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In recent years, the increasing availability of personal data has raised concerns regarding privacy and security. One of the
critical processes to address these concerns is data anonymization, which aims to protect individual privacy and prevent the
release of sensitive information. This research focuses on the importance of face anonymization. Therefore, we introduce
GANonymization, a novel face anonymization framework with facial expression-preserving abilities. Our approach is based
on a high-level representation of a face, which is synthesized into an anonymized version based on a generative adversarial
network (GAN). The effectiveness of the approach was assessed by evaluating its performance in removing identifiable facial
attributes to increase the anonymity of the given individual face. Additionally; the performance of preserving facial expressions
was evaluated on several affect recognition datasets and outperformed the state-of-the-art methods in most categories. Finally,
our approach was analyzed for its ability to remove various facial traits, such as jewelry, hair color, and multiple others. Here,
it demonstrated reliable performance in removing these attributes. Our results suggest that GANonymization is a promising
approach for anonymizing faces while preserving facial expressions.

CCS Concepts: « Security and privacy — Privacy-preserving protocols; Pseudonymity, anonymity and untraceability.

Additional Key Words and Phrases: face anonymization, emotion recognition, data privacy, emotion preserving, facial
landmarks

1 INTRODUCTION

In the current machine learning landscape, models are getting more and more complex. This complexity places a
significant demand on the availability of large, high-quality datasets, particularly when leveraging deep learning
(DL) techniques. However, building such datasets is not always easy - besides the time-consuming process of
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acquiring and annotating data, privacy is a serious obstacle here. While extensive datasets exist for non-sensitive
data, the acquisition of data for sensitive use cases, especially those involving human data, is an intricate task
when the subjects’ privacy needs to be ensured. Particularly when it comes to scenarios involving the human face,
it is generally a hard task to collect appropriate data, especially if datasets are to be made publicly available. On the
other hand, developing DL models that use images of human faces offers promising opportunities. For instance,
assessing affective states like emotions or stress might be beneficial to infer more serious conditions, such as
chronic overload or depression, and react accordingly. However, not only training data for DL algorithms run the
risk of violating humans’ privacy - it is inference data too. When employing fully trained DL models in real-world
scenarios, dealing with data that reveals a human’s identity poses additional difficulties, as sovereignty over one’s
data is endangered. In general, it can be stated that different use cases require different degrees of anonymization
to assure human privacy. On the other hand, different DL models require a different set of undiluted features in
order to be able to model the problem at hand. In the case of facial affective state assessment, most of the context
information is unimportant and should be eliminated to reduce the features for re-identification. Therefore, an
approach is needed that offers the research community a pipeline to anonymize faces while only preserving
affective state relevant information.

Further, face anonymization can be vital in promoting ethics and fairness in machine learning. Not anonymized
data can lead to unfair Al decisions, as facial recognition models have been shown to exhibit bias against people
of color and women [21]. However, current research on face anonymization algorithms often neglects the fact
that mere anonymization does not necessarily remove those traits. For instance, a face image of a woman of color
might still show a woman of color after applying state-of-the-art face anonymization techniques, although her
exact identity might not be recognized anymore. For the task of emotion recognition, in particular, traits like skin
color, gender, or hairstyle are not needed, which might introduce bias when being considered.

Additionally, the importance of face anonymization is evident in its ability to protect individual privacy,
promote ethical considerations, and ensure compliance with legal requirements. By employing face anonymization
techniques, researchers can prevent the misuse of personal information and enable the development of machine
learning models that are more broadly applicable and ethical. Face anonymization conceals personal information
such as identity, race, ethnicity, gender, or age, reducing the risk of re-identification. It is essential in sensitive
datasets like medical records and criminal justice data, where anonymity is critical for individuals’ privacy and
safety. It is crucial in healthcare to ensure patient confidentiality when sharing medical images with researchers
or medical professionals. In the criminal justice system, face anonymization can protect the identity of witnesses,
victims, and suspects from potential harm. The protection of personal data by anonymization or pseudonymization
is also enforced in the European Union by law with the General Data Protection Regulation (GDPR) [8]. Industries
such as healthcare and finance are also subject to additional regulations and standards that require anonymization
to protect sensitive data. For example, US law states that the Health Insurance Portability and Accountability
Act (HIPAA) mandates anonymizing Protected Health Information (PHI) to ensure compliance with privacy and
security regulations.

To address these shortcomings, this work presents a novel approach to face anonymization that addresses
that problem specifically in the context of emotion recognition. Existing work predominantly tries to find a
trade-off between anonymization and task performance by formalizing the problem as a min-max game in
which the objective is to find a good compromise between both requirements [34, 45, 46]. However, features that
are neither benefiting the task at hand nor taking away from identity obfuscation (i.e., not affecting either of
the two objectives) are mostly ignored. As such, traits like skin color, gender, or age are still apparent in the
anonymized versions of the images, conserving bias and inequity in the underlying data. Instead of engaging
in the aforementioned min-max game, as done by previous approaches, we follow a different paradigm: we
completely discard all information except a minimal feature representation that is needed for our chosen use case
- emotion recognition - and subsequently re-synthesize arbitrary information for the lost features. By doing so,
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Fig. 1. Existing privacy preservation concepts in the context of face anonymization.

we obtain a complete face image with the same facial expression as the original face while, contrary to existing
approaches, removing irrelevant traits for the use case of emotion recognition. After reviewing relevant literature
[9, 22, 37, 43], we found that facial landmarks can be a good feature set for that task while not exposing too much
unnecessary information. Therefore, as this work focuses on emotion recognition, we chose to extract facial
landmarks as an intermediate representation. To disregard all unimportant information, we chose to extract
facial landmarks as an intermediate representation. Subsequently, we use a Generative Adversarial Network
(GAN) architecture, namely pix2pix [14], to re-synthesize a realistic face that incorporates exclusively the features
included in the landmarks. By doing so, our approach - which we call GANonymization - has the advantage of
not preserving any traits that were not present in the landmark representation. As such, features like hairstyle,
skin color, or gender are diluted from the intermediate representation, which sets our approach apart from most
existing methods.
We evaluate our approach in a three-fold manner:

(1) We validate if our anonymization method can anonymize faces sufficiently by using a standard measure in
this research [41, 42].

(2) We validate if our'anonymization method keeps important features to preserve emotional expressions by
analyzing how the anonymization process affects the predictions of an auxiliary emotion classifier in both
a training as well as an inference setting.

(3) We seek to explain the outcomes of the evaluation steps above by analyzing which facial traits are preserved
or removed with our anonymization method. To do so, we study how the anonymization process affects
the predictions of an auxiliary facial feature detection model.

We show that our approach significantly outperforms state-of-the-art methods in preserving most facial emotional
expressions in an anonymized synthesized face.

2 RELATED WORK

In this section, we provide an overview of previous research on privacy preservation in the context of facial
anonymization. The discussion is organized into four key concepts: Obfuscation, Adversarial Techniques, Differ-
ential Privacy, and Latent Representations. Note that those concepts are not distinct mechanisms, but different
approaches can make use of several of those ideas, as depicted in Figure 1.
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2.1 Obfuscation

Obfuscation techniques have been pivotal in anonymizing facial data by modifying or masking sensitive areas in
images or videos. These techniques, including pixelation, blurring, and masking, aim to obscure facial features
related to identity while retaining identity-independent characteristics [36].

For instance, Jourabloo et al. [15] presented an attribute-preserving face de-identification approach. While this
approach achieved a commendably low face recognition rate, it succeeded in preserving critical facial attributes.
The method employed an Active Appearance Model and the K-same algorithm to reconstruct new face images
while averaging selected features. Wu et al. [47] introduced a face-blurring approach to obfuscate faces in
the ImageNet dataset, and Raval et al. [39] employed an adversarial perturbation mechanism to protect visual
information in camera feeds without substantially impairing application functionality.

Obfuscation techniques are indeed effective in achieving high degrees of anonymity, but they invariably
degrade the naturalness and quality of face images, limiting their reusability for diverse facial applications [23].
In contrast, our approach takes a different path. Although it involves the removal of various facial traits, it excels
in producing high-quality, naturalistic face images. We achieve this by re-synthesizing complete face images
using a GAN-based architecture.

2.2 Adversarial Techniques

Many existing approaches to facial anonymization are based on training anonymization models using adversarial
techniques. Generally, the term adversarial refers to the paradigm of two contrary objectives being maximized at
the same time. For face anonymization, these objectives are the anonymization performance and the so-called
Utility, i.e., the ability to preserve features that are relevant to solving a certain auxiliary task. This dual objective
can create a min-max game, where improving one objective often results in the degradation of the other. As
such, solving a min-max game with methods of DL inevitably results in finding a compromise between the two
objectives.

For example, Nasr et al. [34] developed an adversarial regularization training method aimed at minimizing
classification loss while maximizing defense against membership inference attacks. Wu et al. [46] utilized GANs
to learn a degradation transformation that balances action recognition performance with video privacy. Wu et al.
[45] introduced a face de-identification framework that generated de-identified faces with high feature attributes
and minimized identity information by incorporating a contrastive verification loss and a structure similarity
loss into the GAN training process.

Our approach differs from these methods in that we don’t formulate the anonymization problem as a min-max
game. Instead, we make use of adversarial learning techniques within our framework, particularly by employing
a GAN-based architecture to re-synthesize full-face images from our latent representations. However, our method
stands apart as' we don’t incorporate privacy norms into the GAN training but focus on feature reduction before
GAN training. This unique approach enables us to remove traits that affect neither anonymization nor utility,
setting our method apart from mere compromises between the two.

2.3 Differential Privacy

Differential privacy depends on the specific application’s notion of neighboring databases, which is the core
of privacy preservation. In deep learning, differential privacy involves the introduction of random noise into a
training inference model, which is computed from the underlying stochastic gradient descent (SGD) training
gradient. This noise is added to ensure a balanced distribution of the results, aligning both utility and privacy
considerations [1]. Complementing differential privacy and the SGD helps balance accurate model predictions
and privacy protection.
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This method has found extensive application in face recognition technology, specifically in removing personal
identity information to safeguard privacy. For hard biometric protections (i.e., identity), Chamikara et al. [2] added
an amount of noise equally across different values of eigenvalues extracted from the image through the principal
component analysis (PCA) method, protecting against the unauthorized disclosure of identity information.
However, this approach only partially changes the reconstructed human face, but it is still vulnerable to adversary
machine learning threats. To mitigate this issue, Wen et al. [44] proposed a framework based on differential
privacy and GANSs to hide the attribute that discloses the identity information while keeping only the attribute
used for the downstream tasks. Kansal et al. [16] first mapped the original image into the embedding space
garnered by an encoder deep learning model. During the training stage, they used an adversarial model-based
differential mechanism to suppress the personally identifiable information. Then, they applied'a decoder model
to reconstruct the original image for the auxiliary task. Croft et al. [3] achieved successful image anonymization
by incorporating differential privacy into a generative model’s latent representation for soft biometrics such
as gender and expression. Nevertheless, the accuracy of these methods is highly limited. Besides, the practical
implementation of differential privacy in real-world scenarios presents a significant challenge. Determining
precise privacy boundaries is critical, as adding noise to protect sensitive information may disrupt the entire data
distribution, leading to unrecognizable output images [49].

In contrast, our approach does not introduce noise during training or generation. Instead, we focus on
information reduction before training, retaining only a minimal latent representation, such as facial landmarks.
While this approach may pose challenges in finding a suitable representation for domains other than emotion
recognition, it distinctly sidesteps the pitfalls associated with noisy and/or unrecognizable data.

2.4 Latent Representations

Traditional GAN-based models often struggle to preserve complex facial attributes, such as emotion, pose, and
background, due to image space’s high dimensionality and complexity. This challenge often results in latent
representations being softer in facial style change compared to image space manipulation. Latent representation,
as an abstract and compressed representation inferred from data, captures essential features while discarding
redundant information. This makes it easier for models to perform tasks like classification and generation.

Le et al. [24] introduced StyleID, a GAN that brings images into a latent representation, uncovers features with
significant identity disentanglement, and changes these features in latent space or pixel space. However, StyleID
may preserve facial traits that have the potential to introduce bias or unfairness, even if they don’t correlate
directly with identity. Other methods, such as Sun et al. [43], Hu et al. [11], and Maximov et al. [30] with CIAGAN,
employed inpainting mechanisms in conjunction with GANs to anonymize faces based on facial landmarks.
These approaches, while effective, retain context-relevant information outside of the face-segmented area, such
as hair color, hairstyle, and gender. On the other hand, Hukkelas and Lindseth introduced DeepPrivacy2 [13],
an enhanced guided GAN framework for anonymizing human figures and faces. The DeepPrivacy2 framework
entails three detection components for each task: i) face detection with a Dual Shot Face Detector [25], ii) dense
pose estimation with Continuous Surface Embeddings [35], and iii) Mask R-CNN [10] for instance segmentation.
Additionally, three task-specific Surface-guided GANs [12] were trained to synthesize either human figures with
conditions, human figures without conditions, or faces. However, the use of inpainting mechanisms in these
approaches may inadvertently retain context-relevant information, potentially introducing bias or unfairness.

In contrast, our approach focuses on excluding context-relevant information by removing all context informa-
tion except the facial structure with many facial landmarks. By concentrating on the elimination of contextual
traits, we aim to reduce the potential for bias or unfairness in the dataset.

Overall, DeepPrivacy2 can be regarded as a state-of-the-art full-body anonymization method since it out-
performed a variety of other methods in the past [13]. Furthermore, CIAGAN can be considered as another
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Fig. 2. Architecture of the GANonymization pipeline.

state-of-the-art face anonymization method, which is also based on landmarks [30]. While CIAGAN utilizes
inpainting mechanisms to only anonymize the face area below the forehead, DeepPrivacy2 anonymizes the full
facial area, including the forehead. Consequently, we used DeepPrivacy2 and CIAGAN as the baseline for all our
performance evaluations.

3 METHOD

This section introduces the structure of our GANonymization framework (see Figure 2) and gives a detailed
description of each component and the steps taken for training.! The complete GANonymization framework
entails four components.

Training Scenario. In the first step, faces are detected, extracted, and brought into the right format afterward.
The image’s background is removed in the second step to eliminate distracting features. In the third step, facial
landmarks are extracted from the face. In the last step, the GAN’s generator synthesizes a new, anonymized
face based on those landmarks. The discriminator evaluates the facial landmarks and the synthesized face to
determine whether it is real or fake.

10ur framework’s implementation can be found at https://github.com/hcmlab/GANonymization.
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Inference Scenario. The inference requires fewer steps than the training scenario, as the first and second steps
are unnecessary. Only the extraction of the facial landmarks is required to feed the generator to synthesize an
anonymized face.

3.1 Face Extraction

The first component in the pipeline is face extraction. The RetinaFace framework? [41] is utilized for this
component, which is based on the RetinaFace algorithm [5]. RetinaFace has been tested against the WIDER [48]
dataset to ensure maximum efficiency in detecting and aligning faces in various scenarios correctly. However,
RetinaFace does not detect all faces every time, especially when factors like poor image quality, extreme angles,
or heavy occlusions are in play. This component includes the following steps:

(1) Face Crop. The input image is analyzed to detect and extract all visible faces.

(2) Face Align. According to the literature, aligning the faces supports an increase in accuracy for face recogni-
tion models [38]. Therefore, the faces are aligned before the GAN receives them as input. By doing so, the
GAN is prevented from focusing too much on the head orientation and instead takes only the face itself
into account.

(3) Image Resize. The input size of the images for the GAN is set to 512 X 512 pixels. Therefore, the cropped
and aligned faces are up-scaled to 512 pixels for the greatest axis, while maintaining the aspect ratio.

(4) Zero Padding. To achieve the final 512 X 512 pixels for the required input shape of the GAN, we apply zero
padding to the sides [(right and left) or (top and bottom)] of the image to keep the face centered in the
image.

3.2 Face Segmentation

The second component of the pipeline is face segmentation. Even though this step could be skipped, we observed
that the pix2pix architecture we used for re-synthesis of the faces (see Section 3.4) yielded visually better results
when not having to deal with variations in the background. Consequently, the original background is removed
by applying face segmentation and setting all pixel intensities outside the face segments to 0. Therefore, a head
segmentation model® based on a U-Net is utilized.

3.3 Facial Landmarks

After the pre-processing steps, we generate intermediate representations of the faces. Here, we aim for a
representation that (i) does not contain information that could be used to identify the original face and (ii) holds
all necessary information needed for facial expression analysis tasks. Existing literature on the topic [9, 22, 37, 43]
indicates that facial landmarks fulfill both of these requirements in the context of emotion recognition. Note that
although this work focuses on the context of emotion recognition exclusively, the concept could be transferred to
other domains as well. Therefore, a suitable intermediate representation, which might not be facial landmarks,
would have to be found for the specific task. For our experiments, we extract 478 3-dimensional coordinate facial
landmarks utilizing the media-pipe face-mesh model [20] to receive an abstract representation of the facial shape.
The resulting 3D landmarks are projected onto a 2D image with a black background where each landmark point
is represented by a single white pixel. It is necessary to translate the 3D landmarks into a 2D image due to the
image-to-image type of model used for the re-synthesis of the faces (as described in the following section 3.4).

Zhttps://github.com/serengil/retinaface
Shttps://github.com/wiktorlazarski/head-segmentation
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3.4 Re-Synthesis

To obtain an anonymized version of the input that still looks highly realistic, we aim for a re-synthesis of
high-quality faces. Therefore, we use the pix2pix architecture, a GAN-based image-to-image model. The original
purpose of pix2pix is to convert image data from a particular source domain to a target domain. Our specific
goal in the re-synthesis stage is to transfer the landmark representations back to random, high-quality face
images that expose the same facial landmark structure. The pix2pix architecture has been successfully applied
to similar use cases in the past, e.g., for synthetic data augmentation in the context of defect detection [31, 32],
where segmentation masks of material defects (which, on a technical level, are quite similar to visual landmark
representations) were converted to realistic looking data. More recent GAN-based architectures like ProGAN
[17], StyleGAN [18], or StyleGANv2 [19], that impress with their ability to generate hyper-realistic data, are
specifically designed to create new data from scratch. To use those models for image-to-image conversion tasks,
a projection of the input image has to be found in the GAN’s latent space, which is highly inefficient and might
not be possible at all for some data instances. As such, we chose to use pix2pix, as it is specifically tailored for
end-to-end image-to-image translation. For the training of the pix2pix model, we used existing face images as
the target domain, whereas for the source domain, we used landmark representations that we priory extracted
from those images. In other terms, we trained the pix2pix network to learn the inverse transformation of a
landmark extractor - we perform an image-to-image translation from an image representation of landmark
features to realistic-looking face images. By using that approach, we are able to automatically create geometrically
aligned source/target image pairs for training. Contrary to architectures such as CycleGAN [50] that work with
non-parallel training data, pix2pix directly takes advantage of having mapped training pairs, which again supports
our architecture choice.

We process the CelebA [26] dataset within our pipeline to extract and align the faces (section 3.1), remove the
background of the faces by face segmentation (section 3.2), and extract a face-mesh of each face which represents
the landmark/image pairs for training. CelebA was used because of its size (202,599 images) and because it contains
only images of high quality - using low-quality images would limit the quality of GANonymization’s output images
unnecessarily. We used the same pipeline for the landmark extraction to anonymize the images. Additionally,
training images were normalized to mean = (0.5,0.5,0.5) and std = (0.5,0.5,0.5). Our implementation was
built upon Erik Linder-Norén’s pix2pix implementation?, which in turn strongly adheres to the original pix2pix
publication[14]. We trained the model for 25 epochs with a batch size of 32. The Adam optimizer was used with a
learning rate of 0.0002, ; decay of 0.5, and f; decay of 0.999. After training, our model could transfer landmark
representations to face images that show the same facial expression expressed by the original face. In the case of
an issue with face detection and, therefore, no available facial landmarks, an empty (black) image can be inferred
with our model with the result of a synthesized average face, which is based on the faces seen by the model
during the training process. Exemplary outputs of our pipeline are shown in Figures 3, 4, 5, 6, and 8.

4 EVALUATION

In the following sections, we describe how we validate our approach using three different evaluations. First,
we evaluate the anonymization capability of the approach. Second, we evaluate the suitability of the approach
for the task of emotion recognition, i.e., whether our approach preserves information that is relevant to facial
emotion recognition. Finally, we go into detail about the facial features that get preserved or removed with our
anonymization approach.

4https://github.com/eriklindernoren/PyTorch- GAN#pix2pix
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4.1  Anonymization Performance

In this first part of the evaluation, the anonymization performance of our approach was assessed. Hereby, with
the term anonymization performance, we refer to the capability of the method to alter input images in a way
that they ideally cannot be re-identified. Therefore, we compared the synthesized images of our approach with
the original images and versions synthesized by DeepPrivacy2, CIAGAN, and basic methods like pixelation and
blurring.

4.1.1 Dataset. The dataset used for the comparison was the WIDER [48] dataset, which is commonly used for
benchmarking face detection algorithms. Further, the authors of DeepPrivacy?2 had already used it in their original
publication. Therefore, by using it in our experiments too, we do not introduce a bias towards GANonymization by
using a dataset that DeepPrivacy2 might not be suited for. It contains images of people in various sceneries whose
faces vary in scale, pose, and occlusion. In each image, one or more faces are apparent. In total, WIDER embodies
32,203 images in 61 event settings. The many different head orientations, obfuscations, facial expressions,
lighting conditions, and others enable an optimal evaluation setting to measure the overall performance in
anonymizing these faces. After we applied our pre-processing pipeline with the face extraction (section 3.1) and
face segmentation (section 3.2) components, the images were split into a training and validation set of 92,749 and
22,738 face images, respectively.

4.1.2  Setup. The performance measurement is based on the comparison of the original images and their synthe-
sized counterparts. The synthesized images are produced by our method, DeepPrivacy2, and CIAGAN, respectively.
Exemplary anonymized images for WIDER can be seen in Figure 3.

4.1.3 Metric. A widely used method to assess the anonymization degree of a face image is to compute the
cosine distance between image encodings of the original and anonymized image versions. Here, a lower cosine
distance equals higher similarity between the faces and is commonly considered as the anonymized face being
more recognizable to the original face. Specialized frameworks for face recognition like DeepFace® make use
of that paradigm and thus can be used as an evaluation tool for anonymization algorithms [41, 42]. As such,
for the comparison of the anonymization performance of our approach versus the other methods, we use the
DeepFace framework. As a backbone model for image encoding, we use the state-of-the-art face recognition
model Facenet512 [7], which is also integrated into DeepFace. The cosine distance is defined as follows:

I, -1
cdistance =1 - —2—2— (1)
16 [ L1l

where I, and I, are the Facenet512 feature embedding space representations of the original and anonymized
images, respectively. When the cosine distance exceeds 0.3, it indicates that the feature embedding space has
diverged significantly from the original space, making re-identification impractical. We computed the cosine
distance of the image pairs for each method with the original image.

4.1.4 Results. Our approach achieved a mean cosine distance of 0.7145, while DeepPrivacy2 and CIAGAN
reached a greater cosine distance of 0.8119 and 0.9280, respectively (see Table 1). The pixelation with a kernel
sized 8 x 8 achieved 0.8791, while the bigger kernel sized 16 X 16 achieved 0.6651. Blurring with a kernel sized
9% 9 and 17 X 17 stayed below the threshold necessary for no re-identification with a cosine distance of 0.0102
and 0.0725, respectively.

4.1.5 Discussion. Our evaluation measures the mean cosine distance between the Facenet512-face-based image
encodings of original and anonymized face images. Accordingly, the distance between two encodings marks the
non-similar features and how complex the reconstruction of one encoding towards another encoding is, which is

Shttps://github.com/serengil/deepface
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Fig. 3. Sample of synthesized faces based on the WIDER dataset.

‘ Method ‘ Cosine Distance
Original 0.0000
Ours 0.7145
DeepPrivacy2[13] 0.8119
CIAGAN([30] 0.9280
Pixel 8x8 0.8791
Pixel 16x16 0.6651
Blur 9x9 0.0102
Blur 17x17 0.0725

Table 1. The mean cosine distances between the original images and the anonymized versions obtained through GANonymiza-
tion, DeepPrivacy2 (DP2), CIAGAN (CIA), pixelation with a kernel sized 8x8 and 16x16, and blurring with a kernel sized 9x9
and 17x17. The methods with a cosine distance in bold exceed the threshold of 0.3.

conventionally interpreted as degree of anonymization. Comparing the results of our approach with the others,
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we found that DeepPrivacy2, CIAGAN, and pixelation achieved a mean cosine distance above the threshold of
0.3, which indicates that the feature embedding space diverged significantly from the original image.

While pixelation changes only the underlying image resolution to obfuscate the face, the quality of the image
suffers accordingly and the face could still be re-identified - at least for the kernel sized 16 x 16. Blurring does not
modify the image resolution but reduces the overall image quality nonetheless.

On the other hand, CIAGAN synthesized a new face inside of the facial landmark segment of the original
image. The result of the synthesized face inside the original image by CIAGAN lacks in quality. However, a face
with its emotional expression can still be determined. The low quality and high number of artifacts can be a
reason for the high cosine distance to the original image.

DeepPrivacy2, on the other side, synthesized a face that does not necessarily preserve the orientation of the
face or the facial expression. In some cases, it can be observed that the outputted face does not have much
similarity to a face due to the extreme dysmorphism of facial areas. Accordingly, the dysmorphism can be a result
of the increased cosine distance to the original images compared to our approach.

Therefore, we can claim that our approach has a great quality in synthesized faces and solid anonymiza-
tion performance, indicated by surpassing the common threshold of 0.3 for the mean cosine distance, despite
DeepPrivacy2, CIAGAN, and pixelation 8 X 8 achieving slightly better results here.

4.2 Preserved Emotional Expressions

After showing our approach’s anonymization capabilities in section 4.1, we need to ensure that this performance
does not come at the expense of the primary task that the data will be used for, in our case, affect recognition.
Thus, in this section, we examine whether our method can anonymize faces while maintaining their original
emotional expressions. For this evaluation, we use three different datasets which are commonly used in the
research field of affect recognition, namely AffectNet [33], CK+ [29], and FACES [6].

4.2.1 Datasets. We used three different datasets to cover a wide variety of different settings.

The first dataset we’ve chosen is the AffectNet dataset. We chose it because it contains in-the-wild data, resulting
in emotions being expressed in a quite natural way. It contains around 0.4 million images manually labeled
according to eight emotional expressions: Neutral, Happy, Angry, Sad, Fear, Surprise, Disgust, and Contempt. The
faces in this dataset have a great variety of individuals, head orientations, lighting conditions, and ethnicities. The
dataset was pre-processed with face extraction (section 3.1) and face segmentation (section 3.2). In the process,
images in which no face was detected were discarded. Accordingly, the training and validation splits contained
210,174 and 2,874 images, respectively.

The second dataset, namely CK+, contains 593 video sequences with 123 subjects aged 18 to 50 years and of
various genders and heritage. Each video sequence shows the transition from a neutral facial expression to a
non-neutral one, recorded at 30 frames per second. We chose the dataset because, due to the emotional transitions,
single image frames also cover facial expressions where the emotions are shown quite subtly. Overall, 327 of
those videos are labeled with one of seven emotional expressions: Anger, Contempt, Disgust, Fear, Happiness,
Sadness, and Surprise. Again, we applied our pre-processing pipeline with face extraction and face segmentation
on the dataset and received a training and validation set of 259 and 68 images, respectively.

Lastly, the FACES dataset with a total of 2,052 images with different age groups and gender embodies six
emotional expressions: Neutral, Sad, Disgust, Fear, Anger, and Happy. We used that dataset as it contains only
images of acted emotions, making it a good counterpart for the other two datasets. By including it, we also cover
emotional expressions that are shown in a rather exaggerated way. The images in this dataset have high quality.
Further, the dataset contains only frontal shots of the faces with optimal lighting conditions. As was done for the
previous datasets, we also applied pre-processing with face extraction and face segmentation, resulting in 1,827
images in the training split and 214 images in the validation split.
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4.2.2  Setup. We created anonymized versions of the three datasets, resulting in 12 datasets in total: the three
original ones, those anonymized with GANonymization, and those anonymized with DeepPrivacy2 and CIAGAN.
Exemplary anonymized images for AffectNet, CK+, and FACES can be seen in Figure 4, 5, and 6, respectively. Note
that although the CK+ dataset consists of greyscale images, the anonymized versions of our approach are colored
- this is a nice byproduct of our approach since we only use the landmarks as an intermediate representation,
whereas the re-synthesis is still based on the GAN that was trained on CelebA. We splitted the evaluation of
the emotional expression preserving capabilities into two sub-evaluations. First, we assessed how the emotional
expression gets preserved during an inference setting, thus, how a model trained on original data behaves when
fed with anonymized data. Second, we evaluated how the model influences the training process of a model trained
on anonymized data.

Inference Scenario Evaluation. To measure how well GANonymization can preserve emotional expressions,
we first trained an emotion classifier separately for the three original datasets. Subsequently, we applied the
trained models to the original and the anonymized datasets and studied the prediction changes caused by the
anonymization methods. Here, big changes in prediction probability can be interpreted as poor preservation
of features contributing to emotional expressions. We decided to go for three separate dataset-specific models
instead of one across-dataset model, as our evaluation methodology relies on the classifiers accurately modeling
the relation between data and emotion for the specific datasets. As the datasets differ substantially, we argue
that an across-dataset model, although having the potential to gain a greater overall generalizability, would
under-perform on the single datasets due to dataset-specific details that would get lost (e.g., the CK+ dataset is
greyscale, FACES are frontal-only, etc.).

As classifier architecture, we chose the base version of the ConvNeXt, which is considered one of the state-
of-the-art DL architectures for computer vision tasks [27]. Furthermore, the model was pre-trained on the
ImageNet [4] dataset. The classification model’s last linear layer’s amount of output nodes was changed to
match the number of classes, which differed for each dataset. We used the cross-entropy loss for training. Class
weights were calculated on the train split of each dataset individually. The AdamW [28] optimizer was used
with a learning rate of 0.0003 and a weight decay of 0.001. Additionally, the learning rate was reduced when the
validation loss reached a plateau for three consecutive epochs. The images were pre-processed by normalizing
with mean = (0.485, 0.456, 0.406) and std = (0.229, 0.224, 0.225) for both, training and testing. Hereby, the mean
and standard values for normalization were based on the pre-trained model’s dataset (ImageNet). During the
training phase, images were randomly flipped horizontally with a probability of 50% for data augmentation. The
classification models converged on the validation split within 3, 12, and 9 epochs for AffectNet, CK+, and FACES,
respectively. For comparing the anonymization approaches, namely ours, DeepPrivacy2, and CIAGAN, we used
the trained emotion classifiers to make predictions on the original images as well as for the anonymized versions.
By doing so, we can assess to which degree the anonymization process preserves features that hold information
on emotional expressions.

Training Scenario Evaluation. In this sub-evaluation, we assess how the performance of an emotion recognition
model’s performance degraded when trained on the anonymized versions. To do so, we used the same classifiers
that were trained in the Inference Scenario but additionally trained the same architecture once with the data
anonymized by GANonymization and once anonymized by DeepPrivacy2 and CIAGAN. Thus, we use 12 different
models for this experiment, each trained on one of the datasets mentioned above. Subsequently, we compare the
performance of the models on the original datasets’ validation splits.

4.2.3 Metric.

Inference Scenario Evaluation. We measure the ability of each anonymization approach to preserve the original
emotional expressions by looking at how the prediction probabilities for the emotion classifiers change when
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Fig. 5. Sample of synthesized faces based on the CK+ dataset.

applied to the original datasets vs. each of the anonymized datasets. Le., for each image, we measure how the
class probability of a certain emotion predicted from the original image differs from the class probability of
that same emotion in the anonymized version of the image. Subsequently, we average the resulting probability
differences of the images in the validation sets for each emotion. Here, a higher mean difference indicates that
the anonymization process obfuscated more features defining the