Winter et al. Journal of Cloud Computing: Advances, Systems and Applications 2014, 3:1
http://www.journalofcloudcomputing.com/content/3/1/1

® Journal of Cloud Computing

a SpringerOpen Journal

RESEARCH Open Access

Buttressing volatile desktop grids with cloud
resources within a reconfigurable environment
service for workflow orchestration

Stephen C Winter", Christopher J Reynolds', Tamas Kiss', Gabor Z Terstyanszky', Pamela GreenwelP,
Sharron McEldowney?, Sandor Acs'“ and Peter Kacsuk'~

Abstract

Cloud technology has the potential for widening access to high-performance computational resources for e-science
research, but barriers to engagement with the technology remain high for many scientists. Workflows help overcome
barriers by hiding details of underlying computational infrastructure and are portable between various platforms
including cloud; they are also increasingly accepted within e-science research communities. Issues arising from the
range of workflow systems available and the complexity of workflow development have been addressed by focusing
on workflow interoperability, and providing customised support for different science communities. However, the
deployments of such environments can be challenging, even where user requirements are comparatively modest.
RESWO (Reconfigurable Environment Service for Workflow Orchestration) is a virtual platform-as-a-service cloud
model that allows leaner customised environments to be assembled and deployed within a cloud. Suitable distributed
computation resources are not always easily affordable and can present a further barrier to engagement by scientists.
Desktop grids that use the spare CPU cycles available within an organisation are an attractively inexpensive type of
infrastructure for many, and have been effectively virtualised as a cloud-based resource. However, hosts in this
environment are volatile: leading to the tail problem, where some tasks become randomly delayed, affecting
overall performance. To solve this problem, new algorithms have been developed to implement a cloudbursting
scheduler in which durable cloud-based CPU resources may execute replicas of jobs that have become delayed. This
paper describes experiences in the development of a RESWO instance in which a desktop grid is buttressed with
CPU resources in the cloud to support the aspirations of bioscience researchers. A core component of the architecture,
the cloudbursting scheduler, implements an algorithm to perform late job detection, cloud resource management and
job monitoring. The experimental results obtained demonstrate significant performance improvements and benefits
illustrated by use cases in bioscience research.

Keywords: Workflow; Cloudbursting; Hybrid cloud

Introduction technologies which many scientists do not possess. Bar-

Cloud technology has the potential to increase access
to a much wider range of powerful computational re-
sources for advancing e-science research, but in practice,
rapid uptake by scientists has been impeded by a num-
ber of factors, most notably that cloud computing,
as with grid computing in former years, typically re-
quires advanced understanding of underlying computing

* Correspondence: wintersc@wmin.ac.uk
!Centre for Parallel Computing, University of Westminster, London, UK
Full list of author information is available at the end of the article

@ Springer

riers to engagement with cloud technology are high, and
as a result the potential benefits of high performance
computing in the cloud are largely unrealised. Computa-
tional workflows can help overcome the barriers: they
hide details of underlying computational infrastructure
and are portable between different cloud platforms. They
also provide an intuitive framework for expressing com-
putational requirements, and as a result, are increasingly
accepted within e-science research communities in both
industry and academia.

© 2014 Winter et al, licensee Springer. This is an open access article distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction
in any medium, provided the original work is properly cited.

mailto:wintersc@wmin.ac.uk
http://creativecommons.org/licenses/by/2.0

Winter et al. Journal of Cloud Computing: Advances, Systems and Applications 2014, 3:1

http://www.journalofcloudcomputing.com/content/3/1/1

Workflows are not without their own challenges. There
are for example, many competing workflow systems
available and different communities adhere to different
systems. Developing and even using workflows can be
daunting for non-computer scientists. These issues
have been taken up by a number of projects including:
SHIWA [1], which focuses on workflow interoperability
and SCI-BUS [2], which provides web-based scientific gate-
ways that include graphical workflow development support
tools for different science communities. Still, deployment
of such useful environments can be challenging — the
systems tend to be large, addressing a wide span of com-
putational targets that currently includes CPU-clouds,
grids and local clusters, each with a huge range of pos-
sible operating system software and middleware. The
resulting codes tend be rather cumbersome, especially in
cases where the end-user requirements are actually quite
straightforward. A solution to this problem is to decouple
the code into components and deploy components only as
needed. RESWO (Reconfigurable Environment Service for
Workflow Orchestration) is an emerging virtual platform-
as-a-service cloud model based on technologies developed
originally in projects such as SHIWA and SCI-BUS. The
cloud platform service permits customised environments
to be assembled more precisely in accordance with the
needs of the user, which then can be redeployed in the
cloud as a software service.

Another barrier for scientists wishing to engage with
the cloud is the ready availability of suitable and afford-
able computational resources. Desktop Grids (DGs),
based on the principle of using spare CPU cycles within
an organisation, are an attractively inexpensive type of
distributed computing infrastructure (DCI) for many
users. The EDGI project [3] has focused on the use of
workflows in DGs and on the interoperability of DGs
with Service Grids (SGs). DGs have subsequently been
effectively virtualised as a cloud-based resource. How-
ever, DG hosts (usually desktop PCs) are volatile: users
log on at random times, taking over the host and in
most environments, pre-empting the local task contrib-
uting to the DG computation. Completion of the task is
inevitably delayed, affecting overall performance. This
can be overcome through cloudbursting: the dynamic
deployment in real-time of durable (i.e. highly reliable
and available) cloud-based CPU resources that execute
replicas of jobs that have become delayed. The DG is
thereby effectively buttressed with CPU-cloud resources,
potentially improving its performance.

This paper presents the application of workflow within
an experimental prototype RESWO environment that tar-
gets a DG that may be buttressed with cloud-based CPU
resources, to support the aspirations and requirements
of bioscience researchers. The performance enhance-
ment achieved through cloudbursting is demonstrated

Page 2 of 12

experimentally, and the experiences of the bioscientists
in using the system are reported. Computational work-
flows and cloud-based DClIs for scientific computing
are discussed in Sections "Workflow-oriented environ-
ments for scientists' and 'Desktop grids within the cloud
ecosystem' respectively. In Section 'Buttressing desktop
grids through cloudbursting’, the architecture of a hy-
brid cloud-based DCI based on a DG buttressed with
durable CPU resources to support two experimental use
cases is introduced. In section 'Performance evaluation,
the performance results, and end user experiences, are
described for two bioscience use cases.

Workflow-oriented environments for scientists

Computational workflows allow program developers to
focus on the composition of reusable legacy programs
to create larger and more powerful applications and as
a result have a strong impact on high-performance ap-
plication development [4]. The use of workflows for or-
chestrating services and jobs within complex execution
scenarios is becoming established in e-science research,
but lack of interoperability between different workflow
systems makes the reuse of workflows difficult, imped-
ing the pace of adoption in academia and industry [5].
Approaches to interoperability include translation (e.g.
CppWIMS [6]) and embedding (e.g. VLE-WFBus [7]).
The SHIWA Simulation Platform (SSP) [8] enables both
approaches and allows different scientific user com-
munities to share and re-use workflows amongst them-
selves. SSP uses WS-PGRADE/gUSE [9], a derivative of
the P-GRADE Portal technology [10] that provides a web-
based, service-rich environment for the development, exe-
cution and monitoring of workflows on various DClIs. It
therefore offers platform interoperability allowing individ-
ual workflows to execute across hybrid platforms com-
prised of multiple SGs and DGs. Adoption of workflows
by scientists is also facilitated by availability of easy-
to-use lifecycle support tools and environments. The
SCI-BUS project extended the development of a gen-
eric gateway framework of WS-PGRADE/gUSE and
created a methodology for customising gateways for the
support of workflow-oriented development and end usage.
The framework incorporates support for deployment,
management and accounting/billing on various clouds sup-
ported by the CloudBroker DCI service broker [11]. The
WS-PGRADE/gUSE platform and CloudBroker platform
have been integrated in SCI-BUS enabling the develop-
ment and execution of P-GRADE workflows on virtually
any DCL In both SCI-BUS and SHIWA, target DCIs could
typically include any combination of SGs (e.g. ARC [12],
gLite [13], Globus [14], UNICORE [15]), DGs (e.g. BOINC
[16], OurGrid [17], XtremWeb [18], etc.) and clouds
(e.g. Amazon EC2 [19], IBM SmartCloud Enterprise [20],
OpenStack [21], Eucalyptus [22] and OpenNebula [23]).

Winter et al. Journal of Cloud Computing: Advances, Systems and Applications 2014, 3:1

http://www.journalofcloudcomputing.com/content/3/1/1

Thus SCI-BUS and SHIWA provide core technologies
that facilitate adoption by scientists in both industry and
academia.

Deployment of SCI-BUS and SHIWA-based envi-
ronments can be demanding, even where the end
user requirements are comparatively modest. RESWO
(Reconfigurable Environment Service for Workflow
Orchestration) is a cloud-oriented model based on the
core technologies of SCI-BUS and SHIWA, aimed at the
construction of leaner customised environments. It ex-
ploits virtualisation to allow rapid assembly, customisation
and deployment of complex, distributed infrastructures on
demand. Workflow developers may then create custo-
mised configurations of SSP elements and host this con-
figuration in a virtualised environment such as an
Infrastructure-as-a-Service (IaaS) in the cloud. Through
the graphical portal interfaces derived from SCI-BUS,
various custom workflow development, sharing, execut-
ing and interoperability scenarios can be supported. The
aim for each customised instance is to provide only those
interfaces, workflow engines, workflow and workflow
engine repositories, web services, discovery services,
monitoring services and DCI services required by the
workflows that end users plan to run. RESWO itself can
be offered as a cloud-based service Platform-as-a-Service
(PaaS), accessible via a portal. Workflow developers may
then easily assemble their own customised environment
for deployment on the fly, allowing workflows to be
searched for, discovered, deployed, executed, and moni-
tored. The dynamically generated workflow orchestration
environment features all the advantages of SHIWA and
SCI-BUS. For example, user communities traditionally
working with a particular workflow system may easily ac-
commodate workflows developed under a different system
by a different community, using the workflow interoper-
ability features of SHIWA. However, since the environment
is dynamically customised it may be configured to include
only the necessary components for the target user scenario.
The RESWO approach also offers scientists considerable
flexibility of provision at DCI level that may include com-
binations of clouds, clusters, service grids, and desktop
grids. Each of these types of DCI has particular characteris-
tics, attractions and restrictions for different user commu-
nities. For example, applications are often constrained to
run only on particular infrastructures. Support for a hybrid
multi-DCI allows such applications to be easily mapped
onto an appropriate DCI within the system.

Desktop grids within the cloud ecosystem

DG@Gs use the spare CPU cycles available within an organ-
isation or a community, usually sourced from desktop
PCs. In a local DG the resources are all within a single
organisation and typically, and are managed centrally. In
a volunteer DG, resources are provided on a voluntary

Page 3 of 12

basis by citizens, from around the world. In both cases,
nodes are configured to be used within the DG according
to the node owner’s preferred policy. Typically this occurs
whenever the nodes are not being used locally. The PC
runs a client daemon that requests computation tasks from
a centralized DG server that dispatches work. Virtually all
institutions maintain a large number of networked desktop
PCs, and together the power of these machines may be
harnessed to provide cheap “off-peak” computing power in
the form of a local DG. Universities in particular invest in
large numbers of laboratory PCs that are practically unused
outside of teaching hours. Generally DGs are well-suited to
so-called embarrassingly parallel, or “bag of tasks”, compu-
tations [24], since nodes communicate only with the server
and not with each other. As a result of developments in
the EDGI project, DGs have been effectively virtualised
and as a consequence may be considered as a particular
type of cloud-based resource.

A DG is an example of a very cheap DCI for scientific
research (it is in effect “free”, from the point of view of
most researchers), but has performance limitations aris-
ing not only from intrinsic physical size limitations, but
also the volatile nature of its underlying desktop PC
nodes. In local DGs, the maximum number of compute
resources is limited by the total number of PCs in the
organisation. Actual availability (i.e. the number of ma-
chines available to the DG user in accordance with the
DG use policy at any particular time) can vary hugely
according to local usage — ranging from very high (for
example during the night) to around very low (for example
during a typical working day). There are occasions when
any limitation, no matter how large or small, becomes
restrictive. At such times, the ability to access additional
resources for a short period, seamlessly and without per-
turbing the overall workflow, would be very useful. For ex-
ample, in one common scenario, a scientific researcher
based at a university has routine access to cheap local desk-
top grid (DG) resources, and uses these wherever possible,
on the grounds of cost. Occasionally however, they also
wish to access additional resources to achieve short bursts
of highly intensive computation in response to deadlines,
or to manage peaks of data throughput.

A second performance issue arises from the tail
problem [25] - a well-known phenomenon in DG com-
puting arising from the volatility of the underlying desk-
top PCs, which can seriously undermine the makespan
(i.e. completion time) of a collection of submitted tasks.
A parameter sweep computational stage within a workflow,
or indeed any batch submission, is dependent upon the fin-
ish time of the last job of the batch. If some of the tasks be-
come delayed, the completion time of the last job in the
batch may be some while after the majority of the jobs
have finished, thus seriously affecting the overall comple-
tion time of the batch. A late job in this context is called a

Winter et al. Journal of Cloud Computing: Advances, Systems and Applications 2014, 3:1

http://www.journalofcloudcomputing.com/content/3/1/1

lagger, and the period at the end of the parameter sweep
computation when only lagger results are outstanding is
termed the tail phase of the computation.

The phenomenon is illustrated in Figures 1 and 2,
which assumes a constant statistical pattern of lagger be-
haviour in two cases. For large batches (Figure 1) the im-
pact of late jobs arriving can be fairly modest — but for
small batches (Figure 2), this effect can be considerable.
Figure 3 depicts the outcome of a concrete experiment
in which a small batch of 50 jobs was submitted to the
University of Westminster local campus DG. This DG
comprises student laboratory PC hardware across the
university, and utilizes a BOINC-based middleware that
has been adapted for local DG computing. In the
depicted run, the DG is offering approximately 1000 active
nodes and employs a first-come-first-served (FCFS) sched-
uling policy and timeout values of 25 minutes, after which
the job is considered late by BOINC and is replicated on
another node. The jobs within the batch comprise a par-
ameter sweep computation, in which the same function is
applied to a range of prescribed input data sets - in this
case employing the Autodock molecular docking tool [26]
to find binding sites between a simple ligand molecule and
a more complex protein. Clearly the makespan is affected
adversely by the few late jobs towards the end, which had
been scheduled to run on a number of nodes that were
interrupted by students in the middle of the execution -
the University’s DG policy requires that a DG job shall be
suspended when a student uses the host laboratory PC.

The DG scenario is a potent example of the need for a
RESWO system to incorporate dynamic strategies for
mapping tasks onto multiple DCIs; in the DG case to
consider dynamically augmenting the volatile (albeit cheap)
DCI with more reliable (albeit expensive) resources — that
could be derived from the cloud.

Buttressing desktop grids through cloudbursting
Minimizing the makespan for batches submitted to DGs
is discussed in [27-29]. The approach is typically to

Page 4 of 12

control the scheduling mechanism within the DG server,
by manipulating task selection and node selection, op-
tionally with the replication of laggers onto idle available
resources. Whilst these algorithms can be efficient, for
high throughput (when the batch is large) the FCES algo-
rithm employed by most DGs is near optimal [25]. How-
ever when the batch size is less than or approximately
equal to the number of compute nodes, more sophisti-
cated methods of resource selection and task replication
are usually necessary. Strategies involving intelligent task
and machine selection have been proposed to address the
DG tail problem using DG resources only. For example,
tail jobs can be replicated on historically more reliable
and faster DG nodes. Alternatively, the number of com-
pute jobs submitted for a given desired result can be in-
creased above the minimum necessary, with a view to
discarding (i.e. simply not waiting for) the last few results.
However, the former is still constrained by the volatile
nature of the DG in terms of resource availability, whilst
the latter is inefficient since much redundant computa-
tion is performed. Both strategies are open-loop control
strategies, in that they make no attempt to take account
of the observable behaviour of the system as the compu-
tation progresses. Thus, using the DG alone, albeit with
enhanced scheduling policies, is not always adequate to
solve the tail problem.

SpeQuloS, a quality of service (QoS) model for enhan-
cing the performance of “best effort” DClIs, i.e. DCIs in
which service providers do not guarantee that resources
will remain available during the lifetime of any running
application, has been described in [30]. One particular
scenario accommodated by SpeQuloS is the use of cloud
(specifically cloud spot) instances as a source of durable
CPU resources to buttress a DG, coupled with a task du-
plication strategy using cloud resources to mitigate the
tail problem inherent to DGs. Evaluation of this scenario
based on simulations has indicated very encouraging
performance improvements. SpeQuloS is concerned with
providing quality of service (QoS) for a given batch of

Jobs/Work Units in Progress
s

Figure 1 The tail problem in DG computing showing modest impact on larger jobs.

Time

Winter et al. Journal of Cloud Computing: Advances, Systems and Applications 2014, 3:1

http://www.journalofcloudcomputing.com/content/3/1/1

Page 5 of 12

Jobs/Work Units in Progress
4

Figure 2 The tail problem in DG computing showing considerable impact on small jobs.

A 4

Time

tasks through a computational credit exchange system,
in which credits accrued from previous DG processing
by one institution (the donor) on another institution’s
behalf (the requester), can be exchanged back for cloud
resources at the requester’s site when the donor requires
them.

In the project “Optimal Scheduling of Scientific Appli-
cation Workflows for Cloud-augmented Grid Infrastruc-
tures” (OSCA) [31], the authors of this article have
investigated a similar scenario: the performance en-
hancement of DG applications obtained by buttressing
the DG infrastructure with durable cloud resources. Spe-
cifically, a system has been designed and built to replicate

laggers in an EC2-compatible cloud to avoid waiting for
the return of late tail jobs that prolong the makespan. In
contrast to SpeQuloS, the OSCA approach assumes the
use of any public EC2 (Elastic Cloud Compute) compat-
ible cloud such as Amazon or Openstack, and there are
no limitations to the resources that can be bought. In
addition, synchronisation between the DG and the CPU
cloud is realised via a specific interface, the 3GBridge
[32] (described below) that allows the DG scheduler to
be the sole scheduler in the system; an implementation
detail that modifies slightly the duplicated scheduler
model assumed in SpeQuloS. The approach also incorpo-
rates the reuse of cloud instances, as a means of reducing

60 —

50

40 -

30

20

Jobs Complete

10

00:00:00 00:10:00

4 jobs.

50 Autodock Jobs on UoW DG

00:20:00
Time(HH:MM:SS)
Figure 3 Submission of 50 Autodock jobs to UoW DG illustrating the tail problem. The makespan is increased significantly by the last

| 2= Job Completion
Event

00:30:00 00:40:00 00:50:00

Winter et al. Journal of Cloud Computing: Advances, Systems and Applications 2014, 3:1

http://www.journalofcloudcomputing.com/content/3/1/1

overall cloud costs. A major aim of the project was to ex-
plore the DG/cloudbursting strategy in the context of
realistic use cases, and to measure the performance of an
actual physical deployment. In the experimental plat-
form, durable cloud resources were sourced from an ex-
perimental cloud infrastructure at the University of
Westminster: a private Openstack-Nova cloud consisting
of 30 CPU cores, in contrast to the cloud spot instances
assumed in SpeQuloS. Whilst cloud resources are gener-
ally billed by the hour, the OSCA system permits a more
flexible method of resource provisioning and billing. This
is due to the fact that the scheduler can maintain infor-
mation about the state of the replicated jobs on Portable
Batch System (PBS) clients/cloud instances. With this in-
formation, the scheduler can reassign those instances that
no longer have jobs assigned. For example a free instance
that has already been purchased may have used only 50%
of its purchased time. The scheduler can reassign the in-
stance to a new batch in its tail phase instead of simply
releasing the instance that has already been paid for.

The architecture of the OSCA hybrid DG/cloud infra-
structure is shown in Figure 4. In step 1, workflows de-
veloped by users in the P-GRADE environment are sent
to the 3GBridge: a submission backend for P-GRADE
developed in the EDGeS Project [33], conceived to achieve
interoperability between DG and SG infrastructures. The
3GBridge is a fully decoupled submitter capable of creat-
ing jobs for different infrastructures including service
grids, BOINC-based DGs (via a DG plugin), and EC2
clouds (via a cloud plugin that starts cloud instances). In
step 2, jobs are submitted entirely to the DG, after which

Page 6 of 12

(in step 3) the scheduler component begins to monitor the
status of the batch to determine whether the tail phase has
been entered, according to a predefined metric, e.g. fixed
percentage of tasks complete. Once the tail has been de-
tected, virtual machine (VM) instances are instantiated in
the cloud (step 4) following an instruction from the sched-
uler to the 3GBridge to use the cloud plugin. The VM
instances connect back over a Virtual Private Network
(VPN) to a PBS server (step 5), and register their instance
identifier and hostname in a database. Since the instances
are running PBS clients, the scheduler can submit repli-
cated tail jobs to the PBS server, explicitly defining the
instance to which a given replicated job is submitted.
Finally, in step 6, the scheduler monitors both the repli-
cated tail jobs in the cloud, and the tail jobs that are still
processing (albeit running late) on the DG. Whichever
returns a successful result first is used and returned to the
portal. The cloudbursting scheduler algorithm at the core
of the system is shown diagrammatically in Figure 5. A
more detailed description of the algorithm and the devel-
oped system is given in [34].

Performance evaluation

Evaluation of the system was undertaken from two per-
spectives: the performance gains achievable in practice
from the hybridisation of two formerly distinct classes
of DCI; and the experiences of scientists newly en-
gaged with e-science research objectives. The experi-
mental platform used is based on a technologies developed
in SHIWA and SCI-BUS, and complies with RESWO
model principles.

DG Server DG Plugin

Submit
batchto DG

Desktop
Grid

P-GRADE Portal

3G Bridge

EC2 Cloud

Cloud Controller

Node Controller

Figure 4 Architecture of the hybrid DG/cloud system developed in the OSCA project.

6
Check for
completed jobs

Monitor
for tail

Cloud Plugin Scheduler

Startvim
instances

4

5 Submit
to PBS

PBS/VPN
Server

Winter et al. Journal of Cloud Computing: Advances, Systems and Applications 2014, 3:1

http://www.journalofcloudcomputing.com/content/3/1/1

Page 7 of 12

s D

!

Detect new batch of

jobs

Start Cloud instances for
tail jobs

Batchin
tail?

Cleanup and mark
as beaten

Yes

Submitreplicated

Check other existing

Job
beaten
by DG?

A 4

replicated {cloud) jobs

Job
finished?

jobto PBS head

7'y Transfer outputs from PBS head
t03G-Bridge

Prev.
requested
instance
came up

Yes

I Start new instance

Figure 5 Schematic of cloudbursting scheduling algorithm.

Alljobs
checked?

System performance
The system was evaluated using a testbed comprising
the P-GRADE portal, the 3GBridge, the University of
Westminster (UoW) local DG [35], and an EC2 IaaS
cloud of 30 CPU cores based on Openstack Compute
(Nova) cloud software. The test workflow was the com-
putationally dominant Autodock parameter sweep stage
of the docking workflow shown in Figure 6 the compu-
tationally non-intensive pre- and post-processing stages
being ignored. In this respect the system was evaluated
based on a real-world workflow use case specified by
UoW bio-scientists. Since the UoW DG was based on
Windows PCs, the version of Autodock used in the ex-
periments necessarily ran under Cygwin [36], a Linux
simulation environment. A single instance of Autodock
was mapped to a single CPU core in every case.

Many different batch sizes were investigated to explore
the benefits of the system. In the experiments, the tail
phase was pragmatically defined as the last 5% of the

batch. Figure 7 shows a submission of a batch of 1000
jobs, for which the tail phase comprises the last 50 jobs.
The figure illustrates the benefits of using cloudbursting,
i.e. buttressing the DG infrastructure with cloud re-
sources dynamically and on demand, compared with using
the DG alone under a first-come-first-served FCES sched-
uling algorithm.

Table 1 shows the mean percentage decrease calcu-
lated from 3 runs of the workflow. Performance is fairly
consistent as indicated by the standard deviation value.

Autodock under Cygwin incurs a performance penalty:
running approximately 3 times slower than in the native
Linux environment for which Autodock was designed.
Whilst this could be a significant issue in the case of ser-
ial execution, the problem can be readily overcome in a
DCI based on DGs and clouds, for parameter sweep
computations. For example, 3 parallel Autodock/Cygwin
instances on 3 Windows nodes execute collectively
in approximately the same time as 3 native Autodock

Winter et al. Journal of Cloud Computing: Advances, Systems and Applications 2014, 3:1

http://www journalofcloudcomputing.com/content/3/1/1

Page 8 of 12

e

gpffile

db file
(receptor)

performance evaluation.
A\

dpf file

db file (ligand) prepare_ligand4.py dbat fi AUTOGRID
prepare_receptord.py el

pdb file
SCRIPT2

Figure 6 The workflow required by the bio-scientists. The Autodock parameter sweep stage was also the basis for system

7

map files

AUTODOCK

dig files

best dig files
SCRIPT1

instances running serially on a single Linux node. Per-
formance loss in the Windows environment can thus be
recovered through the use of additional resources. In a
cloud-buttressed DG, availability of resources is not a
major problem, and the cost of using more hardware
is not particularly prohibitive. For users, the DG is
effectively “free” and under a pay-as-you-go model, cloud
resources are also very cost efficient. A bonus for users
in this scenario is that when a native Windows version of
Autodock becomes available (as a result of a vendor up-
grade), and is subsequent deployed on the DG, the benefits

are immediately perceived by users as a 3-fold performance
enhancement windfall.

Bioscience research Use cases

Biomedical research is increasingly being undertaken
using in silico computer simulation — contrasting with
conventional “wet laboratory” or in vitro methodologies -
providing reductions in both experimental time and la-
boratory cost. In silico experiments, in common with their
in vitro counterparts, are not typically constrained to a sin-
gle stage or process; multiple stages of computation are

1100

1000 Autodock Tail Def 5%

1000

900 —

800

700

600 —

500 -

Jobs Complete

"'*DG Only 7

~*-Cloud

T
00:20:00

00:10:00

a job.
.

T
00:30:00
Time (HH:MM:SS)
Figure 7 1000 Autodock jobs with tail defined at 5%. 30 CPU cores were used for the cloud. Each data point marks the completion of

T T T 1
00:40:00 00:50:00 01:00:00 01:10:00

Winter et al. Journal of Cloud Computing: Advances, Systems and Applications 2014, 3:1

http://www.journalofcloudcomputing.com/content/3/1/1

Table 1 Percentage decrease in makespan achieved by
using 30 cloud CPU cores to process the tail (defined as
the last 5% of jobs)

Run 1 Run 2 Run 3 Std Dev
343 396 397 379 3.1

Mean

common, usually with data needed as inputs to one stage
provided by the outputs of a preceding stage.

To evaluate the utility of the hybrid DG/cloudbursting
system as part of the in silico environment, two use case
scenarios from bioscience research were explored.

Biological use case 1: design of carbohydrate-based vaccines
Carbohydrate recognition is critical to human biological
functions. Examples include the highly specific responses
of the immune system to pathogens and interaction and
communication between cells. Understanding how path-
ogens bind to cell surface proteins can lead to the design
of novel carbohydrate-based drugs and diagnostic and
therapeutic agents. The bio-scientists were aiming to con-
struct a library of tens of thousands of small molecule can-
didates available in databases such as DrugBank, that have
been screened against known targets using molecular mod-
elling and tools (in this case, Autodock). Such a small mol-
ecule library can be made available to other researchers for,
say, in vitro validation, etc. The computational require-
ments here were to run Autodock many times for many
small molecules screened for many docking sites.

Biological use case 2: effects of pharmaceutical compounds
on aquatic organisms
Pharmaceuticals as environmental pollutants are detri-
mental to some organisms, e.g. vulture decline in India/
Pakistan caused by veterinary drug diclofenac, and endo-
crine disruption of fish due to human contraceptives.
Aquatic organisms are exposed to chronic low levels
of pharmaceutical cocktails from sewage effluent. Major
therapeutic classes are present in fresh water at environ-
mentally relevant concentrations, e.g. analgesics, antibi-
otics, etc., but the lack of ecotoxicological data means
effects on aquatic organisms of chronic, multi-generational
exposure is scientifically uncertain. The bio-scientists
wanted to establish whether currently available bioinfor-
matics databases are a potential tool to predict the effects
of pharmaceutical compounds on aquatic organisms. They
needed to identify target species and chronic endpoints for
the ecotoxicology testing of pharmaceuticals

In both use cases, the same in silico workflow pattern
applies, and is shown in Figure 6. It comprises a pre-
processing stages followed by a large parameter sweep
computation, finishing with some post processing. This
demonstrates the dynamically varying computational
loads that often arise in scientific workflows. In Figure 8

Page 9 of 12

the same workflow is shown as it represented within the
P-GRADE environment.

In order to provide an even more convenient environ-
ment for bio-scientists to execute this workflow, which
remains constant throughout the experiments performed
by the scientists, a custom end-user interface has been
built within the P-GRADE portal and is depicted in
Figure 9. Using this interface, bio-scientists create indi-
vidual workflow instances by uploading the necessary in-
put files and setting input parameters. From the end
user’s point of view this will simply appear as a new task -
the complexity of the underlying workflow (Figure 6) is
completely hidden. After submission, the execution of
the workflow can be monitored from the portal inter-
face. The workflows are executed on the experimental
hybrid DG/cloud infrastructure. Once the execution has
finished, the resulting files (in this case depicting molecu-
lar representations) can be immediately visualised on the
screen and or downloaded for further investigation and
analysis.

The general observations made by the scientists were:

o Workflow development was natural, reflecting both
intuition and previous experience based on in vitro
methodology.

e The customised interface was highly appreciated,
allowing quick and easy entry of data and
parameters into the previously developed workflow.

e Individual workflow computations completed in a
shorter time, allowing faster turnaround of the many
experimental evaluations required.

A brief inspection of the two workflow representations
in Figures 6 and 8 shows that the mapping between
them is easy and very natural — one of the reasons that
the bio-scientists have found the P-GRADE portal ex-
tremely usable. Such ease of use is a major requirement for
acceptability in bioscience and other e-science communi-
ties. P-Grade has already stimulated growing interest within
those communities that do not readily adopt computing-
based scientific methods, or enjoy struggling with technolo-
gies perceived as arcane. The workflow-based portal has
helped overcome barriers to take-up, enabling the biosci-
entists to concentrate on their scientific research. The
computational benefits achievable by cloudbursting are
greatly appreciated by the bioscientists, given that the
total number of individual computations was extremely
high. The requirement for hugely increased data through-
put is expected to become very common within many
scientific research processes. Typically, this will be driven
by the quest for improved experimental reliability based on
repeated runs, or, as in the case of molecular studies, the
straightforward need to explore large data sets representing
the myriad range of molecular structures.

Winter et al. Journal of Cloud Computing: Advances, Systems and Applications 2014, 3:1
http://www.journalofcloudcomputing.com/content/3/1/1

Page 10 of 12

receptor.pdb gpfdescriptor file

Autogrid executables,
Scripts (uploaded by the
developer, don’t change it)
ligand.pdb
dpfdescriptor file

output pdb file

Figure 8 The same computational workflow as Figure 6 represented in the P-Grade portal.
A\

/¥4 Docking portlet - Univers: x

€ > ¢ Ehltps://dg-portaI.wmin.ac.uk/hferay-porta\-6.l.Ofv.'eb/guest/dockwng_port\el?p_auth:xOQHyBCE&p_p_m‘:asm_WAR_ASM_Samp]e&p_p_h!ecyc[e:l&p_p_stale:mornwal&p_p_modw‘,’k

UNIVERSITYOF University of Westminster

aT
WESTMINSTER® Desktop Grid Portal qSCl-IB'US

Welcome Workflow Storage Seftings Information Statistics Publications Help End User Security X Docking portiet Mental Ray

University of Westminster Desktop Grid Portal) Docking portiet

Autodock Fox|

Vina |< id |
found results: #6

| How to use docting - Help

AutoDock Vina - Virtual screening of a library of ligands

This application performs virtual screening of molecules using version 1.1.2 of AuteDock Vina. It docks a library of small ligands on a selected receptor molecule. For more information on required input parameters please see the window below.
For generic help on AutoDock Vina please see Autodock Vina usage and Autodock Ving introduction

Autodock Vina - specily the inputs | 1 G
No file chosen Select the Autodock #specialy Please use plain text fie! Sample config
[Configuration of Vina (*.txt) .
[Receptor file (.pdbat) o fle hosen Select and upload the Receptor fle for docking. downiosd.
L::qnb-l‘.ﬂp.mnﬂlln-lw Mo fie chosen Select and upioad the Ligand files for docking. Please zip all your igand (*.pdba) files into a single zip (*.zip) sal
[Number of paralielisation 100 Determines how many batches will be created grouping multiple ligands into one batch.
IBest resutt number s Specify the number of the lowest Autodock scare results you wantto keep. Default value: S
[Task name Taski Specify the name of current task, use only letters or numbers.
Run task
Task Name Task Status Actions
jJask! FINSHED Show results refresh | vetete |
Taskipptest FINSHED
POl Y i Show resuits | refresh | Delete |

Resufts for task: Task1pptest 2013-02-18-145423

Download best outputs | Re-compute task

[Receptor file, with docked ligands: Title:

Receptor: Large view

Receptor with ligands: Large view

i

Figure 9 Custom graphical user interface for executing the workflow from the P-GRADE portal.

Winter et al. Journal of Cloud Computing: Advances, Systems and Applications 2014, 3:1

http://www.journalofcloudcomputing.com/content/3/1/1

Further comment from the scientists regarding Use
Case 1:

e Screening a large number of compounds for binding
affinity against a single protein can be carried out
in vitro, but is both time-consuming and expensive
given the cost of buying the compounds to screen
and the complexity of the experiments required.
Novel microarray technology enables compounds to
be placed on fabricated supports and these are
screened using either labelled or unlabelled protein/
peptide. However, the in silico approach exemplified
by these experiments will enable researchers to
screen hundreds of thousands of compounds and
then determine the most likely drug candidates that
could then be sourced and tested in vitro. This will
be a more focused, rapid and cost-effective approach.
However, in order to carry out thousands of docking
experiments, grid- or cloud-based computing
resources are required to deliver timely and robust
data. In a related project to screen for novel
neuraminidase inhibitors, an in silico workflow using
Autodock was developed and ported. Molecular
structures of small molecules were sourced and
stored in the appropriate format in a library of
250,000 compounds. An additional 8,000 glycan
structures were also sourced. It is now possible for a
researcher to take a model of their protein of interest
that has been energy minimised, and evaluate its
binding partners within days compared to weeks/
months using a single processor.

Further comment from the scientists regarding Use
Case 2:

e In this scenario, interest is focused on the binding of
known human and veterinary drugs and their
homologues to specified proteins in selected
vertebrates and invertebrates in order to help evaluate
their potential toxicity. Currently, determining the
acute and chronic toxicity of pharmaceuticals, and
indeed industrial chemicals, in the environment is
undertaken through ecotoxicity testing. These in vitro
based approaches involve the exposure of the
candidate species at different stages of their life-cycle
to varying concentrations of potential toxins/drugs for
varying times. It involves the use of animals and is a
costly and time-consuming procedure. Utilising
Gromacs (a molecular dynamics package primarily
designed for bio-molecular systems such as proteins
and lipids), an energy minimised structure is
produced that can be used as a target in an Autodock
experiment. This then can be interrogated with the
drug of interest to determine whether a particular

Page 11 of 12

species would be a good candidate for in vitro trials.
It would also enable us to broaden our search to
look at potential impacts of specific molecules on the
receptors from a range of environmental species
rather than focusing on the species commonly used
in ecotoxicological testing, which may not possess
or express the proteins and hence would be poor
indicator species for toxicity. In the past the in
silico approach would have been time consuming,
taking weeks to produce results. With the desktop
grid/cloud based solutions such analysis can be
completed within days or even hours rather than
weeks or months.

Conclusions

Scientists operate in a multi-workflow, multi-DCI com-
putational environment, but such environments are often
difficult to engage with and inhibit wider take-up within
mainstream scientific research. Interoperability solutions
combined with portal technology offer solutions but are
typically cumbersome; RESWO provides a model for effi-
cient deployment of such environments. DCIs based on
DGs are cheap, powerful and attractive to scientists. They
are also volatile, but augmentation through cloud-based
CPU resources, creating a multi-DCI platform, can over-
come the drawbacks. Within the framework of the RESWO
model, a system has been constructed that employs a novel
algorithm for scheduling CPU resources in the cloud on de-
mand to buttress the performance of a DG. The perform-
ance of the system has been evaluated, firstly from the
point of view of technical performance improvements in
overcoming the drawbacks of DG computation, and sec-
ondly from the scientific user perspective that includes ease
of use, and research productivity. The results have demon-
strated that considerable performance improvements on a
simple DG can be obtained for realistic use cases. The sci-
entists have been delighted by the environment, which they
found easy to use for expressing their requirements, and
delivering the results they required in a timely fashion.

Abbreviations

DCl: Distributed computing infrastructure; DG: Desktop grid; EC2: Elastic
cloud compute; FGI: Fine grained interoperability; FCFS: First come first
served; GUI: Graphical user interface; laaS: Infrastructure as a Service;
PaaS: Platform as a Service; PBS: Portable batch system;

RESWO: Reconfigurable environment service for workflow orchestration;
SG: Service grid; QoS: Quality of Service; UoW: University of Westminster;
VM: Virtual machine; VPN: Virtual private network.

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions

SW, TK, GT, PK conceived of the study, and participated in its design and
coordination and helped to draft the manuscript. CR, SA undertook software
development, created the experimental framework, and performed the
experiments PG, SM designed the experiments, and evaluated the results. All
authors read and approved the final manuscript.

Winter et al. Journal of Cloud Computing: Advances, Systems and Applications 2014, 3:1

http://www.journalofcloudcomputing.com/content/3/1/1

Acknowledgements

EPSRC/JISC for funding Project: Optimal Scheduling of Scientific Application
Workflows for Cloud-augmented Grid Infrastructures. EPSRC Grant No. EP/
1034254/1. EU FP7 for funding Projects: SHIWA (SHaring Interoperable Work-
flows for large-scale scientific simulations on Available DCIs), FP7 Project No.
RI261585. SCI-BUS (SClentific gateway Based USer Suppport). FP7 Project No.
RI283481. EDGI (European Desktop Grid Initiative). FP7 Project No. RI261556.
EDGeS (Enabling Desktop Grids for e-Science). FP7 Project No. RI211727.

Author details

!Centre for Parallel Computing, University of Westminster, London, UK.
2Laboratory of Parallel and Distributed Systems, MTA SZTAKI, 1111 Kende
utca 13, Budapest, Hungary. >School of Life Sciences, University of
Westminster, London, UK.

Received: 2 April 2013 Accepted: 11 July 2013
Published: 13 January 2014

References

1. SHIWA (SHaring Interoperable Workflows for large-scale scientific simulations on
Available DCls), FP7 Project No,, RI261585. http://www.shiwa-workflow.eu

2. SCHBUS (SClentific gateway Based USer Suppport), FP7 Project No. RI-283481.
https//www.sci-bus.eu

3. EDGI (European Desktop Grid Initiative)., FP7 Project No. RI-261556. http://
edgi-project.eu

4. Taylor lJ, Deelman E, Gannon DB, Shields M (2007) Workflows for e-Science:
Scientific Workflows for Grids. Springer, XXII. ISBN: 978-1-84628-519-6 (Print)
978-1-84628-757-2 (Online)

5. Kacsuk P, Kiss T, Sipos G (2008) Solving the Grid Interoperability Problem by
P-GRADE Portal at Workflow Level. Future Generation Computing Systems:
International Journal of Grid Computing. Theory, Methods and Applications
24(7):744-751, ISSN 0167-739X doi:10.1016/j.future.2008.02.008

6. Pellegrini S, Giacomini F, Ghiselli A (2007) A Practical Approach for a
Workflow Management System. Proc. Core-GRID Workshop, Dresden

7. Zhao Z, Booms S, Belloum A, de Laat C, Hertzberger B (2006) VLE-WFBus: A
Scientific Workflow Bus for Multi e-Science Domains. In: e-Science and Grid
Computing, 2nd IEEE Int. Conf. on e-Science'06. IEEE Computer Society,
Piscataway, NJ, p 11

8. Korkhov V, Krefting D, Montagnat J, Tram Truong H, Kukla T, Terstyanszky G,
Manset D, Caan M, Olabarriaga S (2012) SHIWA workflow interoperability
solutions for neuroimaging data analysis, Proceedings of Healthgrid'12,
Studies in Health Technology and Informatics. In: Gesing S et al (eds)
HealthGrid Applications and Technologies Meet Science Gateways for Life
Sciences, vol 175. 10S Press, Amsterdam, pp 109-110

9. Kacsuk P et al (2012) WS-PGRADE/gUSE Generic DCI Gateway Framework
for a Large Variety of User Communities. Journal of Grid Computing
10(4):601-630

10. P-Grade Portal. http://portal.p-grade.hu

11, Cloudbroker GmbH. http://www.cloudbroker.com

12. ARC: The ARC Grid Middleware. http://www.nordugrid.org/middleware

13. Laure E et al (2006) Programming the Grid with gLite. Computational
Methods in Science and Technology 12(1):33-45

14. Foster | (2006) Globus Toolkit Version 4: Software for Service-Oriented
Systems. Journal of Computer Science and Technology 21(4):513-520

15. Erwin D (2002) UNICORE - A Grid Computing Environment Concurrency.
Practice and Experience Journal 14:1395-1410

16. Anderson D (2004) BOINC: A system for public-resource computing and
storage. In: Proc. 5th IEEE/ACM Int. Workshop on Grid Computing, 2004.
http://boinc.berkeley.edu

17. OurGrid. http.//www.ourgrid.org

18. XtremWeb, Fedak et al (2001) XtremWeb: A Generic Global Computing
System. CCGRID2001 Workshop on Global Computing on Personal Devices.
IEEE Press, Piscataway, NJ

19. Amazon EC2 (Amazon Elastic Compute Cloud). http://aws.amazon.com/ec2

20. 1BM SmartCloud Enterprise. httpz//www.ibm.com/services/uk/en/cloud-enterprise

21. Openstack: Open source software for building private and public clouds.
http://www.openstack.org

22. Eucalyptus: Open source software for building AWS-compatible private and
hybrid clouds. http://www.eucalyptus.com

23. OpenNebula: Open source data centre virtualisation. http://opennebula.org

Page 12 of 12

24. Candeia D, Araujo R, Lopes R, Brasileiro F (2010) Investigating business-driven
cloudburst schedulers for e-science bag-of-tasks applications. In: Proc. IEEE 2nd
Int. Conf. on Cloud Computing Technology and Science (CloudCom 2010). IEEE
Computer Society, Piscataway, NJ, pp 343-350

25. Kondo D, Chien A, Casanova H (2007) Scheduling Task Parallel Applications
for Rapid Turnaround on Enterprise Desktop Grids, Journal of Grid Computing,
pp 379-405

26. Autodock automated docking tool. http://autodock.scripps.edu

27. Anglano C, Brevik J, Canonico M, Nurmi D, Wolski R (2006) Fault-aware
scheduling for Bag-of-Tasks applications on Desktop Grids, 7th IEEE/ACM
International Conference on Grid Computing. IEEE, pp 56-63. ISBN
1-4244-0344-8

28, Da Silva DP, Cirne W, Brasileiro FV, Grande C (2003) Trading Cycles for
Information: Using Replication to Schedule Bag-of-Tasks Applications on
Computational Grids. Proc Euro-Par 2003:169-180

29. LeeY, Zomaya A (2007) Practical Scheduling of Bag-of-Tasks Applications on
Grids with Dynamic Resilience. IEEE Trans on Computers 56(6):815-825

30. Delamare S, Fedak G, Kondo D, Lodygensky O (2012) SpeQuloS: Quality of
Service Using Best-Effort Distributed Computing Infrastructures. In: Proc. 21st
ACM Int. Symp. on High Performance Distributed Computing (HPDC'12).
IEEE. ISBN 0-7695-1965-2

31, Optimal Scheduling of Scientific Application Workflows for Cloud-augmented
Grid Infrastructures, EPSRC Grant No. EP/1034254/1. http://cloudresearch.
jiscinvolve.org/wp/category/projects/scheduling-of-workflows

32, Marosi A, Kacsuk P (2011) Workers in the Clouds. In: 19th Int. Euromicro
Conf. on Parallel, Distributed and Network-Based Processing (PDP2011).
IEEE Computer Society, Los Alamitos, pp 519-526

33, EDGeS (Enabling Desktop Grids for e-Science), FP7 Project No. RI211727.
http://www.edges-grid.eu/

34. Reynolds C, Winter S, Terstyanszky G, Kiss T, Greenwell P, Acs S, Kacsuk P
(2011) Scientific Workflow Makespan Reduction Through Cloud Augmented
Desktop grids. Proc 3" IEEE Int. Conf. on cloud Computing Technology and
Science (cloudCom 2011). IEEE Publications, Athens

35. Kiss T, Szmetanko G, Terstyanszky G, Greenwell P, Heindl H (2010) Molecular
docking simulations on a combined desktop and service grid infrastructure.
In: Proc. Third AlmereGrid Desktop Experience workshop: Desktop Grid
applications for eScience and eBusiness. EnterTheGrid, Aimere, The Netherlands,
pp 23-27

36. Cygwin. http//www.cygwin.com

doi:10.1186/2192-113X-3-1

Cite this article as: Winter et al.: Buttressing volatile desktop grids with
cloud resources within a reconfigurable environment service for
workflow orchestration. Journal of Cloud Computing: Advances, Systems
and Applications 2014 3:1.

Submit your manuscript to a SpringerOpen®
journal and benefit from:

» Convenient online submission

» Rigorous peer review

» Immediate publication on acceptance

» Open access: articles freely available online
» High visibility within the field

» Retaining the copyright to your article

Submit your next manuscript at » springeropen.com

http://www.shiwa-workflow.eu
http://www.sci-bus.eu
http://edgi-project.eu/
http://edgi-project.eu/
http://portal.p-grade.hu
http://www.cloudbroker.com
http://www.nordugrid.org/middleware
http://boinc.berkeley.edu
http://www.ourgrid.org
http://aws.amazon.com/ec2
http://www.ibm.com/services/uk/en/cloud-enterprise
http://www.openstack.org
http://www.eucalyptus.com
http://opennebula.org
http://autodock.scripps.edu
http://cloudresearch.jiscinvolve.org/wp/category/projects/scheduling-of-workflows
http://cloudresearch.jiscinvolve.org/wp/category/projects/scheduling-of-workflows
http://www.edges-grid.eu/
http://www.cygwin.com

	Abstract
	Introduction
	Workflow-oriented environments for scientists
	Desktop grids within the cloud ecosystem
	Buttressing desktop grids through cloudbursting
	Performance evaluation
	System performance
	Bioscience research Use cases
	Biological use case 1: design of carbohydrate-based vaccines
	Biological use case 2: effects of pharmaceutical compounds on aquatic organisms

	Conclusions
	Abbreviations
	Competing interests
	Authors’ contributions
	Acknowledgements
	Author details
	References

