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Abstract

Background: Yellowtail (Seriola quinqueradiata) are an economically important species in Japan. However, there are
currently no methods for captive breeding and early rearing for yellowtail. Thus, the commercial cultivation of this
species is reliant upon the capture of wild immature fish. Given this, there is a need to develop captive breeding
techniques to reduce pressure on wild stocks and facilitate the sustainable development of yellowtail aquaculture.
We constructed a whole genome radiation hybrid (RH) panel for yellowtail gene mapping and developed a
framework physical map using a nanofluidic dynamic array to use SNPs (single nucleotide polymorphisms) in ESTs
(expressed sequence tags) for the DNA-assisted breeding of yellowtail.

Results: Clonal RH cell lines were obtained after ionizing radiation; specifically, 78, 64, 129, 55, 42, and 53 clones
were isolated after treatment with 3,000, 4,000, 5,000, 6,000, 8,000, or 10,000 rads, respectively. A total of 421 hybrid
cell lines were obtained by fusion with mouse B78 cells. Ninety-four microsatellite markers used in the genetic
linkage map were genotyped using the 421 hybrid cell lines. Based upon marker retention and genome coverage,
we selected 93 hybrid cell lines to form an RH panel. Importantly, we performed the first genotyping of yellowtail
markers in an RH panel using a nanofluidic dynamic array (Fluidigm, CA, USA). Then, 580 markers containing ESTs
and SNPs were mapped in the first yellowtail RH map.

Conclusions: We successfully developed a yellowtail RH panel to facilitate the localization of markers. Using this, a
framework RH map was constructed with 580 markers. This high-density physical map will serve as a useful tool for
the identification of genes related to important breeding traits using genetic structural information, such as conserved
synteny. Moreover, in a comparison of 30 sequences in the RH group 1 (SQ1), yellowtail appeared to be evolutionarily

closer to medaka and the green-spotted pufferfish than to zebrafish. We suggest that synteny analysis may be
potentially useful as a tool to investigate chromosomal evolution by comparison with model fish.
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Background

The genus Seriola, which includes yellowtail (Seriola
quinqueradiata), amberjack (Seriola dumerili), and king-
fish (Seriola lalandi), accounted for >60% of the total
Japanese mariculture production in 2011 [1]. Yellowtail, in
particular, are very popular with Japanese consumers. At
present, culturists rely on the capture of wild juveniles to
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provide the seed as commercial scale methods for captive
reproduction and early rearing have yet to be developed.
Thus, there is a clear need to develop methods for breed-
ing to preserve wild stocks and facilitate the selection of
economically important traits. The latter requires genomic
information such as the chromosomal locations of genetic
polymorphisms and expressed genes. Currently, there are
a limited number of yellowtail families available for linkage
analysis. Even though a female linkage map with 180
microsatellite markers has been reported [2], there re-
mains a need for maps of expressed sequence tags (ESTs)
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and ¢cDNAs to inform yellowtail genomic structure. Re-
cently, linkage maps were developed for several, com-
monly cultured species, including Atlantic salmon [3],
Atlantic cod [4], common carp [5], and catfish [6].
These maps were created with microsatellite markers
and gene-associated single nucleotide polymorphisms
(SNPs) derived from ESTs. SNPs, the most abundant
type of DNA sequence polymorphism, are suitable for
high-throughput genotyping and provide enhanced pos-
sibilities for genetic and breeding applications, linkage
map development, assessment of genetic variability, and
marker-assisted breeding. Furthermore, SNP correlation
analysis can be used to facilitate selective breeding for
desirable traits. To place marker DNA sequences on a
linkage map, there must be polymorphisms within the
families that are used for the linkage analysis. ESTs
sometimes have SNPs, but many ESTs lack SNPs in
linkage analysis families obtained by mating one male
and one female. To address this, we physically mapped
a large number of ESTs using radiation hybrid (RH) cell
lines.

An RH map is a powerful tool for building a physical
map of the whole genome. This technique can be used
to determine the order and distance between DNA
markers by analyzing their presence or absence in hybrid
cells, and to localize both polymorphic markers and
non-polymorphic markers, such as ESTs. Furthermore,
RH maps serve as a valuable tool for the molecular iden-
tification of mutations using a candidate gene approach,
and can be used to facilitate the construction of gene
orthology relationships through conserved synteny ana-
lysis. In mammals, RH maps have been reported for
humans [7,8], mice [9], dogs [10], cats [11], horses [12],
and pigs [13]. In addition, six RH panels have been pub-
lished for five teleost fish species: two zebrafish RH
panels were derived from the fibroblast cell line AB9
[14,15] one gilthead seabream RH panel was derived
from primary fin fibroblasts [16], a medaka panel was
derived from a fin fibroblast cell line [17], a European
seabass panel from splenocytes [18], and a Nile tilapia
panel from a homozygous clonal line [19]. In the current
study, we developed the first RH panel derived from a
yellowtail fin fibroblast cell line.

We used a nanofluidic dynamic array (Fluidigm, USA)
high-throughput genotyping system. This system was
originally developed for SNP genotyping assays and gene
expression analyses, and is able to perform 9,216 real-
time polymerase chain reactions (PCRs) (96 primers x 96
samples) on a single chip. We adapted this system for
use as an expression assay platform to map EST and
SNP sites as DNA markers.

Here, we report on the production of a yellowtail fin
radiation hybrid cell line and the construction of a 580-
marker map that includes 97 microsatellite markers.
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Results and discussion

Visual analysis of chromosomes in the fibroblast cell line
A photomicrograph of mitotic metaphase chromosomes
from a yellowtail fibroblast cell is shown in Figure 1.
The modal number of chromosomes was 48. This num-
ber is consistent with a previous report that noted the
diploid chromosome number in yellowtail gill cells was
48 with a karyotype consisting of one pair of submeta-
centrics, one pair of subtelocentrics, and 22 pairs of ac-
rocentrics [20]. Therefore, we divided the RH map into
24 linkage groups.

Construction of an RH panel

A fibroblast cell line with an integrated Geneticin® resist-
ance gene was irradiated with 3,000, 4,000, 5,000, 6,000,
8,000, or 10,000 rads (1 rad =0.01 Gy) to induce chro-
mosome breakage. Hybrid clones maintaining yellowtail
genome fragments were selected based on their growth
in DMEM medium containing 1 mg/mL Geneticin®. We
were able to obtain hybrid clones at all radiation doses.
Specifically, we recovered 78, 64, 129, 55, 42, and 53
clones from those exposed to 3,000, 4,000, 5,000, 6,000,
8,000, or 10,000 rads, respectively. In total, 421 hybrid cell
lines were obtained by fusion with mouse B78 cells. Those
numbers were similar to what has previously been ob-
tained using human (220) [7], zebrafish (357) [15], gilthead
seabream (170) [16], medaka (290) [17], European seabass
(290) [18], and Nile tilapia cells (381) [19]. Thus, we felt
confident that the number of yellowtail hybrid cell lines

Figure 1 Yellowtail metaphase chromosomes (Seriola
quinqueradiata). Arrows indicate submetacentrics and arrowheads
indicate subtelocentrics, while other chromosomes are acrocentric
with respect to chromosomal karyotype.
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we obtained would be a sufficient starting point from
which to select 93 hybrid clones for the RH panel.

The retention frequency was estimated for each clone
by genotyping a set of 94 microsatellite markers that were
selected from the linkage map [2, unpublished observa-
tions], and by scoring them as present, absent, or ambi-
guous. The retention frequency of the 94 microsatellite
markers in the 421 hybrid cell lines is shown in Figure 2.
The average retention frequencies at each radiation dose
were approximately 10.2, 10.2, 10.9, 7.4, 8.2, and 9.7%, re-
spectively. The average retention frequency of the 421 hy-
brid cell lines was approximately 9.8%. These values were
not correlated with the radiation dose. However, we did
expect the size of the chromosome fragments retained
within the hybrid cell lines to differ depending on the in-
tensity of radiation received by the cells.

A set of 93 hybrid cell lines was selected to form the
RH panel, including 20 lines from the 3,000-rad dose, 19
from the 4,000-rad dose, 35 from the 5,000-rad dose, 6
from the 6,000-rad dose, 5 from the 8,000-rad dose, and
8 from the 10,000-rad dose. In general, the hybrid cell
lines were selected based on high-retention frequency
values; however, in one case a cell line was substituted
to obtain a better representation of the whole genome.
The retention frequencies of each clone in the RH panel
were in the range of 12.8-41.5%, and averaged 23.2%.
For comparison, the average retention frequencies for
the RH panel clones in previous studies were 22% in
zebrafish [15], 30% in gilthead seabream [16], and 30.6%
in European seabass [18]. Thus, by analogy to those
studies, the yellowtail RH panel was an adequate starting
point for the construction of a physical map.
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Construction of an RH map
The genomic DNA that was extracted from the RH panel
was pre-amplified with 96 pooled primer pairs. The pre-
amplified DNA was used as the template for the second
PCR with each nested primer pair for each of the 96
markers using the BioMark™ HD system (Fluidigm, USA).
The BioMark™ HD system is able to perform high-
throughput Tm shift reactions, SNP analysis, and gene
expression analysis. Therefore, we took advantage of
this system to conduct marker genotyping of the physical
map using a 96.96 nanofluidic dynamic array. The results
of the reaction were estimated from the Ct (threshold
cycle) values, the melting temperature of amplification
products, and the amplification curves of the PCR prod-
ucts (Figure 3). We then confirmed the existence of the
amplification products using these three analytical mea-
surements. The proportion of useful primer pairs among
the 96 markers was approximately 25-50%, owing to the
sensitivity and specificity of the system. We did not detect
any non-specific amplification products. The BioMark™
HD system provided results from ~24—50 primer pairs in
6 h, and clearly had higher throughput relative to electro-
phoresis. Moreover, the reproducibility of the dynamic
array data for replicates within a chip and between dif-
ferent chips is very good [20]. By performing PCR on a
dynamic array, one can obtain high-throughput gene
expression data that are essentially identical in quality to
conventional microliter reverse-transcription-quantitative
PCR and are of superior quality to publicly available array
data from the same tissue type [21].

We genotyped 631 markers to construct the RH map.
The two-point analysis, performed at an LOD score of
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Figure 2 Retention frequencies of the yellowtail hybrid cell lines. Hybrid cell lines are numbered from 1 to 421 on the x-axis. Their
retention frequencies, expressed as the percentage of microsatellite markers per cell line, are represented on the y-axis.
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4.0 and a distance threshold of 45, yielded 158 groups
using CarthaGene software [22,23]. Furthermore, by ref-
erence to the locations of several markers on the previ-
ously constructed genetic linkage map for yellowtail, 580
markers were assigned to 24 linkage groups. Fifty-one
markers in 32 groups were not distributed among the
genetic linkage groups because of the LOD score or the
distance threshold error. Thus, the current yellowtail
physical map was constructed with a final set of 580
markers consisting of 483 genes and 97 microsatellite
markers that were genotyped by PCR and electrophor-
esis (Table 1, Figure 4A-D). For individual groups, the
RH map had a size range of 406.8—1141.8 cR (1 centi
Ray, cR = 1% frequency of a breakage occurring between
two markers after exposure to a radiation dose) with an
average of 720.1 cR. The combined size of all RH groups
was 17283.4 cR. The yellowtail genome is estimated to
be 800 Mbp [2], which yields a value of 1 cR =46.3 kbp
(800 Mbp/17283.4 cR).

We were able to quickly obtain a large quantity of data
using the BioMark™ HD system, highlighting its utility for
developing RH maps. Furthermore, the Janus™ (Perkin
Elmer, MA, USA) and the Biomek™ (Beckman Coulter,
CA, USA) units can pipet sub-microliter volumes accur-
ately into hundreds or thousands of PCR plates per day.
Alternatively, assays can be transferred to a completely
different genotyping platform. For instance, Tagman™,

Molecular Beacon™, and Scorpion® assays can be run on
Fluidigm instruments that use automation and micro-
fluidics to perform 96 single assays on 96 individual
samples in a single plate. The reduction in assay vol-
umes substantially decreases reagent costs, although the
instruments themselves require the purchase of con-
sumables [24]. The Dynamic Array does have some lim-
itations, including the inability to run specific real-time
PCR conditions for individual SNPs, and the need for
specialized hardware. Nevertheless, the accuracy, effi-
ciency, and cost savings in time, reagents, and DNA for
a nanofluidics Dynamic Array make it suitable for
medium- to high-throughput genotyping against tar-
geted SNPs [25].

After developing our RH map, RH group 1 (SQ1) and
23 other RH groups were compared with the genetic
linkage groups (Figure 5 and Additional file 1). The dis-
tances between adjacent markers and the local order of
markers were compared to confirm the accuracy of SQ1
in the yellowtail physical map. The order in which genes
were arranged in SQ1 was the same as that observed in
the yellowtail linkage map, demonstrating the local ac-
curacy of the physical map. A manuscript fully describ-
ing the genetic linkage map data is in preparation, thus,
other map data are not shown here. Once a high-density
yellowtail RH map is constructed, this RH map will be
compared with the 24 genetic linkage maps to confirm
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Table 1 Characteristics of the yellowtail RH map

Group Size (cR) No. of markers
Genes Microsatellite Total

1 897.5 30 4 34

2 837.0 20 6 26

3 846.7 12 5 17

4 746.6 19 4 23

5 406.8 14 4 18

6 990.2 27 4 31

7 612.7 14 3 17

8 5879 16 4 20

9 800.6 26 3 29

10 688.0 17 4 21

" 456.6 12 3 15
12 8979 40 7 47
13 4395 5 4 9
14 6712 13 3 16
15 11418 35 4 39
16 857.0 18 4 22
17 654.8 17 5 22
18 589.6 16 3 19
19 761.0 24 4 28
20 607.8 16 3 19
21 4895 18 4 22
22 507.3 18 4 22
23 907.9 25 4 29
24 887.5 31 4 35
Subtotal 172834 483 97 580
Unlinked 51 51
Total 172834 534 631

the accuracy of the local order of markers. To anchor the
RH map to the karyotype, ESTs and microsatellite markers
should be used simultaneously in FISH (fluorescence in
situ hybridization) experiments and RH mapping [26].

Synteny relationship with medaka

The 30 yellowtail marker sequences within the SQ1 RH
map were compared with the cDNA sequences of three
fish species: zebrafish (Damnio rerio), medaka (Oryzias
latipes), and the green-spotted pufferfish (Tetraodon
nigroviridis), using the TBLASTX algorithm. Of the 30
sequences, 19 (63%) genes had identified orthologs in
zebrafish and the green-spotted pufferfish, and 21 (70%)
had recognizable orthologs in medaka (Table 2). Fur-
thermore, we found syntenic relationships among SQ1,
chromosome 5 of medaka, and chromosome 11 of
the green-spotted pufferfish. However, the syntenic
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relationship between SQI and the zebrafish sequence
was rather low. Medaka are a member of the order
Beloniformes, which includes freshwater and marine fish
such as Pacific saury and flying fish. Zebrafish are a mem-
ber of Cypriniformes, which consists almost exclusively of
freshwater fish. Notably, our SQ1 synteny results reflect
the known taxonomic relationships of these fish. In Tele-
ostei, it is thought that a whole-genome duplication and
eight subsequent major rearrangements occurred about
314—-404 million years ago [27]. Furthermore, it is thought
that zebrafish and medaka diverged after the eight major
rearrangement events. Therefore, the availability of the
yellowtail RH panel enabling the construction of a high-
density map offers an opportunity to investigate chromo-
somal evolution after the eight major rearrangements.

The production of a high-density RH map with about
2,000 ESTs is underway and will provide information on
conserved synteny and chromosome evolution in fish spe-
cies. Furthermore, the high-density yellowtail RH map can
be used to highlight associations with economically im-
portant breeding traits using SNP chips, and identify their
chromosomal location.

Conclusions

A vyellowtail RH panel was constructed to facilitate the
localization of markers from 421 hybrid cell lines. Then,
the framework RH map was constructed with 580 markers
containing ESTs and SNPs. Information from the high-
density physical map will facilitate the discovery of linked
regions associated with economically important traits.
This will, in turn, aid the development of yellowtail strains
suitable for aquaculture.

Methods

Ethical statement

Field permits are not required for yellowtail (Seriola
quinqueradiata) in Japan. The fish handling, husbandry,
and sampling methods were approved by the Institute for
Animal Care and Use Committee of the National Research
Institute of Aquaculture (IACUC-NRIA No. 3).

Visualization of chromosomes in a fibroblast cell line

A yellowtalil fin fibroblast cell line was derived and cul-
tured. Then, cell cycle progression was inhibited by the
addition of 10 uM TN-16 (Calbiochem, CA, USA) at 22°C
for 24 h. The cells were trypsinized, washed twice in
phosphate-buffered saline, treated with Optimal Hypo-
tonic (Genial Genetics, Chester, UK) at 37°C for 5 min,
and fixed in a methyl alcohol/acetic acid solution (3:1).
One drop of the cell suspension was placed on a warm
slide and dried. This slide was stained with Giemsa Stain
Solution (Wako, Osaka, Japan) for 12 h [28].
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Figure 4 An RH map of the yellowtail genome (A: SQ1-6, B: SQ7-12, C: SQ13-18, D: SQ19-24). The RH group is symbolized by a vertical

Production of the RH cell lines

Both the calcium phosphate precipitation method [29]
and the lipofection method using the Lipofectamine
2,000 Reagent (Invitrogen, CA, USA) were used to trans-
fer the Geneticin® resistant gene, pSV2neo, into the
yellowtail fin cells. The treated cells were cultured in
L-15 medium (Invitrogen, USA) containing Geneticin®
(1 mg/mL, Invitrogen, USA) at 22°C to select the trans-
formed cells. More than 300 independent Geneticin’-
resistant clones were pooled for the fusion experiments.
These cells were irradiated by exposure to 3,000, 4,000,
5,000, 6,000, 8,000, or 10,000 rads (MBR-1520R; Hitachi
Power Solutions Co., Ltd., Ibaraki, Japan), and were
fused with derivative mouse B78 cells at a 2:1 ratio in
the presence of polyethylene glycol 1500 (Roche, Basel,
Switzerland). The cells were cultivated with DMEM
medium (Invitrogen, USA) containing Geneticin® for
3—4 weeks until hybrid clone colonies appeared. DNA
was extracted from individual clones using a DNAd-
vance Kit (Beckman Coulter, CA, USA).

Selection of an RH panel

The DNA extracted from hybrid cells was expanded by
whole genome amplification using a GenomiPhi V2 DNA
Amplification Kit (GE Healthcare, Buckinghamshire, UK).
PCR was performed on 60 ng of amplified DNA using
BIOTaq HS DNA Polymerase (Bioline, London, UK) in a

final volume of 15 pL. Microsatellite DNA markers were
used to genotype the 94 markers mapped in the yellowtail
linkage map [2, unpublished observations]. Amplification
was performed over 40 cycles: 30 s at 95°C, 10 s at 62°C,
and 30 s at 72°C, in addition to a 10-min pre-dwell at
95°C and a 3-min post-dwell at 72°C. The PCR products
were analyzed by electrophoresis in a 2% agarose gel,
and were scored as present, absent, or ambiguous. After
analysis of the retention profiles of the 94 microsatellite
markers in each cell line, a total of 93 RH cell lines were
selected for the RH panel. Each cell line within the RH
panel was cultured to confluence in two 75 cm? dishes,
yielding 1 x 107 cells. Then, genomic DNA from each
cell line was extracted using the Blood & Cell Culture
DNA Midi Kit (Qiagen, Hilden, Germany).

Genotyping

Genotyping analysis was performed on 96 DNA samples
including material from 93 hybrid RH cell lines. Yellow-
tail DNA and a mixture of yellowtail and mouse DNA
were used as two independent positive controls. Mouse
DNA alone was used as a negative control.

For expressed sequences, total RNA purified from the
brain, muscle, liver, heart, intestine, kidney, spleen, gonad,
bladder, and gills of one immature yellowtail was se-
quenced using a Roche/454 FLX Pyrosequencer em-
ploying a next-generation sequencing technique with
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Figure 5 Comparison of the RH group 1 (5Q1) and the linkage group 1 (Squ1). The female Squ1 genetic linkage map is on the left, the
male Squ1 map is on the right, and the RH SQ1 map is in the center. Solid lines connect the same markers.

reference sequences [unpublished observations]. Further-
more, total RNA was prepared from 500 juvenile yellow-
tail and from the kidneys and gills of 100 young yellowtail
individuals and sequenced using a Roche/454 FLX Py-
rosequencer. Then, these sequences and the reference
sequences were assembled and analyzed using a CLC
Genomics Workbench (CLC bio, Aarhus, Denmark).
Oligonucleotide primer pair DNA markers were derived
from the yellowtail expressed sequences, and were designed
using Primer 3 software [30] (see Additional files 2 and 3).
Genotyping was carried out using the BioMark™ HD sys-
tem (Fluidigm, USA), which requires a pre-amplification
reaction. Primer pairs for the pre-amplification PCR and
genotyping reactions were designed based on the expres-
sion sequences of the ESTs. Pre-amplification PCR product
size was designed to be in the range of 100-150 bp, and

the second PCR product size in the BioMark™ HD system
was designed to be in the range of 50-100 bp. Pre-
amplification PCR was carried out using a Multiplex PCR
Assay Kit (TaKaRa, Shiga, Japan) with 96 pooled primer
pairs tested against each DNA sample (60 ng) in the RH
panel, and against the positive and negative controls. Cycle
conditions were as follows: a pre-dwell for 1 min at 94°C;
20 cycles of 30 s at 94°C, 90 s at 62°C, and 90 s at 72°C;
and a post-dwell for 10 min at 72°C. The products of the
pre-amplification PCR were diluted 1:5 with TE.
Genotyping reactions were carried out on the Fluidigm
platform using a BioMark™ 96.96 nanofluidic dynamic
array (Fluidigm, USA) for gene expression analysis. A 5 pL
sample mixture was prepared for each sample containing
diluted pre-amplified DNA, TagMan Gene Expression
Master Mix (Applied Biosystems, CA, USA), EvaGreen
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Table 2 Blast search of SQ1 gene sequences generated by model fish species
Danio rerio Oryzias latipes Tetraodon nigroviridis

Gene Chr Gene Chr Gene Chr
Sequ10077EST2 CSETL 1 CSETL 5 CSETL 1
Sequ10270EST2 RUVBLT 6 RUVBL1 5 RUVBL1 7
Sequ11146EST3 11 CSNK2AT 16 CSNK2A3 -
Sequ11253SNP2 - - SHQT1 5 - -
Sequ11351EST3 AKR7A3 " AKR7A3 5 AKR7A3 "
Sequ13632SNP3 TRIM62 1 TRIM62 5 TRIME2 "
Sequ016285NP2 - - - - - -
Sequ02007SNP1 - - - - -
Sequ20398EST2 AHCY 6 AHCY 5 AHCY -
Sequ20407EST2 PSMD6 1 PSMD6 5 PSMD6 1
Sequ20554SNP2 TP53RK 1 TP53RK - TP53RK -
Sequ205985NP2 IGFN1 6 IGFNT 5 IGFNT 11
Sequ20655SNP2 IGFNT 6 IGFN1 5 IGFN1 9
Sequ21165SNP2 - - - -
Sequ21581SNP2 - - - -
Sequ02185SNP1 - - - - -
Sequ25975EST2 UBAPT 21 UBAPT 5 UBAPT 1
Sequ283155NP2 ZGC 23 MYL6 7 - "
Sequ28651EST2 WDR77 - WDR77 5 WDR77 1
Sequ03558SNP1 - - - - -
Sequ43398EST3 - - - - -
SequO6081EST2 ALDHILT 6 ALDHILT 5 ALDHILT -
SequO6483EST2 TIMM17A 1 TIMM17A 5 TIMM17A 1
Sequ06491EST2 RPN1 " RPNT 5 RPNT "
Sequ06979EST2 SEC61AT 6 SEC61AT 5 SEC61AT 1
Sequ07395EST2 CAPZAT 8 - 5 - 13
Sequ08208EST2 GNATI 6 GNATT - GNATI "
Sequ08572EST2 - - ATAD3A - ATAD3A 1
Sequ09151SNP2 - - - - - -
Sequ09916EST2 BYSL 22 BYSL 5 BYSL 11

(Biotium, CA, USA), and DNA Binding Sample Loading
Reagent (Fluidigm, USA). An assay mix of 5 pL was pre-
pared with each nested primer from the pre-amplification
PCR, and Assay Loading Reagent (Fluidigm, USA). An
IFC controller HX was used to prime the fluidic array with
control line fluid, and then the samples and assay mix
were combined in the inlets. After loading, the array was
placed in the BioMark™ HD system for PCR under the fol-
lowing cycle conditions: a pre-dwell for 10 min at 95°C,
40 cycles of 15 s at 95°C, 10 s at 62°C, and 20 s at 72°C.
The results were analyzed using the Real-Time PCR Ana-
lysis software, which is integrated into the BioMark™ HD
system.

Data computation
We used CarthaGene software to perform two-point linkage
analyses and to determine marker order and inter-marker
distances in centi Rays (cR). Linkage groups were deter-
mined using the group command at an LOD threshold of
4.0 and a distance threshold of 45, and referenced the gen-
etic yellowtail linkage map [2, unpublished observations].
EST alignments of linkage group 1 (SQ1) were performed
with the TBLASTX algorithm searches against the cDNA
database of zebrafish (Darnio rerio), medaka (Oryzias latipes),
and the green spotted pufferfish (Tetraodon nigroviridis)
using Ensembl [31]. The sequences with the lowest E-
value (< 1.0 x 10~°) were adopted in each EST alignment.
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