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INTRODUCTION 
The concept of proof is at the core of every 

undergraduate mathematics curriculum, but it continues to 
be a difficult concept for university students to understand 
and for university instructors to teach. Prior studies at 

various levels of education have contributed useful 
research knowledge about the nature and sources of 
students’ difficulties with proof, but on the whole less 
attention has been paid to the development of effective 
teaching practices to enhance students’ learning of proof 
(for a review, see Stylianides, Stylianides, & Weber, 2017). 
This is especially problematic at the undergraduate level 
where there are relatively fewer studies than at the school 
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level that documented promising or potentially effective 
teaching practices. Indeed, a rather extended body of 
research has offered images of what it might mean and 
look like when school teachers effectively engage their 
students with proof-related activities (e.g., Ball & Bass, 
2000, 2003; Lampert, 1992; Reid, 2002; Stylianides, 2007, 
2016; Zack, 1997), but these images cannot be carried over 
into the university level where the style of instruction is 
considerably different from school mathematics and often 
follows the so called “Definition-Theorem-Proof” (DTP) 
format (cf. Davis & Hersh, 1981; Dreyfus, 1991). 

Thus, there is a need to expand the limited body of case 
studies of promising or potentially effective teaching 
practices at the undergraduate mathematics level (Fukawa-
Connelly, 2012; Weber, 2004), especially teaching 
practices that do not deviate from the DTP format (broadly 
conceived). Maintaining some connection to the DTP 
format is strategic in terms of the potential usability or 
usefulness of the derived research knowledge, for this 
format is followed (one way or another) in most proof-
oriented university mathematics courses and thus many 
university instructors relate to it. According to Weber 
(2012), “mathematicians are unlikely to implement 
teaching suggestions if these suggestions are at variance 
with their pedagogical goals and beliefs or if the suggested 
pedagogy is perceived to be outside the norms of 
appropriate pedagogical practice” (p. 464).  

In this paper, we report a case study of one 
instructor’s teaching, locally characterized as “effective,” 
in an undergraduate analysis course at a leading Indian 
university. The instructor did not deviate from the DTP 
format, but her teaching presented a set of features that, 
collectively, form a rather innovative teaching practice 
in undergraduate mathematics that we believe is worth 
documentation and broader consideration. In addition to 
helping expand the thin research basis of empirical 
studies on teaching practices at the undergraduate level 
(Speer, Smith, & Horvath, 2010) and contributing to 
existing images of potentially effective proof-related 
instruction, we use this paper to draw attention to the 
Indian educational context that has had little 
representation in international forums of mathematics 
education research thus far (see Mesa & Wagner, 2019).  

RELATED LITERATURE 

1. Undergraduate students’ difficulties with 
proof 

It is a well-documented fact that many undergraduates 
face considerable difficulty in handling proof. A main 

factor to which this difficulty can be attributed is a sudden 
shift in mathematical epistemologies in the transition 
from school mathematics to university mathematics (e.g., 
Moore, 1994; Tall, 2010).  

According to Tall (2010, p. 21), the curriculum 
throughout school education is largely confined to two 
forms of mathematical thinking or mental “worlds” of 
mathematics as he called them: conceptual embodiment, 
which is motivated by visual or physical perception, and 
operational symbolism, which involves a sequential 
procedure of computational operations. Right from 
kindergarten to upper-level school mathematics, the 
entire system is geared towards inculcating and nurturing 
the ways of thinking required for these two worlds. At 
university, however, “all this is turned on its head and 
reformulated in terms of axiomatic systems and formal 
deduction” (p. 21), which relate to a third world of 
mathematics, namely, axiomatic formalism. Thus, in the 
transition from school to university, there is a paradigm 
shift in mathematical epistemologies. The ways of 
thinking to which students had been accustomed during 
their school years are inadequate to cope with this third 
world of mathematics. Indeed, Tall (2010) noted that 
students’ new experience with the world of axiomatic 
formalism is “accompanied by mental confusion as links, 
previously connected in perception and action, now 
require reorganization as formal deductions, and subtle 
implicit links from experience may be at variance with 
the new formal setting” (p. 21).  

Tall (2010) illustrated the above using the topic of 
vectors. Under conceptual embodiment, a vector is 
defined as an entity with both magnitude and direction, 
which can be geometrically represented as a directed line 
segment. The second notion of a vector as simply an n-
tuple of real numbers, represented as a column-vector, 
falls entirely within the ambit of operational symbolism, 
and is used for systems of equations in matrix algebra. 
Yet in the axiomatic formalism of undergraduate 
mathematics, a vector is just an element of an axiomatic 
structure called a vector space; students now have to 
ignore most of what they know about vectors and deduce 
the properties using the axioms only. 

Undergraduates who intend to major in mathematics 
have to study about six or seven such axiomatic structures 
in great depth, which constitute about half their degree 
program. These are: the real number system; groups; 
rings and fields; vector spaces; Boolean algebras; metric 
spaces; and probability spaces. Each of these has about 
fifty to hundred proofs of various levels of complexity 
(and their application to problem solving). However, 
students are not prepared for this transition to proof, 
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which Moore (1994) and others described as “abrupt.” 
According to Moore (1994, p. 249), “many students begin 
their upper-level mathematics courses […] having seen no 
general perspective of proof or method of proof,” and 
“[t]his abrupt transition to proof is a source of difficulty for 
many students, even for those who have done superior 
work with ease in their lower-level mathematics courses.”  

Proof is a multifaceted concept that has been studied 
from various perspectives in the research literature (for a 
discussion of some of these, see Stylianides et al., 2017) 
and thus students’ difficulties with proof are broad-ranging 
and present themselves at undergraduate mathematics in 
various forms during proof comprehension, proof 
construction, proof validation, proof writing, etc. A 
common source of many student difficulties with proof, 
especially its form required at the undergraduate level 
where the validity of a proof’s modes of argumentation (cf. 
Stylianides, 2007) cannot be compromised, is students’ 
inadequate understanding of the basics of symbolic logic, 
such as quantifiers like “there exists” and “for every”; 
conditional statements and their converse, inverse, and 
contrapositive; negation; and implication (e.g., Harel & 
Sowder, 2007; Stylianides et al., 2017). For example, 
several students including undergraduates are unsure about 
interpreting the “direction” of a conditional statement, 
phrases like “if and only if” and “necessary and sufficient 
conditions,” the implication symbol, and the negation of a 
statement, and they end up proving the converse of what is 
required, being convinced that a conditional statement is 
equivalent to its inverse but not its contrapositive, having 
difficulty formulating the negation of a claim in a proof by 
contradiction, and so on (e.g., Antonini & Mariotti, 2008; 
Durand-Guerrier, 2003; Hoyles & Küchemann, 2002; 
Inglis & Alcock, 2012; Selden & Selden, 2003; Stylianides, 
Stylianides, & Philippou, 2004; Weber, 2010; Yu, Chin, & 
Lin, 2004). 

Students’ difficulties with proof coupled with the strong 
emphasis of undergraduate mathematics on proof both 
emphasize the need for the identification or development of 
effective teaching practices to support undergraduate 
students’ understanding of and engagement with proof. 
Unfortunately, however, effective practices for proof 
instruction are still scarce in university mathematics classes. 

2. The DTP format of instruction 

Davis and Hersh (1981) asserted that, “[i]n college, a 
typical lecture in advanced mathematics […] consists 
entirely of definition, theorem, proof, definition, theorem, 
proof, in solemn and unrelieved concatenation” (p. 151). It 
is widely accepted by mathematics educators and 

mathematicians that most proof-oriented courses are taught 
in this Definition-Theorem-Proof (DTP) format whose 
traditional style was described by Weber (2004) as follows:  

 
The instruction largely consists of the professor 
lecturing and the students passively taking notes, the 
material is presented in a strictly logical sequence, the 
logical nature (e.g., formal definitions, rigorous proofs) 
of the covered material is given precedent over its 
intuitive nature, and the main goal of the course is for 
the students to [be] capable of producing rigorous 
proofs about the covered mathematical concepts. 
(Weber, 2004, p. 116) 

 
Weber’s (2004) description of the traditional DTP style 

suggests that this format of instruction is typically “lecture-
based” (Fukawa-Connelly, 2012) and that the style of proof 
presentation is primarily a combination of the logico-
structural and procedural styles (Weber, 2004), that is, the 
emphasis is on establishing the proofs’ logical veracity 
based on algebraic and symbolic manipulations without 
much attention to the intuitive motivation of concepts or 
the use of diagrams. This combined style of proof 
presentation is contrasted with the semantic style (Weber, 
2004), which is characterized by the intuitive motivation of 
concepts and relationships and is generally supported by 
visual aids and diagrams. 

The DTP format, in its traditional style as we described 
it above, has been widely criticized with some of the 
criticisms focusing on particular aspects of it, such as its 
lecture-based component. Weber (2004, pp. 116-117) and 
Fukawa-Connelly (2012, pp. 325-326) summarized some 
of these criticisms, including that this format of instruction 
intimidates students (Thurston, 1994), it denies the role of 
intuition in the learning process (Dreyfus, 1991), it is 
incapable of inducing meaningful learning (Leron & 
Dubinsky, 1995), and it conceals much of the complexity 
that characterizes mathematical practice (Davis & Hersh, 
1981).  

Overall the traditional DTP style is not conducive to 
students forming an “epistemic fluency” that would allow 
students to recognize and productively engage with the 
undergraduate institutional practices related to proof, thus 
failing to facilitate also students’ smooth transition from 
school to university mathematics (Solomon, 2006). For 
example, the undergraduate students in Solomon’s (2006) 
study lamented that proofs were presented as a finished 
product to be learned, not constructed by them, and they 
expressed a disenfranchisement in the learning process and 
adverse comparisons with their school experience. Of 
course, the DTP format of instruction does not have to 
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follow, and indeed does not always follow, the traditional 
style; published case studies of university instructors’ 
teaching that we review next (Fukawa-Connelly, 2012; 
Weber, 2004), as well as the case study that we report in 
this paper, all show that the DTP format need not be a 
rigid one and that it can be adapted to support meaningful 
student learning in undergraduate mathematics.  

3. Two earlier case studies 

Even though the concept of proof has attracted 
considerable research attention over the past few decades 
(Harel & Sowder, 2007; Stylianides et al., 2017), there 
has been little research on proof-related teaching practices 
at the undergraduate level (Speer et al., 2010; Weber, 
2012). Two notable exceptions to this trend are the case 
studies reported by Weber (2004) and Fukawa-Connelly 
(2012) of the teaching practices of two instructors in the 
context of a real analysis course and an abstract algebra 
course, respectively. Weber and Fukawa-Connelly do not 
present the instructors in their case studies as “effective,” 
though at least the instructor in Weber’s study did appear 
to be locally characterized as effective as he had been 
awarded a major university teaching award. In any case, 
the teaching practices of both instructors exhibited some 
of the characteristics of the traditional DTP format but 
also some characteristics that deviated from the 
traditional style and appeared to be promising or 
potentially effective, thus justifying their detailed 
documentation and careful consideration.  

1) The case study in a real analysis course 

Weber (2004) conducted a case study of one professor 
called Dr. T teaching an introductory real analysis course 
to a group of 16 students at an American university. Dr. T 
was known to be popular with his students and had won a 
major university teaching award. An observation and 
analysis of his teaching practice revealed that he had 
many characteristics of the traditional DTP format of 
instruction, such as writing the definitions, examples, 
theorems, and proofs on the board with the students 
copying his writings into their notebooks. Also, he rarely 
asked questions or initiated discussions. However, Weber 
observed that Dr. T was different from traditional 
instructors in several significant ways. For example, his 
lectures were not linearly presented as a finished product 
but interspersed with explanations. These were either 
verbal or written as “scratch work” on a clearly 
demarcated side of the board. This was done for a better 
understanding, and so that students could construct 
similar proofs themselves. 

Dr. T adopted a variety of teaching styles, depending 
on what he perceived to be as most suitable for the topic 
being covered. For instance, he mainly used the logico-
structural style for the foundation topic of set theory, the 
procedural style for sequences, and the semantic style for 
the topology of real numbers. His teaching practice thus 
covered a broad canvas, even though it could be 
considered to be within the ambit of the DTP format of 
instruction.                                                        

For the logico-structural style, Dr. T stressed the 
importance of carefully using the definitions to 
understand how to begin and conclude a proof. He 
enunciated the following unpacking principle (p. 121): 
“A guiding principle when writing these proofs is to write 
down what we have and where we are headed. Many of 
these proofs are really just a matter of following through 
the definitions until we reach the conclusion,” and “doing 
this can take you a long way on many of the problems.” 
In keeping with this principle, Dr. T would start by 
writing the relevant definitions on the side as scratch 
work. He would list the hypotheses at the top and the 
conclusion at the bottom of the board. He would then use 
the definitions to unpack both, proceeding down from the 
hypotheses and up from the conclusion till they met 
somewhere in between, and the proof was constructed. In 
the end he would go through the entire written work 
linearly, explaining its logical validity.  

Dr. T demonstrated that this “meet in the middle” 
strategy supported by scratch work could also be 
suitably adapted for the procedural style. For instance, 
while teaching limits of sequences, the scratch work – 
which is later incorporated into the body of the proof – 
comprises mainly of manipulating inequalities. He 
advocated this strategy as a handy “crutch” while 
constructing proofs involving limits. 

It may be observed that Dr. T’s teaching of sets, 
functions, and sequences was devoid of any semantic 
thought, and seldom made use of diagrams. However, 
for the advanced real line topology, he made a complete 
switchover to the semantic style: When introducing each 
topological concept, Dr. T would first give an intuitive 
description of the idea that the concept was trying to 
capture. For this, he usually used two-dimensional 
diagrams (even though the real line is unidimensional), 
as he felt that they were richer and more illuminating 
than one-dimensional ones. He then gave the formal 
definitions, illustrated them with examples, and linked 
them both to the diagrams. Again, for presenting the 
proofs of theorems, he first drew pictures illustrating the 
plausibility of the situation before providing the proof. 

Weber asserts that Dr. T’s pedagogical actions were 
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based on a coherent set of mathematical and 
pedagogical beliefs. For example, at the very outset Dr. 
T honed the logical skills of his students through a quiz 
involving basics of logic like implication and negation, 
and this was because he believed that these skills were a 
prerequisite for students being comfortable with proofs. 
Dr. T apprehended also that “[i]f students find analysis 
too difficult, they will become frustrated and give up on 
the course” (p. 128), so he geared his teaching to 
prevent that. Thus Dr. T had “knowledge of the skills 
and understanding that students require in order to 
produce competent performance at proof-writing” (p. 
128). He also had genuine concern for his students’ 
academic interests, and for education in general. 

2) The case study in an abstract algebra course 

The second case study to be discussed here, 
conducted by Fukawa-Connelly (2012), is of a highly 
qualified lecturer called Dr. Tripp who taught an 
abstract algebra course to a group of 15 undergraduates 
at an American university. The instructor “was 
interested in educational issues, having co-authored a 
teaching manual as a graduate student” and she 
participated in “a professional development program for 
new or recent Ph.D.s in the mathematical sciences with 
the goal of changing her instructional practices in 
introductory mathematics courses” (p. 332). She was 
selected for study “because in her teaching of abstract 
algebra she claimed to use traditional teaching practices 
[notably lecturing in front of the class], she was a 
subject matter expert, and because her pedagogical 
expertise suggested she would be a good teacher” (p. 
333). Based on Fukawa-Connelly’s analysis, “this 
instructor, who claimed to give traditional lectures, 
actually gave lectures which were more student-
centered than some might expect” (p. 343). The main 
factor for this was that her lectures took the form of 
proof presentation with dialog. 

In contrast to Dr. T’s monologs, Dr. Tripp’s classes 
were predominantly conversational in style. She 
unfolded the proofs through a sequence of questions 
that were directed at the students and “modeled 
appropriate mathematical thinking by a master of the 
discipline” (p. 324). In this sense, “[t]he question 
sequences can be understood as the internal dialog that a 
mathematician might engage in when approaching a 
proving task” (p. 342), such as “What does that mean?”, 
“What comes next?”, and “What do I still need to do?”. 
She expertly “funneled” her questions towards eliciting 
correct responses, and constantly acknowledged these 
with a “great!” or a “yeah!”. All in all, the class 

experience provided by Dr. Tripp was uncommonly 
interactive, at least at a verbal level. 

However, all proofs were presented linearly from  
beginning to end without any intuitive motivation or 
epistemic digression. Unlike Dr. T, there were no 
separate columns for thinking and writing. The 
dialog, woven into the presentation, was funneled to 
require factual responses only. Questions involving 
anything beyond the routine were answered by Dr. 
Tripp herself, without wait time for the students to 
think about them. Thus, while her lectures were 
highly participative at a functional level, they were 
largely confined to the logico-structural style, which 
did not leave much scope for a deeper semantic 
involvement of the students with the subject matter. 

4. Concluding remarks and research question 

A comparison of the classroom practices of Dr. T 
and Dr. Tripp as described in the two case studies shows 
that, while both broadly fell within the DTP format of 
instruction, each of them included some pedagogical 
techniques that enriched the students’ epistemic 
experience. Thus, the practices of the two instructors 
illustrate Weber’s (2004) observation that “DTP 
instruction is not a single teaching paradigm, but rather 
a diverse collection of pedagogical techniques sharing 
some core features” (p. 131). In particular lecture styles 
that fall under the umbrella of the DTP format of 
instruction “may vary widely and lead to drastically 
different learning on the part of the students” (Weber, 
2004, p. 131), a point that was made well in Fukawa-
Connelly’s (2012) study.  

The case study that we report next contributes further 
to the field’s understanding of the DTP format of 
instruction as being more nuanced than is commonly 
assumed. The research question that guided our research 
was the following: How might the DTP format of 
instruction be adapted to productively engage students 
in proof-related work in the context of a rather crowded 
undergraduate analysis course in an Indian university, 
and what are the main features of the practice of the 
teacher, locally characterized as “effective,” who is 
implementing this instruction? 

RESEARCH CONTEXT AND METHODS 

1. The Indian context – a backdrop 

There are some problems peculiar to the Indian 
educational system, which make the task of 
undergraduate instruction in India a daunting one (though 
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the college selected for our case study, being one of the 
few “elite” ones, does not face these to the extent that the 
state-run institutions do). These are mainly: 

 
(1) Large class size: All popular undergraduate 

STEM courses in state-run institutions have an 
average class size of 80–100 students, making 
dialogic approaches to teaching difficult.  

(2) Language dichotomy: While the medium of 
instruction in state-run schools right up to 
advanced-level courses is the mother-tongue 
(Hindi for the entire of North and Central India), 
university education in STEM courses is almost 
fully in English, and most of the prescribed texts 
are by American authors. So, in order to be an 
effective teacher for STEM courses, one has to 
give bilingual instruction, that is, to write all 
concepts in English but explain them in Hindi (or 
whatever the regional language is). Some 
colleges tackle this problem by forming their 
tutorial groups according to the language 
preferred for explanations. The language factor 
gives a decisive advantage to those privileged 
few (about 10%) who have had their entire 
school education in the very expensive, private 
English medium schools. It is this “elite” class of 
students who predominantly excel in university 
and who can subsequently compete effectively 
with their western counterparts. 

(3) Caste-based quotas: As per the constitution of 
India, at least 40% of seats in all state-run 
educational institutions (including universities), 
and 20% in private ones, are reserved for the 
“lower and backward castes” who constitute 
almost 70% of India’s population. This has 
caused deep resentment amongst the hitherto 
privileged upper castes, who have a vested 
interest in the maintenance of the status-quo. The 
unfortunate consequence of this is the social 
alienation of these “quota” students, leading 
sometimes to disharmony and tension within the 
classroom.  

2. The course 

The case study of this paper is in the context of a one-
semester introductory real analysis course that was taught 
to a group of 48 students at an “elite” college of a leading 
Indian university in Spring 2018. Most of the students 
had done their entire schooling up to advanced-level 
courses in English medium, but 7 (of the underprivileged 

reserved quota) had studied in Hindi medium. This 
university offers STEM courses in English medium only, 
which poses a major challenge to the “quota” students, 
especially as such “elite” institutions pay little heed to 
their special language needs. 

The topics covered in the course were: (1) real line 
topology; (2) real sequences (convergence); and (3) 
infinite series. The prescribed textbooks were Bartle and 
Sherbert (2015), Chapters 2, 3, and 11.1, and Bilodeau, 
Thie, and Keough (2011), Chapter 6. The course was 
offered over a 14-week semester, with classes (of 50 min 
each) held thrice a week. The lectures were supplemented 
by weekly tutorials in four groups of 12 students each 
(with one of these comprising of students who preferred 
to have the explanations in Hindi). 

3. The instructor 

The lecturer, whom we call Ms. X and whose 
teaching is being examined in this case study, holds 
a Master’s degree in Mathematics from a leading 
Indian university, and is a gold medalist for 
securing the first position. She has been teaching for 
over three decades, and is an Associate Professor in 
a top-ranked college (her alma mater) affiliated to 
the university. During this period, she has taught 
courses in both pure and applied mathematics, 
ranging from real analysis and abstract algebra to 
mechanics and statistics. She does not have a 
doctoral degree, nor any published papers to her 
credit. However, she has consistently received 
outstanding evaluations from her students in 
whatever she has taught, has a formidable local 
reputation as a teacher par excellence, and is a 
crusader for educational reform. Comparative data 
between Ms. X’s student evaluations and outcomes 
and those of other instructors of the same courses at 
her institution are not available, and thus we speak 
about reputation of teaching effectiveness rather 
than demonstrable teaching effectiveness. Ms. X’s 
recognition locally as an effective teacher was the 
main reason for us selecting her for this case study. 
Also Ms. X is highly “committed to her work, able 
to articulate her point of view, and interested in 
doing so” – which are desirable qualities for a 
pedagogical case study (Elbaz, 1981, p. 51).  

Ms. X’s teaching practice is within the ambit of 
the DTP format of instruction, but there is no doubt 
her practice is not typical. The non-typical nature of 
her practice is not a problem for our purposes in this 
paper, as we are not focusing on the instructional 
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treatment of proof in ordinary or representative 
undergraduate classes in Indian universities. Indeed, 
such a focus would have been of little interest to the 
field or to local practitioners, for it is common 
knowledge that the traditional style of the DTP 
format of instruction (as we described it earlier) 
dominates Indian undergraduate mathematics classes 
as much as it dominates similar classes elsewhere in 
the world. Following recognition that this state of 
affairs is problematic, a key issue that arises, and 
which this paper takes a step to address, is a need for 
greater understanding of how university instructors 
might productively engage their students in proof-
related work. From a methodological standpoint this 
issue calls for examination of non-typical teaching 
practices at the undergraduate level, similar to the 
study of deviant, information-rich teaching practices 
at the elementary school level of teachers like Ball, 
Lampert, and Zack (see, e.g., Ball & Bass, 2000, 
2003; Lampert, 1992; Reid, 2002; Stylianides, 2007, 
2016; Zack, 1997). Examination of this sort of 
practices can afford researchers an opportunity to 
better understand what is involved in trying to 
improve the teaching of proof at the undergraduate 
level, which, in our view, is the first, foundational, 
step in an ambitious, long-term research program that 
would aim to help other university instructors to 
engage their students more productively in proof-
related work. 

4. Data sources 

The main sources of data for this case study are 
video-recordings of Ms. X’s lectures. Due to time 
constraints, only the first 24 (out of 42) lectures were 
video recorded, which almost fully covered the first 
two (of three) topics of the syllabus, namely real line 
topology and real sequences (convergence). Of these, 
ten were carefully selected for detailed analysis, so as 
to include most of the key definitions and theorems, 
and also illustrating Ms. X’s use of all three 
presentation styles identified by Weber (2004). We 
presume that Ms. X’s treatment of the third topic 
(infinite series) was similar to the other two. 

A secondary source of data was the video-
recording of a 1-hour interview with Ms. X towards 
the middle of the semester, in which she spoke on her 
broad objectives as a teacher and the pedagogical 
techniques she used to meet these objectives. The 
main purpose of this interview was to document Ms. 
X’s own perspective on her teaching practice, which 

was useful for triangulation with our own analysis of 
her practice based on the video data. 

5. Data analysis 

Given that Ms. X’s teaching practice followed the 
general DTP format of instruction, our first 
categorization of the observed lectures (or parts 
thereof) was according to the three main DTP 
components: (1) teaching of Definitions; (2) teaching 
of Theorem statements; and (3) teaching of Proofs. 
These categories were further sub-divided according to 
Weber’s (2004) three styles of presentation (although 
Weber used those in relation to proof presentation, we 
found them useful also in characterizing Ms. X’s 
teaching of definitions): (a) the Semantic style, which 
is characterized by intuitive motivation and visual aids 
including diagrams; (b) the Logico-structural style, 
which involves formal mathematical statements and 
symbolic logic; and (c) the Procedural style, which is 
built around computational and algebraic manipulation. 

These categorizations were done in advance, before 
our more detailed analysis of the lectures to discern 
specific features of Ms. X’s teaching practice. The 
broad structuring, in accordance with the three DTP 
components, was based on knowledge of the 
topics/goals of the lectures and on the first author’s prior 
familiarity with Ms. X’s teaching practice as well as his 
own long-standing experience as an undergraduate 
instructor. The sub-categorization according to Weber’s 
(2004) three styles of presentation was also conceived 
of in advance, motivated largely by Weber’s case study 
of Dr. T. From his own pedagogical experience and 
prior familiarity with Ms. X’s teaching practice, 
corroborated by the analysis of Dr. T’s case study, the 
first author could – fairly accurately – predict the style 
that was likely to be adopted by Ms. X in the various 
lectures according, again, to the topics/goals of those 
lectures. These predictions were subsequently 
confirmed during the analysis, thus offering confidence 
in our understanding of Ms. X’s broad use of the 
various styles of presentation. The topics, as well as the 
specific definitions, theorems, and proofs, to be 
discussed later in the paper were carefully selected so as 
to bring out the diversity in the presentation styles 
adopted by Ms. X and the situations for which she 
adopted each style.  

Other aspects of Ms. X’s teaching practice that came 
up during the interview or observations, notably, the 
provision of a 2-week foundation course in symbolic 
logic at the very outset, were also documented. The 
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result of this process was a nuanced characterization of 
Ms. X’s teaching practice that is grounded to fit the 
available data. 

MS. X’S TEACHING PRACTICE 

1. General observations 

Ms. X’s teaching practice has the following main 
features:  

(1) A solid foundation in symbolic logic at the very 
outset; 

(2) A major focus on definitions explained in depth 
in a semantic style using informal language, 
visual aids, and real-life analogies; 

(3) An interactive, conversational style of proof-
instruction, invoking the participation of students. 

 

With regard to the first main feature, Ms. X 
explained during the interview that the first step 
towards supporting students to understand and 
actually enjoy university-level mathematics is a solid 
foundation in symbolic logic: 

 

Ms. X: “The first step is proper foundations. 
Students who intend to major in mathematics 
have to be familiarized with the ‘language of 
mathematics.’ They need to be given a proper 
training in symbolic logic before they 
encounter any proof-based courses. Sadly, 
this is not done by most teachers of abstract 
algebra and analysis. In particular, clarity 
between converse and contrapositive, and 
fluency in negating statements are absolutely 
essential in the construction of proofs.” 

 
We will illustrate in detail the second and third main 

features of Ms. X’s teaching practice in the following 
sections. Evidence from the interview suggests that these 
features are central to Ms. X’s pedagogical practice from 
her own point of view too. In response to a question about 
what else, besides training in logic, is at the core of her 
teaching, Ms. X explained the importance she places on 
teaching definitions, describing essentially a semantic 
style of teaching (cf. feature 2): 

 
Ms. X: “I attach a lot of importance to the teaching 

of definitions, because without a proper grasp of 
definitions, the proofs won’t make any sense [to 
the students]. So I spend a lot of time giving 
them informal explanations and real-life 
analogies with situations to which they can relate. 

This arouses their interest and involvement, and 
then the concept usually sticks in their mind.” 

 
During the interview Ms. X also asserted that her 

highly interactive style of teaching (cf. feature 3), in 
the form of a conversation with students, “comes so 
naturally [to her] that [she] do[es] not even regard it 
as a ‘style’ of teaching”; she “firmly believe[s] that 
all teaching must be like that.” She invokes the 
participation of students in various ways. One way is 
by creating space for them to make mistakes and 
correct the mistakes themselves; as she put it, “Once 
you actually make a mistake and correct it yourself, 
you are not likely to repeat that mistake.” Another 
way in which she invokes students’ participation is 
by fostering their critical ability and observation 
power by making some deliberate mistakes for 
students to detect: 

 
Ms. X: “I also want to build their critical ability and 

observation power. In particular, to not accept 
every word simply because your teacher says so 
or [because] it is written in some textbook, but to 
always be alert to possible mistakes made by 
others. So, I sometimes deliberately make a 
logical error while presenting a proof in class, 
and expect the students to detect the flaw.” 

 
In response to a question by the interviewer (first 

author) about whether students are able to detect the 
logical errors, Ms. X responded in the affirmative and she 
attributed the students’ ability to do that to “the ‘grilling 
in logic’ which [she] subjected them to in the beginning 
[of the course].” 

Another way in which she invokes student 
participation during proof presentations, in addition to the 
“catch the error” pedagogical strategy, is what she calls 
the “whispering rounds,” which she explained at the 
interview as follows: 

 
Ms. X (laughs): “The rationale for [the whispering 

rounds] is pretty obvious. When I pose a question 
to the whole class, I want each student to think of 
an appropriate answer independently, so I 
cannot let anyone hear somebody else’s reply. So 
those who wish to answer have to simply raise 
their hands, and then I take a round of the 
classroom in which each of them has to whisper 
their answer into my ears. After mentally 
collecting all their answers, I come back to the 
board to discuss them.”    
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Yet another way in which Ms. X invokes student 
participation is by calling on students to answer 
questions, without them having volunteered to do so. 
The practice of students answering questions by 
teacher nomination is common in Asian classrooms 
(see, e.g., Tan, 2007) and culturally acceptable in the 
Indian context.   

Beyond the three main features of Ms. X’s 
pedagogy already summarized, Ms. X holds “the 
unflinching belief that every single student, given the 
right kind of teaching and guidance, can be made to 
understand and actually enjoy higher mathematics.” 
This belief appears to underpin Ms. X’s pedagogy, 
notably the whispering rounds that help engage as 
many students as are willing to participate, but also the 
practice of nominating non-volunteer students to 
answer teacher questions, and contributes to her effort 
to demystify proof for all of the students in her class. 

In what follows, we delve deeper into Ms. X’s 
teaching practice using our analysis of the lecture 
videotapes and considering, in turn, her teaching of 
Definitions, Theorem statements, and Proofs, as per the 
core aspects of the DTP style of instruction. We will 
consider several examples under each – from a number 
of topics covered in the course related to real line 
topology and real sequences (convergence) – so as to 
make more transparent Ms. X’s pedagogical approach.  

2. The teaching of definitions 

The definitions are the edifice on which the entire 
theory rests: without a firm grasp of the relevant 
definitions, the theorem statements would not make 
much sense, and the proof-construction would be a 
challenging task. With this belief, Ms. X spends a 
considerable amount of time and effort in motivating 
and explaining the definitions of every topic. To this 

end, she makes use of informal terminology and 
simple diagrams, and often enriches these with real-
life analogies (such as in Topic 1, Limit Points, 
discussed below). The formal definition is provided 
only after the intuitive motivation “has sunk in.” For 
some topics (such as in Topic 2, Convergence of real 
sequences, discussed below), Ms. X introduces the 
main concept after discussing several examples and 
generalizing from them. Here again, an informal, 
intuitive definition invariably precedes the formal 
definition required for the proofs. The formal 
definition is immediately followed by its negation, 
i.e., when the definition is false. This not only helps 
in strengthening understanding of the original 
definition, but also it is required later for proofs by 
contradiction.  

 Next we present two illustrations of Ms. X’s 
teaching of definitions. Whenever Ms. X or a student 
speaks a word or a phrase loudly, or with emphasis, 
that word or phrase has been put in italics. All 
student names are pseudonyms.  

1) Topic 1: Limit points (in real-line topology) 

Informal introduction with diagram 
Ms. X writes the topic on the board and proceeds with 

the informal introduction of the concept using a diagram.  
 
Ms. X: “Let S be a subset of R, and let p be a real 

number. Informally, p is a limit point of S means 
that p is ‘very close’ to S in the following sense: 
every ‘vicinity’ of p has some point of S (other 
than itself, of course).” 

 
Ms. X draws on the board a two-dimensional sketch 

(even though R is one-dimensional), as in Figure 1, for 
she believes that this is not only more illustrative, but also 

Figure 1. A two-dimension sketch of S and a limit point p. 
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generalizable for the multi-dimensional and axiomatic 
abstraction required in advanced analysis and topology. 

 

Real-life analogy 
Ms. X proceeds to give a real-life analogy of a student 

being a limit point of a college: 
 
Ms. X: “Suppose that S is this college (i.e., the set of 

all its students), and p is some student (not 
necessarily a member of S). Then student p is 
called a limit point of the college S if and only if 
every ‘social circle’ (friends’ group) of p has 
some member of S (besides herself/himself). 
Observe that for p to be a limit point of S, p need 
not be a member of S; there can be students who 
are not members of college S but are ‘very close’ 
to S in the sense defined above. […] [She 
elaborates with a hypothetical example.] Also, 
however, an element (member) of S may or may 
not be a limit point of S; there can be students 
who are members of S, but are yet not ‘very 
close’ to S in the above sense. […] [She 
elaborates with a real example.]” 

 

Formal definition 
Ms. X introduces next the formal definition: 
 

Ms. X: “Okay, we now formalize the definition in 
mathematical language. Let S⊆ 	&	܀ ∈  A .܀
‘vicinity’ of p can be described in terms of an 
open interval with center p, i.e. of the form 
) − ,ߝ  +  which can be denoted by Iக(p) (ߝ
for some ߝ > 0.”  

 
Ms. X elaborates further on the definition: 
 

Ms. X: “Thus, p is a limit point of S means that every 
open interval with center p has some point of S 
(other than itself). The formal definition can be 
written in terms of epsilon.”  

 
She writes on the board what appears in Figure 2, and 

she explains further by drawing a small open disc with 
center p, which has some other point of S.  

 

Definition: p is said to be a limit point of S iff for 
every ߝ > 0 the interval ܫఌ(p) has some point of 
S ∼   {}
i.e. for every ߝ > ()ఌܫ  ,0 ∩ ܵ ∼ ≠ {} 	߶ 

Figure 2. A formal definition of a limit point of S

Negation of definition 
Ms. X: “As I keep emphasizing, to properly 

understand any concept, we must do its negation 
also. So tell me, Ira, what is the meaning of ‘p is 
not a limit point of S’?” 

Ira: “Ma’am, there exists	ε > 0	such	that	Iக(p) 	∩S ∼ {p} 	= 		ϕ.” 
Ms. X: “Yes, good!” 

2) Topic 2: Convergence of real sequences 

Informal introduction with diagram 
The concept of a sequence, its diagrammatic 

representations, and a “tail” of a sequence have all 
been introduced informally by Ms. X in the 
preceding lecture, illustrated with numerous 
examples.  

 
Generalization from several examples (using 
diagrams again) 
Ms. X: “In the previous class, we had done 

several examples of sequences. Let us now 
try to discern a common behavioral pattern in 
some of them. First consider the sequence….” 

She writes a sequence on the board and draws a 
one-dimensional diagram as in Figure 3.     

 

Ex 1)  <1/n> = 1, 1/2, 1/3,1/4,……………  

Figure 3. A sequence and a respective diagram
 
Ms. X: “As you notice, the sequence is moving 

‘backwards’ and ‘approaching’ (i.e., moving 
‘very close’ to) what?” 

Several students: “Ma’am, to zero.” 
Ms. X: “Yes! What does this ‘very close’ means 

rigorously – that we will formulate shortly. 
No hurry! Meanwhile, let us see some more 
examples.”  

 
Ms. X moves on to offer a few more examples such as  
  

<(−1)୬/n >   =   -1, 1/2, -1/3, 1/4, … 
 

which “approaches” zero from both sides, and  
 

< n/n+1 >   =   1/2, 2/3, 3/4, 4/5, … 
 

which “approaches” 1.  
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Ms. X: “We are now going to examine and 
describe this common behavior of all these 
sequences. Informally (as, say, economics 
students would put it), we can say that a୬		 comes ‘arbitrarily close’ to p for 
‘sufficiently large’ values of n. But, as 
mathematics majors, you should also have a 
more rigorous formulation of these phrases 
using precise symbols, set theory etc. I am 
now going to draw an arbitrary sequence 
which looks like it’s coming ‘very close’ to a 
particular number, and then all of us will try 
to make a rigorous description of that 
behavior.” 

 
Ms. X then draws a diagram as presented in 

Figure 4, which she develops step-by-step as she 
keeps explaining. First she marks a point p on the 
real line. Then she draws a sequence whose initial 
few terms are randomly placed, but soon develops a 
sort of pattern and ‘approaches’ p in a zig-zag 
manner. 

 

Terminology: We write a୬ → p as n	→ ∞ or limit of a୬ = p (as n → ∞) 
Figure 4. An “arbitrary sequence” coming “very 
close” to “a particular number.” 

 
Ms. X: “We now make use of this diagram to 

formulate a rigorous definition of the sequence 
coming ‘very close’ to p. Now, ‘the degree of 
closeness’ to p can be described through intervals 
surrounding p (centered at p, for convenience).” 

 
She draws an open interval J with center p and 

continues: 
  

Ms. X: “Now whatever interval I take surrounding p 
(howsoever small), I can make ܽ  lie in it, 
provided that I take n to be large enough, i.e., 
greater than some particular natural number, say ݊. This gives us one formal definition.” 

 
Ms. X writes on the board the text in Figure 5, and she 

speaks out as she writes. 
Then she draws a few intervals in decreasing order of 

length (cf. Figure 4), and she asks the students what ݊ 
“works” for each. Also, she points out that once an	݊ 

works for a given interval J, then so does any subsequent 
natural number. 

 

A sequence < ܽ > is said to converge to a real 
number p  iff  for every open interval J with 
center p, there exists ݊ ∈ such that ܽ ࡺ ∈ J 
for every n ≥ ݊                            
i.e., the tail  {ܽ: n≥ ݊ }  is fully contained in J. 

Figure 5. An informal definition of convergence of 
a sequence 

 
Ms. X: “Now, any open interval J centered at p is of 

the form ( p – ε,	p + ε) for some ε > 0. Also, 
the statement a୬  ∈	  (p – ε,  p + ε)   is 
equivalent to |a୬- p| < 	ε  (recall properties of 
absolute value). So we get the following 
equivalent formulation, which is universally 
accepted as the standard definition of 
convergence.” 

 
Formal definition 
Ms. X introduces the formal definition in Figure 6.  
 

Definition: A sequence < a୬	> is said to converge to 
a real number p  iff  
for every ε > 0,	there exists n ∈  such that ࡺ
|ܽ– p | < ε		for every n ≥ ݊ 
 

In words:  
 

The distance (absolute difference) between ܽ and p 
can be made arbitrarily small (for sufficiently large 
values of n). 

Figure 6. A formal definition of convergence of a 
sequence 

 
Negation of definition 

Ms. X: “As always, we must formulate the negation 
of this definition also. Mansi, can you please try 
this?” 

Mansi: “For every n ∈ there exists an ε , ࡺ > 0	 
such that…” [Ms. X interrupts her.] 

Ms. X: “Please stop, Mansi. A cardinal principle of 
negation is to not change the order in which the 
quantifiers occur; so please try again.” 

Mansi: “There exists ε > 0	 such that for every ݊ ∈ N, |ܽ  – p| ≥ ε  for some n < ݊.” 
Ms. X: “There is still an error in the end. The 

statement ‘P for every Q’ is equivalent to ‘Q 
implies P’, whose negation is what?” 

Several students: “Q but not P.” 
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Ms. X: “Yes, there exists (some) situation in which 
Q is true but P is false. Mansi, now speak out the 
entire negation.” 

Mansi: “Okay ma’am. There exists ε > 0 such that 
for every ݊  ∈ ≤ there exists n ,ࡺ ݊  such 
that  |ܽ – p| ≥ 	ε.” 

Ms. X: “That’s excellent!” 

3) Concluding remarks 

While instructors who follow the traditional DTP 
format tend to present formal definitions to the students 
without any background or explanation, Ms. X spends a 
considerable amount of time and effort towards a gradual 
“build up” to the definition. This involves the use of 
informal language, illustrative diagrams, real-life 
analogies, and a variety of examples. A definition that can 
be intelligible to a non-specialist always precedes the 
formal definition, which is like the “grand finale.” Ms. X 
always concludes the discussion of a definition with its 
negation so as to strengthen clarity as well as prepare 
proofs by contradiction. This entire process is done in an 
interactive, conversational manner; the negation is 
invariably provided by the students. 

Overall, Ms. X’s teaching of definitions is 
predominantly in the semantic style (Weber, 2004), with 
the logico-structural style (ibid) coming only towards the 
end for writing the formal definition and its negation. Ms. 
X’s investment in strengthening students’ understanding 
of symbolic logic is also evident in the discussion of the 
negation of definitions. The in-depth, clear introduction 
of definitions, in conjunction with the foundation course 
in symbolic logic at the outset, pave the way for 
demystifying proofs, as we will discuss later in the paper.  

3. The teaching of theorem statements 

The teaching of theorem statements tends to be the 
most routine part of the entire process of DTP 
instruction; most teachers take just a few minutes 
over it by simply writing the statements on the board. 
However, here too Ms. X displays some innovation: 
first she does a few carefully selected examples, and 
then she asks the students to observe and try to 
generalize from those examples the possible 
statement of a theorem. 

Next we illustrate Ms. X’s teaching of theorem 
statements by presenting her introduction to the 
statement of the Monotone Convergence Theorem 
and its counterpart, the Monotone Divergence 
Theorem. 

1) The Monotone Convergence/Divergence 
Theorems 

Ms. X: “I am going to write 2 sequences on the 
board. Tell me a point of similarity between them:                 

< n/n+1> = 1/2, 2/3, 3/4, 4/5, …. 
< 2n > =  2, 4, 6, 8, ….” 

Several students: “Both are increasing.” 
Ms. X: “Yes. And now tell me a point of difference. 

[Students discuss amongst themselves for a bit.] 
Okay, as regards boundedness?” 

Some students: “The first one is bounded, but the 
second one is not.” 

Ms. X: “Yes, good. What about convergence and 
divergence? Deepak, you answer.” 

Deepak (in Hindi): “Ma’am, the first one is 
convergent, and the second one is divergent.” 

Ms. X: “Very good, Deepak! So, can you all make a 
general observation? I would like you to make 
two separate (but similar) statements. Anyone 
wants to try?” 

Mirza: “Ma’am, I’ll try. First one: Every increasing 
and bounded sequence will converge. Second 
one: Every increasing and unbounded sequence 
will diverge.” 

Ms. X: “Perfect, Mirza. So we get the following two 
theorems.” 

 
Ms. X begins to write The Monotone Convergence 

Theorem on the board but does not complete the 
statement (Figure 7). 

 

The Monotone Convergence Theorem (MCT): A 
sequence which is monotonically increasing and 
bounded above must converge… 
Figure 7. An incomplete statement of the 
Monotone Convergence Theorem 

 

Ms. X: “[Must converge] to what, Pia?” 
Pia: “To its supremum, ma’am.” 
Ms. X: “Excellent! And the second statement 

observed by Mirza is….” 
 
Ms. X writes “The Monotone Divergence Theorem” 

on the board and invites a student to offer the full 
statement: 

 
Ms. X: “Mansi, please state it properly and fully.” 
Mansi: “A sequence which is monotonically 

increasing and unbounded above must diverge to 
infinity.” 
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Ms. X: “That’s absolutely perfect, very good Mansi.”    

2) Concluding remarks 

Rather than simply telling to students the statement of 
a theorem to be proved, as many instructors who follow 
the DTP format would do, Ms. X tries to extract it from 
the students. By presenting some relevant examples and 
asking the students to discern a pattern, she is usually able 
to achieve this objective. This sort of presentation is 
entirely in the semantic style (Weber, 2004). Also, we 
observe again Ms. X’s interactive, conversational manner; 
Ms. X is asking questions that invoke students’ 
participation (not always voluntary but firmly within 
established cultural norms) in deriving the theorem 
statement.    

4. The teaching of proof 

We now analyze Ms. X’s handling of the main 
task, the teaching of proof. Having (1) laid the 
foundations of symbolic logic at the very outset and 
(2) spent considerable time and effort motivating the 
definitions and in some cases the theorem statements 
too, the task of demystifying the proofs has been 
prepared. Let us recall that in the teaching of 
definitions, Ms. X had primarily used the semantic 
style, with the logico-structural style taking over at 
the final stage of formalization only. However, for 
proof presentation she used all three styles that were 
identified by Weber (2004), depending on the 
suitability of each for the purpose. We illustrate all 
styles in the following sections.  

There are two notable pedagogical strategies 
employed by Ms. X during some of her proof 
presentations, with the objective of strengthening her 
students’ critical ability and independent thinking as 
well as broadening student participation during the 
lesson. At the interview Ms. X talked about these 
pedagogical strategies and her rationale for them; we 
summarize the strategies again here for easy 
reference:  

 

(1) “Catch the error” pedagogical strategy: Ms. 
X often deliberately made a logical error and 
expected the students to detect it. By and 
large, most students were able to point out the 
fallacy in the argument, largely due to their 
rigorous training in symbolic logic at the 
beginning of the semester.  

(2) “Whispering round” pedagogical strategy: 
When Ms. X posed a question to the entire 

class, the students would raise their hands, 
and then she would take a round of the 
classroom in which the students would 
whisper their responses into her ear. The 
purpose behind this was that all students 
would have an opportunity to think for 
themselves without being influenced by other 
students’ responses. 

1) Illustration of semantic style 

For the teaching of proofs, Ms. X uses the 
semantic style rather selectively, mostly only where 
she believes that a visual representation of the proof 
is feasible and useful. One reason for this could be 
that the semantic style takes up more time than the 
other two; and she has already invested a substantial 
amount of time in the teaching of definitions. After 
painstakingly constructing the “semantic proof,” Ms. 
X would also write down the “formal proof” rapidly 
in the logico-structural style. This serves the triple 
purpose of revision, crystallization of ideas, and 
providing concise study-material to the students. 

 
First illustration: Theorem for characterization of limit 

point 
Occasionally (as in the theorem below), Ms. X does 

not reveal the statement of the theorem prior to its proof, 
she but allows for it to “emerge” or “be discovered” from 
the proof. 

 
Ms. X: “Recall the definition: p is said to be a 

limit point of S if every open interval 
centered at p has some point of S	~	{}. We 
are now going to obtain another equivalent 
characterization of limit point. I will not tell 
you its statement in advance; rather, we will 
discover the statement from its proof.” 

 
Ms. X writes on the board, “Theorem 

(Characterization of Limit Point) – Statement later,” 
and proceeds by speaking and demonstrating on a 
one-dimensional diagram (Figure 8), which she 
builds as the proof goes along. 

 

Figure 8. Diagram used in the process of proving 
theorem for characterization of limit point 
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Ms. X: “Let p be a limit point of S. So for any ε > 0, the	interval Iக(p)	has	some	point	of	S ∼ {p}, say	ݔଵ. My question now is: How 
many points of S 	∼ {}  will the interval ܫக() have? We have already got one, i.e. ݔଵ,using the definition. Now how many more 
such points can I get?” 

 
There is no response from the class, and Ms. X 

proceeds with some more fundamental questions: 
 
Ms. X: “Okay, can I first get one more? Please 

note that the definition holds for every ε > 0; so I can now apply it on some ‘new’ ε. What should I take this new ε	to be to get 
another point in the original interval? [There 
is now some discussion among the students.] 
Chogsi, please try.” 

Chogsi: “Ma’am, I should take the new epsilon 
to be greater than the original epsilon.” 

Ms. X: “But in that case, the new point ݔଶ need 
not lie in the original interval [demonstrates 
in the same diagram]. Clearly, the new 
epsilon should be smaller than the original; 
the question is, how much precisely should it 
be to get a point of S	∼  in the original {}
interval different from ݔଵ?” 

Another student: “Ma’am, the difference 
between ݔଵ and p?” 

Ms. X: “Yes, excellent! [repeats loudly] The 
difference between ݔଵ  and p  [explains 
using the diagram]. By taking εଵ = |ݔଵ – p|> 
0 and applying the definition to the smaller 
interval ܫகଵ(), we get a point, say ݔଶ , of  
S	∼                                                                                  .ଵݔ different to 	{}
Why is ݔଶ different to ݔଵ? [Pauses for a bit.] 
It is because ݔଶ is inside, i.e., in the interior 
of this new interval, whereas ݔଵ is an end-
point of it [demonstrates in the diagram].”   

 Ms. X: “Next, how do I get a point	ݔଷ of S ∼  in the original interval different from  {}
both xଵ and ݔଶ ? The lone Humanities 
representative [in the class], Smita, will 
answer this.” 

Smita: “Ma’am I take εଶ = |ݔଶ – p| and apply 
the definition.” 

Ms. X: “Yes, correct. This will give a point ݔଷ 
of S	∼ ଶݔ ଵandݔ different from both {} .                                                               
Now I can keep repeating this process 
indefinitely to get a whole sequence ݔଵ,	ݔଶ, 

∽	ଷ, … of distinct points of Sݔ  all lying {}
in the original interval ܫఌ(p). So how many 
points of S	∼  does the original interval {}
have?” 

Students (chorus): “Infinite.” 
Ms. X: “Yes, [repeats loudly] infinite. So we 

have got our required statement [writes the 
statement of the theorem as in Figure 9].” 

 
 

Theorem (Characterization of limit point): p is a 
limit point of S iff every open interval centered at p 
contains infinitely many points of S  
i.e., for each ε > 0,  Iக(p) ∩ S  is infinite. 

Figure 9. Statement of theorem for characterization of 
limit point 

 
The episode finishes with Ms. X writing the proof 

linearly on the board in a logico-structural style, 
without using any diagram and repeating only briefly 
the verbal explanations.  

 

Second illustration: Monotone Convergence 
Theorem 

In this episode Ms. X announced in advance the 
statement to be proved (Figure 10). 

 

Monotone Convergence Theorem: A sequence 
which is monotonically increasing and bounded above 
must converge to its supremum. 

Figure 10. Statement of Monotone Convergence 
Theorem 

 
Ms. X mainly faces the students as she speaks; she is 

using the board only for the diagram (Figure 11).  
 

Figure 11. Diagram used in the process of proving 
Monotone Convergence Theorem 

 

Ms. X: “Let us imagine that there is this 
sequence <ܽ> which is increasing [meaning 
monotonically] and bounded above [gestures 
both these attributes through appropriate 
hand movements]. As it is bounded above, so 
there are a whole lot of upper bounds, i.e., 
‘walls’ which cannot be crossed. So, here is 
my sequence which is ‘moving forward’ only 
(as it is increasing), ambling along, till 
suddenly it sees this wall coming up in front 
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[draws diagram, see Figure 11]. So what 
does it do? As it cannot go backwards, so it 
starts taking smaller and smaller steps till 
it… what?” 

A student: “Bangs against the wall?”  
Ms. X: “Is that what we want?” 
Several students: “No ma’am, it converges to the 

wall.” 
Ms. X: “Which wall, Anirvan? There are infinitely 

many walls [points to diagram].” 
Anirvan: “The first wall, ma’am, i.e. the least upper 

bound.” 
Ms. X: “Excellent, Anirvan! But how do we know 

that this exists? Rajesh, you answer. [She 
receives no response, and she repeats question 
in Hindi.]” 

Rajesh: “Ma’am, Complete Property.” 
Ms. X: “Yes Rajesh, Complete-ness Property. As 

the set of ܽ s is obviously non-empty and 
given to be bounded above, hence it has a least 
upper bound, i.e., supremum, say u.” 

Ms. X: “Now that we believe that <ܽ> converges 
to its supremum u, we must prove it. So how do 
we begin? It is the same standard way which 
you all should know on your fingertips.” 

Chorus: “Let ε > 0 be given. [To show ∃݊ϵࡺ 
such that |ܽ − u| < ε		∀		݊ ≥ ݊	.]” 

Ms. X: “Here the interval-form would be more 
convenient; so to show the existence of an	n 
such that  u – ε < 	ܽ < u + ε  for every 
n≥ ݊. Now which of these two inequalities 
obviously holds for every n? Nikhil, please 
answer.” 

Nikhil: “The second one, ma’am, because all terms 
are ≤ u, as it is an upper bound; and u < u + ε.” 

Ms. X: “Excellent, Nikhil! So we need to only 
prove the one involving u – ε. As u is the least 
upper bound of the sequence, what can we say 
about u – ε	 [points to diagram]?” 

Chorus: “Not upper bound.” 
Ms. X: “And what does that mean? Tarini will 

answer.” 
Tarini: “There exists an element which is greater 

than u – ε.” 
Ms. X: “Very good! That is, ∃	݊ ∈                                                   .such that ܽ > u – ε [marks with a dot on diagram] ࡺ

So, are we done?” 
 
There is a mixed response from the class with most 

students saying “no” but a few saying “yes.” 

Ms. X: “Shivam, what do you say?” 
Shivam: “No ma’am, we are not done, as we have 

got only one term greater than u – ε.” 
Ms. X: “Yes, we have only one term which is 

greater than u – ε; but we need this inequality 
to hold for all terms after some stage. So, how 
do we justify that; please raise your hands only.” 

At this point Ms. X conducts a “whispering round.” 
After taking a round of the classroom, she says: 

 
Ms. X: “Most of you have got it right. We hadn’t 

yet used the main info given, that the sequence 
is increasing. So, if that one term which is 
already greater than u – ε	is, say, the nth term, 
then all subsequent terms will, obviously, also 
be greater than u – ε  [demonstrates in 
diagram], i.e., 	ܽ > u – ε ∀	n ≥ ݊. So we 
are done.” 

 
The episode finishes again with Ms. X writing the 

proof linearly on the board in a logico-structural style, 
without any explanation, which gets done promptly. 

2) Illustration of logico-structural style  

While Ms. X primarily uses the semantic style for 
introducing and explaining definitions, she uses it 
only occasionally while teaching proofs. Her 
predominant style of proof presentation is logico-
structural, which relies heavily on the expert use of 
Set Theory and Symbolic Logic without the support 
of any intuition or diagrams. 

We now illustrate Ms. X’s use of the logico-
structural style to prove the “Union Theorem for 
Derived Sets.” The episode exemplifies also Ms. X’s 
“catch the error” pedagogical strategy: she 
deliberately writes an invalid argument on the board 
and asks the students to detect the flaw; she expects 
the students to be able to do so, as she had already 
laid the foundations of logic. In the episode the 
“catch the error” pedagogical strategy is combined 
with a “whispering round.”  

We first describe briefly the part of the lecture 
leading up to the theorem. 

 

Ms. X: “The symbol d(S) or D(S) denotes the set of 
all limit points of S, called the ‘Derived Set’ of 
S. Thus p ∈	d(S) means p is a limit point of S. 
Now we can restate our characterization of limit 
point as… [writes on board as in Figure 12].” 
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Characterization of limit point (Restatement): p ∈	d(S)  iff  for each ε > 0,	 Iக(p) ∩ S is infinite 
Corollary: If there exists a p in d(S), then S must be 
infinite 
Contrapositive: A finite set S cannot have any limit 
points, i.e., d(S) = ϕ   

Figure 12. Notes on the board in preparation for 
proof of Union Property of Derived Set 

 
Ms. X does several examples of derived sets, 

including d(Z) = ϕ , d(Q) = R , d(0,1) = [0,1], & d{1/n: 
nϵ{0} = {ࡺ, and announces that the class shall now 
prove some results about derived sets, beginning with the 
proof of the observation 

 

S ⊆ T		 ⇒ ݀(S) 	⊆ ݀(T), 
 

which she explains briefly and writes on the board in a 
logico-structural style.  

 

Ms. X: “We shall now prove a property of derived 
sets [writes on board the statement of the 
theorem as in Figure 13 and asks students to 
verify the property for some specific sets].” 

 

Theorem (Union Property of Derived Set):  
d(S U T) = d(S) U d(T) 

Figure 13. Statement of Union Property of Derived Set 
 

Ms. X: “Let us now discuss how to prove this. That 
the righthand side is contained in the left-hand 
side is obvious using the above observation 
[gives brief reason]. For the other way, I am 
going to give you all a proof, and you please 
examine the proof.” 

 
Ms. X writes on the board in a formal, linear manner 

the text presented in Figure 14, and she explains briefly 
as she writes. 

 

p ϵ d(S U T) ⇒	for each ε > 0,	 Iக(p) ∩ (S U T)  
is infinite  ⇒ for	each	ε > 0, [	Iக (p) ∩ S]	U [ Iக (p) ∩ T]		 is 
infinite [By distributivity of ∩	over U]              ⇒  for each ε > 0 , Iக (p) ∩  S  is infinite  or  Iக (p) ∩ T  is infinite [discusses reason verbally]  ⇒ p ϵ	d(S)	 or p ϵ	d(T)  ⇒	p ϵ	d(S)	U d(T)               
It follows that  d(S U T)   ⊆  d(S) U d(T)  

Figure 14. Notes on the board for proving Union 
Property of Derived Set 

Ms. X: “I can see that Mirza has his hand up. 
Does anyone else have any objection to 
make?” 

 
Several hands go up. Ms. X walks up to each one 

of these students, who whisper their “objections” in 
her ear. After finishing the “whispering round,” she 
comes back to the board. 

 
Ms. X: “Many of you have got it [the error in the 

presented proof]. We will now discuss it. Okay, 
to detect the flaw, let us start from the conclusion 
and move ‘backwards.’ We are trying to show 
that: 

p	∈ 	d(S) U d(T) 
 

i.e., we are trying to show that  
 

p ∈ d(S)  or  p ∈ d(T) 
 

i.e., we are trying to show that 
 

[for each ε > 0, Iக(p) ∩ S	 is infinite] or [for 
each ε > 0, I(p) ∩ T	 is infinite]. 

 

Let us insert this extra step in the proof 
[writes it at the appropriate place, i.e., 
between the third and fourth lines, in the 
‘proof’ in Figure 14]. Now does this [newly 
added step] follow from the previous step 
[third line in the ‘proof’ in Figure 14]?” 

 
The students discuss between themselves and Ms. X 

raises the question: 
 

Ms. X: “In general, does the following hold?” 
 

(P or Q) for every element 
 

implies 
 

(P for every element)  or  (Q for every element) 
 

Students (loud chorus): “No Ma’am.” 
Ms. X: “Why?” 
Several students: “Ma’am, Pink and Blue.” 
Ms. X: “Yes, recall that this is what we called the 

‘Pink and Blue’ problem which was discussed 
during the logic sessions. What it said was that 
the statement ‘Everyone (coming to some party) 
must wear either Pink or Blue’ does not imply 
that either ‘Everyone must wear Pink’ or 
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‘Everyone must wear Blue’. Okay, we were so 
far trying the ‘direct’ approach: I am here and I 
want to reach there, so I start from here and set 
off logically, hoping to reach there. As we did 
not succeed, we have to try some other approach. 
An alternative way is ‘proof by contradiction’: 
Suppose that (what I want) is not true; then what 
happens? And then work towards getting some 
contradiction. Let us try that.” 

Ms. X (speaks and writes): “To prove  d(S U T)  ⊆	 d(S) U d(T)  
Let p ∈	d(S U T) To show p ∈ d(S) U d(T),  
i.e. to show p ∈ d(S) or p ∈ d(T)                                                                         
Suppose not, then what?” 

Several students: “Ma’am, p ∉ d(S)  and  p ∉ 
d(T).” 

Ms. X: “Yes, correct! Because recall that, when you 
negate, then ‘or’ changes to ‘and’ (and vice 
versa). Now, what is the meaning of p ∉ d(S) , 
that is the negation of p	∈ d(S)? Please use its 
‘restatement’. You please answer [points towards 
a student]. I have forgotten your name.” 

Student: “Ma’am, Rohan. I don’t know, as I missed 
the last class.” 

Ms. X: “Rohan, you’ve missed too many classes; 
please cover up. Okay, Maya, please do this 
negation.” 

Maya: “Ma’am, there exists ε > 0 such that  Iக(p) ∩ S is finite.” 
Ms. X: “Correct! Let us call it εଵ. So, ∃ εଵ > 0  

such that  Iகଵ(p) ∩ S is finite. Similarly, ∃ εଶ > 0  such that 	Iகଶ(p) ∩	T is finite [writes on 
board]. Now if I want a single epsilon for which 
both these statements are true, then what should I 
take it to be?” 

Several students: “Their minimum.” 
Ms. X: “That’s right [gives brief reason]. Thus ∃	ε > 0	 such that Iக(p) ∩ S and Iக(p) ∩ T  

are both finite.” 
Ms. X: “Now if two sets are both finite, then what 

will also be finite, Rohit?” 
Rohit: “Ma’am, their intersection.” 
Ms. X: “That’s trivial and would hold even if just 

one of them was finite.” 
Several students: “Ma’am, their union.” 
Ms. X: “Yes! So we get [writes]:  [Iக(p) ∩ S] U 

[ Iக (p) ∩ T]  is finite [asks students to use 
distributivity], i.e. Iக (p) ∩  (S U T) is finite. 
Now, what does this mean?” 

A student: “Ma’am, this means that p is not a limit 
point of S U T.” 

Ms. X: “Excellent! Which means p ∉ d(S U T). 
So….?” 

Chorus: “Contradiction!” 
Ms. X: “Yes, this contradicts our hypothesis; so we 

are done.” 
 

We see that students’ prior training in logic has 
allowed them to find the logical error in the presented 
proof and how their prior training in negating statements 
(see teaching of definitions) has allowed the class to 
embark upon a new approach to proving the theorem 
using proof by contradiction.  

3) Illustration of procedural style 

Where she deems appropriate, Ms. X uses the 
procedural style of proof presentation, that is, she uses 
mainly algebraic manipulation with no role of intuition 
or diagrams, and minimal use of symbolic logic. A vast 
topic which she has covered is the Algebra of 
Convergence, which relies primarily on the manipulation 
of inequalities involving absolute value, mainly the 
Triangle Inequality |x + y| ≤	|x| + |y|. 

Even while using the relatively humdrum procedural 
style, Ms. X is being rather innovative – for instance by 
conceiving of a general format that covers several results 
in a single stroke. This greatly increases clarity by 
allowing students to see a broader picture, and also saves 
time – both for the teaching and for its revision. 

 

Ms. X: “The topic for today is the Algebra of 
Convergence. For this, the only prerequisite – 
besides of course the definition of convergence – is 
the statement of the Theorem: ‘Every convergent 
sequence is bounded.’ We shall also be using the 
Triangle Inequality for absolute value, which is 
what? [Several students reply: |x + y|≤ |x|+ |y| for all 
real numbers x and y].” 

 

Ms. X then writes “Algebra of Convergence” and the 
statement of the theorems as in Figure 15. 

 

If   <a୬>→ a  &  <b୬> → b ,  then:  
1)  < a୬+ b୬>  →  a + b  (Sum Theorem)  
2)  < a୬ - b୬>  →  a – b  (Difference Theorem) 
3)  < a୬b୬>  →  ab   (Product Theorem)  
4)  < ܽ/ܾ> → a/b,   provided  ܾ ≠ 0 ∀݊ ܽ݊݀ ܾ ≠ 0 (Quotient Theorem) 

Figure 15. Statements of theorems related to 
Algebra of Convergence. 
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Then Ms. X proceeds with the proofs, writing on 
the board and speaking as she writes: 

 
Ms. X: “Let us think of a general format which 

covers all these results. All of them come 
under the format: Given that < ܽ> → a  
and  < ܾ >→	b                                                                              
To prove <ܿ > →	 c, where ܿ  is some 
combo (through operation) of ܽ and ܾ                                                                   
i.e., given that |a୬- a| and |ܾ − ܾ| can both 
be made arbitrarily small, we have to show 
that |ܿ – c| an also be made arbitrarily small. 
So tell me what should we do?  
[no response]  Okay, I’ll tell you.  
We will try and show |ܿ – c | ≤ 	λ	|ܽ − ܽ|   
+ 	μ  |ܾ − ܾ|  for some positive constants λ	and	μ  [i.e., a linear combination of the 
‘crucial expressions’].                                                                                  
Once this is done, our task becomes routine. 
Here is the format: [Speaks and writes main 
expressions] Let ε > 0	be	given  
[We have to show 	∃  n  ∈ N  such that 
|ܿ − ܿ| < 	ε	 ∀ n	≥ n ] We have already 
obtained an inequality of the form: 
| ܿ − ܿ| 		≤  λ	|ܽ  – a| + μ  | ܾ  – b|, 
where		λ > 0, μ > 0 
Now to prove the LHS <	ε,	it suffices to get 
the RHS <	ε  
For this it suffices to show that each 

expression in the RHS is < 
கଶ   

This is obviously equivalent to |ܽ – a|< 
கଶ 

and |ܾ – b| < 
கଶஜ  

Now as  <ܽ > → a, 

so corr. to 	 கଶ  > 0, ∃ ݊ଵ ϵN  such that 

|ܽ- a|< 
கଶ   ∀	n ≥ nଵ	  

Also as <ܾ> → b, so corr. to 
கଶஜ>0, ∃	nଶ ϵN such that |b୬ − b| < 

கଶஜ  ∀	n ≥ nଶ 

Now what would be a common n		such that 
both the above inequalities hold ∀	n ≥ n?”    

Chorus: “Ma’am, the maximum of nଵ and nଶ.” 
Ms. X: “Yes, good. So both the above hold for 

all n ≥ n.  
Finally, consider | c୬ - c| ≤  λ	|ܽ − ܽ| +	μ	|ܾ −b| 	which is ≤ λ. கଶ+μ. கଶஜ	=ε		∀	n ≥n 
As ε > 0  was arbitrary, therefore we are 
done.” 

Ms. X: “Let us now apply this general format to 
the particular results. The Sum and 
Difference Theorems are very easy. We will 
write down the formal proof of the Product 
Theorem now. 
[Speaks and writes:]  
Given: <ܽ >	→ ܽ	and < ܾ> → b	
To show < ܾܽ > → ܾܽ.				 Let ε > 0	 be 
given Consider |ܾܽ- ab|.  
[Speaks:] What should we do to get ܽ- a 
and b୬- b ? [no response]  
Okay, if there was ab୬	instead of ab, then I 
could have taken ܾ common to get ܽ – a. 
So, I subtract and add ab୬.  
[Writes:] We have |ܾܽ-ab| = |ܾܽ − ܾܽ 
+aܾ–ab|=|ܾ	(ܽ–a)+a (ܾ-b)| ≤ |ܾ ||ܽ-a| 
+ |a||ܾ- b| ------ (1) 	[by Triangle Inequality] 
[Speaks:] Now can we take |b୬| to be the λ	and |a| to be the μ of the general format 
proof?” 

Some student: “|b୬| is not a constant.” 
Ms. X: “Excellent observation! It is not a 

constant as it involves the variable n. Now 
can it be made less than some constant? What 
is that property called?” 

Several students: “Bounded/ boundedness.” 
Ms. X: “Yes; and why is that true for sequence ܾ?” 
Chorus: “Because every convergent sequence is 

bounded.” 
Ms. X: “Yes; I told you that we will be using that 

somewhere. 
[Speaks and writes:]  
As <ܾ>  is bounded, so there exists K > 0 
such that |ܾ| ≤	K   ∀	nϵN 
So (1) gives:  |ܾܽ – ab| ≤ K |ܽ – a | + 
{|a|+ 1} |ܾ – b |  
I have added 1 as |a| can be zero. 
We now proceed exactly as in the general 
format with λ = K  and 	μ = |a| + 1 
[Speaks:] Now please try out the Quotient 
Theorem as an assignment. It is quite 
difficult, and all of you will get stuck at some 
point. But still you must try it, and we’ll then 
discuss how to tackle it from that point 
onwards.” 

Chorus: “Okay, ma’am.”  
 
We see that, even when using the procedural style 

of proof presentation, Ms. X invokes student 
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participation through appropriate questioning. Also, 
she strives to help students see a collection of related 
theorems as an interconnected network of results 
rather than as isolated facts.   

DISCUSSION 
Ms. X’s teaching practice does not deviate from the 

DTP format that is followed in most proof-oriented 
university mathematics courses (Davis & Hersh, 1981; 
Dreyfus, 1991). However, the way in which the DTP 
format plays out in Ms. X’s classroom is qualitatively 
different from the traditional DTP style (cf. Weber, 2004). 
Indeed, the main features of Ms. X’s teaching practice 
present, collectively, an innovative teaching practice that 
is conducive to undergraduate students forming an 
“epistemic fluency” to productively engage with proof-
related institutional practices from which many 
undergraduate students are disenfranchised (e.g., 
Solomon, 2006).  

Figure 16 outlines a few key features of Ms. X’s 
teaching practice. On the basis of our analysis of the 
observational and interview data, the teaching practice of 
Ms. X emerges as one of structured interaction between 
Ms. X and her students, that is, an interactive, 

conversational style of proof instruction, invoking the 
participation of students. This is based on a solid 
foundation in symbolic logic at the very outset (with 
particular emphasis on implication, converse, 
contrapositive, and negation), and a major focus on 
definitions that are explained in depth in a semantic style. 
At the beginning of each topic, definitions are motivated 
and explained using informal language, visual aids (e.g., 
diagrams), and real-life analogies, before formal 
definitions are finally introduced in a logico-structural 
style. Theorem statements also often get motivated in a 
semantic style instead of simply being announced to the 
students: Ms. X often invokes student participation in 
discerning theorem statements by generalizing from 
examples and patterns. Proof presentation in Ms. X’s 
class follows the same highly interactive, conversational 
style, in which students are active participants in the 
construction of the proofs in the collective domain, 
benefitting from the preparatory activities that allow them 
to make sense of definitions and theorem statements and 
being equipped with sound logical reasoning skills. Ms. 
X uses all three styles of proof presentation identified by 
Weber (2004), depending on their suitability. The logico-
structural style predominates proof presentations, but the 
semantic style is also used where visual representation is 

 

Figure 16. Outline of a few key features of Ms. X’s teaching practice
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feasible; the “routine” procedural style is used sometimes, 
but rather creatively so as to “cover” several results 
through a common format, emphasizing their connections. 
Throughout all stages of the DTP format of instruction, 
Ms. X invokes student participation by using appropriate 
questioning. Primarily during proof presentations, Ms. X 
uses also the pedagogical strategies of “catch the error” 
and “whisper round” that help foster students’ critical 
ability and allow space for all students to think 
independently despite the rather large class size (there are 
48 students in the room). Ms. X further expands the pool 
of student contributors to whole-class discussions by 
nominating students who have not volunteered to answer 
her questions, a practice that is common in Asian 
classrooms (e.g., Tan, 2007) and culturally acceptable in 
the Indian context. 

Lai and Weber (2014) investigated the factors that 
mathematicians profess to consider when constructing or 
revising proofs for pedagogical purposes, which the 
authors called “pedagogical proofs.” The authors 
contrasted pedagogical proofs with the proofs that 
mathematicians write for disciplinary purposes, and they 
defined the former kind of proofs as follows, drawing on 
Shulman (1987): “proofs that transform mathematical 
knowledge into ways of ‘representing ideas so that the 
unknowing can come to know, those without 
understanding can comprehend and discern, and the 
unskilled can become adept’ (Shulman, 1987, p. 7)” (Lai 
& Weber, 2014, p. 93). Following their interview-based 
study with ten mathematicians, Lai and Weber found that, 
“in pedagogical proofs, participants largely professed to 
value the teleological features of diagrams and 
highlighting main ideas; however, they did not always 
include these aspects in their proof constructions and 
revisions” (p. 106). Lai and Weber compared this finding 
with findings of other empirical studies, including Weber 
(2004), that noted that “professors sometimes presented 
highly formal arguments emphasizing logic and 
deduction – in other words, emphasizing epistemic and 
communicative factors – even though these professors 
recognized the importance of students seeing the informal 
side of mathematical proof” (Lai & Weber, 2014, p. 106). 
Thus, there was a mismatch between professors’ beliefs 
about what a pedagogical proof should look like and the 
pedagogical proofs that they constructed or revised 
during the interview. Lai and Weber did not observe 
these professors’ actual teaching, but it might be 
hypothesized that a similar mismatch would exist 
between their declared values in pedagogical proofs and 
the proofs that they actually presented to their students. 
Ms. X not only professed at the interview the importance 

of a unity between the formal and informal side of 
mathematical proof, including the value of teleological 
features of diagrams and main ideas in pedagogical 
proofs, but also, and most importantly, she put all of this 
into practice within the DTP format of instruction. 

The latter reinforces our claim about the innovative 
nature of Ms. X’s teaching practice and the point that the 
DTP format need not be a rigid one but rather can be 
adapted to support meaningful student learning. This 
point was also illustrated by the case studies of university 
instructors’ teaching that were reported by Weber (2004) 
and Fukawa-Connelly (2012) and that we reviewed 
earlier in the paper: Dr. T and Dr. Tripp, respectively. 
Similar to ours, each of these case studies help expand the 
thin research basis of empirical studies on teaching 
practices at the undergraduate level (Speer et al., 2010)  
and contribute unique but complementary images of 
potentially effective proof-related instruction. 

To highlight the distinctive features of Ms. X’s 
teaching practice, let us compare Ms. X’s practice with 
those of Dr. T and Dr. Tripp. With regard to laying a 
foundation of symbolic logic, done in depth by Ms. X, Dr. 
T did that in a cursory manner while there is no evidence 
of Dr. Tripp doing that. Regarding semantic explanation 
of definitions, always done by Ms. X, this was done by 
Dr. T for topological topics only while Dr. Tripp rarely 
did that. As far as pedagogical proofs are concerned, Ms. 
X and Dr. T always tried to help students see the informal 
side of mathematical proof before the formal one, while 
Dr. Tripp rarely did that. Ms. X was more in line with Dr. 
Tripp with regard to fostering interaction with students, a 
practice that was rarely followed by Dr. T. Rasmussen 
and Marrongelle (2006) described a “continuum of 
instructional perspectives from pure discovery to pure 
telling” and they suggested that a well-designed course 
would be “situated toward the middle of such a 
continuum” (p. 391). The teaching practices of Dr. T and 
Dr. Tripp, though closer to pure telling, were highly 
effective from the students’ perspective. From this, we 
can infer that how to tell is a significant pedagogical 
dimension outside the framework of this continuum. We 
believe that the pedagogy of Ms. X is situated toward the 
middle of that continuum in that Ms. X seemed to have 
achieved a defensible balance between, on the one hand, 
engaging students in building up definitions, discovering 
theorem statements, and contributing ideas to the 
construction of proofs as part of the collective work of the 
class, and, on the other hand, maintaining control of the 
flow of classwork including when and how to tell while 
presenting definitions, theorem statements, and proofs.  
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Overall, we see that Ms. X’s teaching practice 
combined features of those of Dr. T and Dr. Tripp, but in 
a rather unique manner and in a different setting: the 
cultural context of India (vs. the American) and in a class 
of a fairly large size (48 students vs. 16 in Dr. T’s class 
and 15 in Dr. Tripp’s). Of course, this is not to say that 
the practices of each of Dr. T and Dr. Tripp presented no 
further distinctive features; rather, it is to suggest that Ms. 
X’s practice offers an image of a potentially effective 
instruction that complements images already reported in 
the literature. Such images are sorely needed as a first 
step towards a longer-term research and development 
program that would aim to scale-up effective instruction 
in undergraduate mathematics through the design of 
interventions or other means (cf. Stylianides et al., 2007; 
Stylianides & Stylianides, 2017). Given that 
mathematicians are unlikely to implement teaching 
practices unless these practices are attuned to normative 
pedagogical practice (cf. Weber, 2012), case studies of 
instructors such as Ms. X, Dr. T, and Dr. Tripp, whose 
practices fit generally under the popular DTP format, 
contribute research knowledge that can be useful to and 
usable in a possible reform of undergraduate mathematics 
instruction.  

Author Note 
This paper is based on the MPhil dissertation of the 

first author, conducted under the supervision of the 
second author at the University of Cambridge, UK. The 
authors are grateful to Ms. X and to her students who 
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