self-rated health” for the most
educated men than in the least educated in US rather than in France.

The average accuracies of OT-algorithm has been assessed by simulations studies. The results show that the
method works very well. The average accuracies depend on the sample size of the databases and of the intensity
of the link between covariates and the outcome of interest (essessed by R-square parameter). In any situation,
OT-algorithm is more accurate than a multiple imputation algorithm.

OT-algorithm has been applied to recode a variable on real dataset where the scales of coding are different
at two different times. This investigation shows the average accuracy of the OT-algorithm for practical use.
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