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Abstract: There is no denying fact that harmonic crystals,
cold plasma or liquids and compressible �uids are usu-
ally dependent of acoustic-gravity waves, acoustic waves,
hydromagnetic waves, surface waves with long wave-
length and few others. In this context, the exact solutions
of the modi�ed Camassa-Holm equation have been suc-
cessfully constructed on the basis of comparative analy-
sis of

(
G′/G − 1/G)and (1/G′)-expansion methods. The(

G′/G − 1/G)and (1/G′)-expansion methods have been
proved to be powerful and systematic tool for obtain-
ing the analytical solutions of nonlinear partial di�eren-
tial equations so called modi�ed Camassa-Holm equa-
tion. The solutions investigated via

(
G′/G − 1/G) and(

1
/
G′)-expansion methods have remarkably generated

trigonometric, hyperbolic, complex hyperbolic and ratio-
nal traveling wave solutions. For the sake of di�erent
traveling wave solutions, we depicted 3-dimensional, 2-
dimensional and contour graphs subject to the speci�c
values of the parameters involved in the governing equa-
tion. Two methods, which are important instruments in
generating traveling wave solutions in mathematics, were
compared both qualitatively and quantitatively. In addi-
tion, advantages and disadvantages of both methods are
discussed and their advantages and disadvantages are re-
vealed.
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1 Introduction
Nowadays, nonlinear partial di�erential equations have
been applied in various �elds due to their burning
signi�cances in �uid dynamics, optical �bers, biologi-
cal sciences, quantum mechanics and plasma physics.
Various researchers have suggested di�erent methods
to solve nonlinear partial di�erential equations such
as, Homotopy perturbation method [1], Sine-Gordon ex-
pansion method [2, 3],

(
1
/
G′)-expansion method [4–

6], variational iteration method [7], improved Bernoulli
sub-equation function method [8, 9],

(
1
/
G′)-expansion

method [10–12], (G′/G, 1/G)-expansion method [13], Exp-
function method [14], Auxiliary equation method [15],
Laplace perturbation method [16], Adomian’s decompo-
sition method [17, 18], sub-equation method [19], Haar
wavelet collocation method [20] and few others. In this
context, Camassa-Holm equation is one of the type of
nonlinear partial di�erential equation for which several
studies have been presented in open literature; for in-
stance; Gorka and Reyes [21] studied weak solutions and
proved their existence and uniqueness for Camassa-Holm
equation. Qu et al. [22] investigated dynamical stability
of the single peaked soliton and periodic peaked soli-
ton for an integrable Camassa-Holm equation with cu-
bic nonlinearity. The soliton wave solutions using homo-
topy analysis method for Camassa-Holm equation have
been explored by Abbasbandy [23]. Bekir and Guner [24]
suggested new study based on topological (dark) soli-
ton solutions subject to solitary wave Ansatz method for
Camassa-Holm equation [24]. In brevity, few recent stud-
ies can be viewed in [25–27]. Additionally, the recent
work on exact [28–32, 34, 35] and analytical solutions
can also be seen therein [36–42]. Motivated by above dis-
cussion, we have been traced out analytic solutions of
the Camassa-Holm equation by using

(
G′/G − 1/G) and(

1
/
G′)-expansion methods. We also presented the com-

parison of
(
G′/G − 1/G) and (1/G′)-expansion methods

on Camassa-Holm equation. The Camassa-Holm equation
can be written in the form of [43]

ut − uxxt + 3u2ux − 2uxuxx − uuxxx = 0. (1)
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Eq. (1) possesses shallowwaterwaves and suchmathemat-
ical model is known to be integrable, possessing multi-
soliton solutions with peaks [44–46]. Additionally, sev-
eral fractional analytical techniques can be persuaded
with classical and non-classical [47–58], local and non-
local [59–67] and singular kernels [68–74]. In this study,
general information about the equations and analytical
methods discussed in the introduction is given. In the sec-
ond section, the general operation of analytical methods
is explained. In the third section, the applications of the
methods are carried out. In the fourth section, the advan-
tages anddisadvantages of the obtaineddata andmethods
are discussed. In the last section, the data in the study is
compiled.

2 Comparative methods for
Camassa-Holm equation

2.1 (1/G′)-Expansion method

Weconsider two-variable general formof nonlinear partial
di�erential equations

P
(
u, ∂u∂t ,

∂u
∂x ,

∂2u
∂x2 , ...

)
= 0, (2)

in the general form. Here, let u = u (x, t) = U (ξ ) , ξ =
x + vt, v ≠ 0, where v is a constant and the velocity of
thewave. After this, it can be converted into followingnon-
linear ordinary di�erential equation for U (ξ ):

γ
(
U, U′, U′′, U′′′, ...

)
= 0. (3)

The solution of Eq. (3) is assumed to have the form

U (ξ ) = a0 +
m∑
i=1

ai
(
1
G′

)i
, (4)

where ai , (i = 1, 2, 3, ...,m.) are constants, m is a pos-
itive integer, which is balancing term in Eq. (2), and G =
G (ξ ) provides the following second order ordinary di�er-
ential equation as:

G′′ + λG′ + µ = 0, (5)

where λ and µ are constants to be determined after,

1
G′ (ξ )

= 1
− µλ + A cosh [ξλ] − A sinh [ξλ]

, (5a)

where A is constant. The Eq. (5a) is a solution of the Eq.
(5). If the desired derivatives of the Eq. (4) are calculated

and substituting in the Eq. (3), a polynomial with the argu-
ment

(
1
/
G′) is attained. An algebraic equation system is

created by equalizing the coe�cients of this polynomial to
zero. This equation system is solved with the help of ready
package program and put into place in the default Eq. (3)
for solution function. Consequently, the solutions of the
Eq. (1) are found.

2.2 (G′/G − 1/G)-Expansion method

The form of nonlinear partial di�erential equation con-
taining two or more independent variables for which
the solution can be explored by using

(
G′/G − 1/G)-

expansion method is written as follows:

K (u, ut , ux , uy , uz , utt , uxx , . . .) = 0. (6)

If u = u (x, t) = U (ξ ) , ξ = x+vt transformations are used
in Eq. (6) then v is a constant, Eq. (6) is converted into a
nonlinear ordinary di�erential equation and this equation
can be generally written as:

f
(
U, U′, U′′, U′′′, ...

)
= 0. (7)

Here, Eq. (7) can be integrated to decrease the operational
complexity. By the nature of

(
G′/G − 1/G)-expansion

method, G (ξ ) function is solution function of the second
order ordinary di�erential equation as

G′′ (ξ ) + λG (ξ ) = µ, (8)

where λ and µ are real constants. As, ϕ = ϕ (ξ ) = G′/G
and ψ = ψ (ξ ) = 1

G(ξ ) provides operational esthetic.We can
write the derivatives of the functions de�ned herein as;

ϕ′ = −ϕ2 + µψ − λ, ψ′ = −ϕψ. (9)

We can present the behaviors of the solution functions of
Eq. (8)with respect to the condition of λ by considering the
equations given by Eq. (9).
Case I: If λ < 0

G (ξ ) = c1 sinh
(√
−λξ

)
+ c2 cosh

(√
−λξ

)
+ µλ , (10)

whereas c1 and c2 are arbitrary constants. By considering
Eq. (10);

ψ2 = −λ
λ2σ + µ2

(
ϕ2 − 2µψ + λ

)
, σ = c21 − c22. (11)

Eq. (11) is easily written.
Case II: If λ > 0

G (ξ ) = c1 sin
(√

λξ
)
+ c2 cos

(√
λξ
)
+ µλ , (12)
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here c1 and c2 are arbitrary constants. By considering Eq. (12), there is following equation;

ψ2 = λ
λ2σ − µ2

(
ϕ2 − 2µψ + λ

)
, σ = c21 + c22, (13)

Case III: If λ = 0
G (ξ ) = µ2 ξ

2 + c1ξ + c2, (14)

here c1 and c2 are arbitrary constants. By considering Eq. (14), there is following equation;

ψ2 = 1
c21 − 2µc2

(
ϕ2 − 2µψ

)
. (15)

Finally, the solution of Eq. (7) in terms of ϕ and ψ polynomials is expressed as;

U (ξ ) =
m∑
i=0

aiϕi +
m∑
i=1

biϕi−1ψ. (16)

Here, ai (i = 0, 1, ...,m) and bi (i = 1, . . . ,m) numbers are the constants to be determined later. m is a positive equi-
librium term which can be attained by comparing maximum order derivative with the maximum order nonlinear term
in Eq. (7). If Eq. (16) is written in Eq. (7) along with Eqs. (9, 11, 13) or (15), a polynomial function related to ϕ and ψ is
written. Each coe�cient of ϕiψj (i = 0, 1, ...,m) (j = 1, ...,m)terms of the attained polynomial functions are equated
to zero and an algebraic equation system is attained for ai , bi , v, µ, c1, c2 and λ (i = 0, 1, . . . ,m). The required coe�-
cients are found by solving this algebraic equation bymeans of ready package program. These coe�cients found are put
into Eq. (16) and U (ξ ) solution function of the ordinary di�erential equation given as Eq. (7) is attained and if ξ = x + vt
transformation is operated in reverse order, we will obtain the desired u (x, t) traveling wave solution of Eq. (6).

3 Solutions of modi�ed Camassa-Holm equation

3.1 (G′/G − 1/G)-Expansion method

We consider Camassa-Holm Eq. (1). Using transmutation u = u (x, t) = U (ξ ) , ξ = x + vt and taking once the integral
of Eq. (1), we get

v
(
U − U′′) + U3 − 1

2
(
U′)2 − UU′′ = 0. (17)

Where, vis the wave velocity. Thus, by �nding the equilibrium term m = 2 in Eq. (17), and in Eq. (16) we obtain to
following form of the solution

U (ξ ) = a0 + a1 ϕ [ξ ] + b1 ψ [ξ ] + a2 ϕ [ξ ]2 + b2 ϕ [ξ ]ψ [ξ ] . (18)

Ifwe substitute the Eq. (18) in the Eq. (17) and the coe�cients of the algebraic equation are equal to zero,we can establish
the following algebraic equation systems

Const : va0 + a30 −
1
2 λ

2a21 −
λ2µ2a21

2
(
−µ2 + λ2σ

) − 2vλ2a2 − 2vλ2µ2a2
−µ2 + λ2σ − 2λ

2a0a2

−2λ
2µ2a0a2
−µ2+λ2σ + vλ2µb1

−µ2+λ2σ +
λ2µa0b1
−µ2+λ2σ +

4λ3µa2b1
−µ2+λ2σ −

λ3b21
−µ2+λ2σ +

3λ2a0b21
−µ2 + λ2σ + 2λ3µa1b2

−µ2 + λ2σ −
λ4b22

2
(
−µ2 + λ2σ

) = 0,

ϕ [ξ ] : va1 − 2vλa1 − 2λa0a1 + 3a20a1 − 4λ2a1a2 −
4λ2µ2a1a2
−µ2 + λ2σ + 5λ2µa1b1

−µ2 + λ2σ + 3λ2a1b21
−µ2 + λ2σ + 6vλ2µb2

−µ2 + λ2σ + 6λ2µa0b2
−µ2 + λ2σ

+8λ
3µa2b2

−µ2 + λ2σ −
7λ3b1b2
−µ2 + λ2σ + 6λ2a0b1b2

−µ2 + λ2σ = 0,
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(ϕ [ξ ])2 : −3λa21 −
λµ2a21

2
(
−µ2 + λ2σ

) + 3a0a21 + va2 − 8vλa2 − 2vλµ2a2
−µ2 + λ2σ − 8λa0a2

−2λµ
2a0a2

−µ2 + λ2σ + 3a20a2 − 4λ2a22 −
4λ2µ2a22
−µ2 + λ2σ + vλµb1

−µ2 + λ2σ + λµa0b1
−µ2 + λ2σ

+17λ
2µa2b1

−µ2 + λ2σ − 7λ2b21
2
(
−µ2 + λ2σ

) + 3λa0b21
−µ2 + λ2σ + 3λ2a2b21

−µ2 + λ2σ + 14λ2µa1b2
−µ2 + λ2σ

+6λ
2a1b1b2

−µ2 + λ2σ − 15λ3b22
2
(
−µ2 + λ2σ

) + 3λ2a0b22
−µ2 + λ2σ = 0,

(ϕ [ξ ])3 :: −2va1 − 2a0a1 + a31 − 14λa1a2 −
4λµ2a1a2
−µ2 + λ2σ + 6a0a1a2 +

5λµa1b1
−µ2 + λ2σ

+ 3λa1b21
−µ2 + λ2σ + 6vλµb2

−µ2 + λ2σ + 6λµa0b2
−µ2 + λ2σ + 30λ2µa2b2

−µ2 + λ2σ − 17λ2b1b2
−µ2 + λ2σ

+6λa0b1b2−µ2 + λ2σ + 6λ2a2b1b2
−µ2 + λ2σ + 3λ2a1b22

−µ2 + λ2σ = 0,

(ϕ [ξ ])4 :: −5a
2
1

2 − 6va2 − 6a0a2 + 3a21a2 − 12λa22 −
4λµ2a22
−µ2 + λ2σ + 3a0a22

+ 13λµa2b1
−µ2 + λ2σ −

5λb21
2
(
−µ2 + λ2σ

) + 3λa2b21
−µ2 + λ2σ + 12λµa1b2

−µ2 + λ2σ

+6λa1b1b2−µ2 + λ2σ −
15λ2b22
−µ2 + λ2σ + 3λa0b22

−µ2 + λ2σ + 3λ2a2b22
−µ2 + λ2σ = 0,

(19)

(ϕ [ξ ])5 :: −10a1a2 + 3a1a22 +
22λµa2b2
−µ2 + λ2σ −

10λb1b2
−µ2 + λ2σ + 6λa2b1b2

−µ2 + λ2σ + 3λa1b22
−µ2 + λ2σ = 0,

(ϕ [ξ ])6 :: −8a22 + a32 −
8λb22

−µ2 + λ2σ + 3λa2b22
−µ2 + λ2σ = 0,

ψ [ξ ] :: λµa21 +
λµ3a21

−µ2 + λ2σ + 4vλµa2 +
4vλµ3a2
−µ2 + λ2σ + 4λµa0a2 +

4λµ3a0a2
−µ2 + λ2σ

+vb1 − vλb1 −
2vλµ2b1
−µ2 + λ2σ − λa0b1 −

2λµ2a0b1
−µ2 + λ2σ + 3a20b1 − 2λ2a2b1 −

8λ2µ2a2b1
−µ2 + λ2σ

+ 2λ2µb21
−µ2 + λ2σ −

6λµa0b21
−µ2 + λ2σ − λ

2a1b2 −
4λ2µ2a1b2
−µ2 + λ2σ + λ3µb22

−µ2 + λ2σ = 0,

ϕ [ξ ]ψ [ξ ] : 3vµa1 + 3µa0a1 + 8λµa1a2 +
8λµ3a1a2
−µ2 + λ2σ − 4λa1b1 −

10λµ2a1b1
−µ2 + λ2σ + 6a0a1b1

− 6λµa1b21
−µ2 + λ2σ + vb2 − 5vλb2 −

12vλµ2b2
−µ2 + λ2σ − 5λa0b2 −

12λµ2a0b2
−µ2 + λ2σ

+3a20b2 − 4λ2a2b2 −
16λ2µ2a2b2
−µ2 + λ2σ + 14λ2µb1b2

−µ2 + λ2σ − 12λµa0b1b2
−µ2 + λ2σ = 0,

ϕ [ξ ]2 ψ [ξ ] : 4µa21 + 10vµa2 + 10µa0a2 + 8λµa22 +
8λµ3a22
−µ2+λ2σ − 2vb1 − 2a0b1 + 3a

2
1b1

−11λa2b1 −
26λµ2a2b1
−µ2 + λ2σ + 6a0a2b1 +

5λµb21
−µ2 + λ2σ −

6λµa2b21
−µ2 + λ2σ − 10λa1b2

−24λµ
2a1b2

−µ2 + λ2σ + 6a0a1b2 −
12λµa1b1b2
−µ2 + λ2σ + 14λ2µb22

−µ2 + λ2σ −
6λµa0b22
−µ2 + λ2σ = 0,

ϕ [ξ ]3 ψ [ξ ] :: 17µa1a2 − 5a1b1 + 6a1a2b1 − 6vb2 − 6a0b2 + 3a21b2 − 19λa2b2

−44λµ
2a2b2

−µ2 + λ2σ + 6a0a2b2 +
20λµb1b2
−µ2 + λ2σ −

12λµa2b1b2
−µ2 + λ2σ − 6λµa1b22

−µ2 + λ2σ = 0,

ϕ [ξ ]4 ψ [ξ ] :: 14µa22 − 10a2b1 + 3a22b1 − 10a1b2 + 6a1a2b2 +
16λµb22
−µ2 + λ2σ −

6λµa2b22
−µ2 + λ2σ = 0,

ϕ [ξ ]5 ψ [ξ ] :: −16a2b2 + 3a22b2 = 0,
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ψ [ξ ]3 :: −2µ2a2b1 + µb21 + b31 − µ2a1b2 + λµb22 = 0,

ϕ [ξ ]ψ [ξ ]3 : −4µ2a2b2 + 8µb1b2 + 3b21b2 = 0,

ϕ [ξ ]2 ψ [ξ ]3 : 8µb22 + 3b1b22 = 0,

ϕ [ξ ]3 ψ [ξ ]3 : b32 = 0,

ψ [ξ ]3 : −2µ2a2b1 + µb21 + b31 − µ2a1b2 + λµb22 = 0,

aims with ready package program, reaching the solutions
of system (19) then we obtained the following cases:

Case I: If λ > 0,

a0 = 1, a1 = 0, a2 = 8, b1 = 0, b2 = 0, v = −1, µ = 0, λ = 1
4 ,

(20)

replacing the values of Eq. (20) into Eq. (18) then we have
the following trigonometric traveling wave solution for
Eq. (1)

ξ = x + vt,

u1(x, t) = 1+
8
(1
2 c2 cos

[1
2 (−t + x)

]
− 1

2 c1 sin
[1
2 (−t + x)

])2(
c1 cos

[1
2 (−t + x)

]
+ c2 sin

[1
2 (−t + x)

])2 .

(21)

Figure 1: 3-D, 2-D and contour graphs for c2 = 0.5, c1 = −1 values
in Eq. (21).

Case II: If λ < 0,

a0 = −2, a1 = 0, a2 = 8, b1 = 0, b2 = 0, v = −2, µ = 0, λ = −14 ,
(22)

replacing Eq. (22) into Eq. (18) thenweobtain the following
hyperbolic traveling wave solution of Eq. (1):

ξ = x + vt,

u2(x, t) = −2+

8
(1
2 c2 cosh

[1
2 (−2t + x)

]
+ 1

2 c1 sinh
[1
2 (−2t + x)

])2(
c1 cosh

[1
2 (−2t + x)

]
+ c2 sinh

[1
2 (−2t + x)

])2 .

(23)

Figure 2: 3-D, 2-D and contour graphs for c2 = 0.5, c1 = −1 values
in Eq. (23).

Case III: Ifλ = 0,

a0 = 1, a1 = 0, a2 = 8, b1 = 0, b2 = 0, v = −1, µ = 0,
(24)

replacing values of Eq. (24) into Eq. (18), then we obtain
the following rational traveling wave solution for Eq. (1):

ξ = x + vt,

u3 (x, t) =
8c22

(c1 + c2x)2
. (25)

Figure 3: 3-D, 2-D and contour graphs for c2 = −0.2, c1 = 1.5
values in Eq. (25).

3.2 (1/G′)-Expansion method

We consider Eq. (1). For which using transmutation u =
u (x, t) = U (ξ ) , ξ = x + vt, v ≠ 0, and taking once the
integral of Eq. (1), we obtain

v
(
U − U′′) + U3 − 1

2
(
U′)2 − UU′′ = 0, (26)

where, v represents the velocity of the wave. Taking into
account the Eq. (26), we �nd the equilibrium term m = 2
and in Eq. (4), we attain to following form of the solution

U (ξ ) = a0 + a1
(
1
G′

)
+ a2

(
1
G′

)2
. (27)
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If we substitute the Eq. (27) in the Eq. (26) and the coe�cients of the algebraic equation are equal to zero, we can
establish the following algebraic equation systems

Const : va0 + a30 = 0,(
1

G′ [ξ ]

)1
: va1 − vλ2a1 − λ2a0a1 + 3a20a1 = 0,

(
1

G′ [ξ ]

)2
: −3vλµa1 − 3λµa0a1 −

3
2 λ

2a21 + 3a0a21 + va2 − 4vλ2a2 − 4λ2a0a2 + 3a20a2 = 0,

(
1

G′ [ξ ]

)3
: −2vµ2a1 − 2µ2a0a1 − 4λµa21 + a31 − 10vλµa2 − 10λµa0a2 − 7λ2a1a2 + 6a0a1a2 = 0,

(
1

G′ [ξ ]

)4
: −52µ

2a21 − 6vµ2a2 − 6µ2a0a2 − 17λµa1a2 + 3a21a2 − 6λ2a22 + 3a0a22 = 0, (28)

(
1

G′ [ξ ]

)5
: −10µ2a1a2 − 14λµa22 + 3a1a22 = 0,

(
1

G′ [ξ ]

)6
: −8µ2a22 + a32 = 0.

Case I: If
a0 = −1, a1 = ±8 i µ, a2 = 8µ2, v = ±1, λ = −i,

(
i =

√
−1
)
, (29)

replacing values Eq. (29) into Eq. (27) and we have the following new type complex hyperbolic traveling wave solution
for Eq. (1):

ξ = x + vt,

u4(x, t) = −1 +
8µ2

(−iµ + A cos [t − x] − iA sin [t − x])2
− 8iµ
−iµ + A cos [t − x] − iA sin [t − x]

. (30)

Figure 4: 3-D, 2-D and contour graphs for A = 0.5, µ = 1 values in Eq. (30).

Case II: If
a0 = 0, a1 = −8µ, a2 = 8µ2, v = −2, λ = −1, (31)

replacing values of Eq. (31) into Eq. (27) and we have following hyperbolic traveling wave solution for Eq. (1):

ξ = x + vt,

u2(x, t) =
8µ2

(µ + A cosh [2t − x] − A sinh [2t − x])2
− 8µ
µ + A cosh [2t − x] − A sinh [2t − x]

. (32)
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Figure 5: 3-D, 2-D and contour graphs for A = 5, µ = 1.9 values in
Eq. (32).

4 Results and discussions
Shock waves of nonlinear partial di�erential equations
(NLPDEs) have been discussed on the basis of model-
ing of physical phenomena. The comparative analysis
has been attained by two methods namely

(
G′/G − 1/G)-

expansion and
(
1
/
G′)-expansion method for Camassa-

Holm equation. It has been traced out that the solutions
are di�erent than the existing solutions in literature. This
assured that the results have disclosed new phenomenon
for Shock waves based on two di�erent methods. For the
sake of physical aspects, it provides the opportunity to un-
derstand the dynamics of solitary waves obtained by two
expansion methods their states. The solutions obtained
with the

(
G′/G − 1/G)-expansion method are trigono-

metric, hyperbolic, and rational traveling wave solutions.
From comparison point of view, only hyperbolic and com-
plex hyperbolic traveling wave solutions have been ob-
tained via

(
1
/
G′)-expansion method. The solutions ob-

tained by both methods were found to be di�erent from
each other. In this case, the existence of many meth-
ods expresses the richness of the solutions of the di�er-
ential equation.

(
G′/G − 1/G)-expansion method more

complicated and
(
1
/
G′)-expansion method is less di�-

cult. In this case, we can determine the degree of di�-
culty by referring to the system of Eq. (19) and (28). It was
also observed that the processing time in

(
G′/G − 1/G)-

expansion method was longer by using a ready package
programwith the same features. The excess of the number
of equations in the equation system (19) is e�ective on the
extension of period. It has been observed that all obtained
exact solutions, the

(
1
/
G′)-expansion method is advan-

tages in terms of process complexity, while
(
G′/G − 1/G)-

expansionmethod is more advantages in terms of number
of solutions.

In this study, the application of two di�erent analyti-
cal methods is included, and the solutions obtained at the

end of this application are important bothmathematically
and physically. Mathematically important is the genera-
tion of traveling wave solutions. Physically, traveling wave
solutions, which play an important role in the transport of
energy, will shed light on many problems. If the parame-
ters in the traveling wave solution gain physical meaning
by considering the physical properties of the problem un-
der consideration, the obtained traveling wave solutions
will be much more valuable. It was observed that the trav-
eling wave solutions obtained by both analytical methods
satisfy the modi�ed Camassa-Holm equation. At the end
of this observation, it can be said that the methods are re-
liable, useful and applicable methods for obtaining trav-
eling wave solution. Both methods are recommended for
obtaining traveling wave solution of NLPDEs in the future.

5 Conclusion
In this letter, as a result, trigonometric, hyperbolic,
complex hyperbolic and rational traveling wave solutions
of modi�ed Camassa-Holm equation have successfully
constructed using

(
G′/G − 1/G) and

(
1
/
G′)expansion

methods. 3-D, 2-D and contour graphs are presented for
the arbitrary values of the parameters in the solutions
obtained. The solutions obtained by both methods have
di�erent properties and can shed light on some physical
events such as di�erent shallow water waves. Advantages
and disadvantages of two methods discussed. In the
future, it can be used to �nd traveling wave solutions
of many NLPDEs. Because both methods are powerful
methods for obtaining travelingwave solutions ofNLPDEs.
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