
Generation of a Set of Event Logs with Noise

Ivan Shugurov
International Laboratory of

Process-Aware Information Systems
National Research University
Higher School of Economics

33 Kirpichnaya Str., Moscow, Russia
Email: shugurov94@gmail.com

Alexey A. Mitsyuk
International Laboratory of

Process-Aware Information Systems
National Research University
Higher School of Economics

33 Kirpichnaya Str., Moscow, Russia
Email: amitsyuk@hse.ru

Abstract—Process mining is a relatively new research area
aiming to extract process models from event logs of real systems.
A lot of new approaches and algorithms are developed in this
field. Researches and developers usually have a need to test
end evaluate the newly constructed algorithms. In this paper
we propose a new approach for generation of event logs. It
serves to facilitate the process of evaluation and testing. Presented
approach allows to generate event logs, and sets of event logs
to support a large scale testing in a more automated manner.
Another feature of the approach is a generation of event logs with
noise. This feature allows to simulate real-life system execution
with inefficiencies, drawbacks, and crashes. In this work we also
consider other existing approaches. Their forces and weaknesses
are shown. The approach presented as well as the corresponding
tool can be widely used in the research and development process.

Keywords—Process mining, Petri net, event log, event log
generation, ProM.

I. INTRODUCTION

In this paper we present the approach for generation of a
set of event logs. This work has been done within the bigger
project related to a process mining research.

Process mining is a research area which aims to discover,
monitor and improve real processes by extracting knowledge
from event logs available in today’s information systems [1],
[2].

Two main fields of process mining are: process discovery
and conformance checking. Process discovery [3] aims to
solve the following problem: Given an event log consisting
of a collection of traces, construct a Petri net that adequately
describes the observed behaviour [1]. Conformance checking
[4] aims to solve the problem as follows: Given an event log
and a Petri net, diagnose the differences between the observed
behaviour (i.e., traces in the event log) and the modelled
behaviour [1].

Process models have applications in different fields of a
modern industry. Banking, insurance, software engineering,
and production management are examples of such fields.

Enormous work has been done for developing the process
mining algorithms. ProM tool is a framework which gathers the
majority of approach implementations for process mining [5],
[6]. Core part of the ProM has been developed using Java over
the last years by the process mining group at the Eindhoven
University of Technology. This tool is open-source and it can
be downloaded from the Internet.

ProM contains a wide variety of plug-ins. However re-
searchers are continuously inventing new and more sophis-
ticated methods for process mining. Every new method should
be tested and evaluated in different ways. The first step of
evaluation for every process mining method are tests using
with artificial event logs. In this work we propose a new
tool which allows to generate artificial event log with defined
properties.

Researchers describe the incredible growth of data [7].
Big data is a new field of research which aims to process
huge amounts of data in different industry sectors. One of
the main challenges of modern process mining is to turn
torrents of event data (Big Data) into valuable insights related
to performance and compliance [8]. A lot of work being done
now explores this direction.

In order to support these research we enrich capabilities of
our tool to generate sets of event logs with defined properties.
This is the first main feature of our method for log generation.
Another feature serves to add noise. Real data often contains
noise and inefficiencies which should be filtered (or processed)
by an evaluated algorithm. Researchers have a need to evaluate
new algorithms using event logs containing noise with special
characteristics. In this paper we propose approach for noise
adding in generated event logs.

All the ideas and approaches considered in this paper are
implemented as a plug-in for ProM tool. We used standard
data structures and approaches accepted in ProM community
[5], [6]. Thus, our implementation can be easily used and
integrated.

The remainder of this work is organized as follows. In
section II we analyse other works in which log generation
is considered. Section III gives a description of the tool,
approaches and algorithms. Section IV concludes the paper.

II. RELATED WORK

When creating new algorithms or improving already known
in the young area of process mining it is crucial to have the
possibility of multiple generation of process logs for a specific
model. Developments in this area help researchers not only
to verify concepts of algorithms but also to improve them
based on model behaviour. When we provide a researcher
an opportunity to manipulate a big number of behavioural
examples of a model, it leads to higher quality of products
being developed. Several tools have been developed to handle

This work is licensed under the Creative Commons Attribution License.



this task. In this section we will take a look at existing tools
for creation of event logs. We consider their main features,
strengths and weaknesses.

a) CPN Tools (see [9]): CPN Tools is a widely used
program to work with colored Petri nets.It supports the visual
editing of Petri nets, simulation and analyses. This specific
extension of CPN tools provides the possibility to generate
random events log based on a given Petri net and produce the
result log in MXML considering that the log will be used by
ProM. CPN Tools has more or less usable GUI, but it is not
intuitive. The main difficulty of a log creation is that it implies
writing scripts in rarely used Standard ML language which
leads to problems with extension of the tool and adapting it
for a specific task. A user has to learn additional functional
language. At the same time, the tool has a lot of applications
in the field of colored Petri nets analysis and simulation.

b) Process Log Generator (see [10]): Process Log Gen-
erator (PLG) is a plug-in for ProM framework which enables to
create random BPMN models from common workflow patterns
and to simulate execution of these processes. PLG implements
models customization by changing basic pattern percentages:
loop percentage, single activity percentage, sequence percent-
age, AND split-join percentage, XOR split-join percentage.
Furthermore, it gives users an opportunity to select distribution
from Standard Normal, Beta and Uniform which is used to
choose between random methods designated to decide which
activity will be used. Noise log records can be generated
throughout simulation of execution and it is possible to choose
noise level. This tool is very useful for big scale brute force
testing of an algorithm. The plug-in generates a set of models
and an execution log for each model. Unfortunately, a user can
not use existing model for logs generation. Thus, one can not
make a fine adjustment of an experiment.

c) SecSy Tool (see [11]): Another instrument for a
generation of event logs is SecSy tool. SecSy has been devel-
oped in a form of a standalone application allowing flexible
settings of process models and their executions. It can create
sets of logs per one run and add some deviations from the
original model. The results can be produced in both MXML
and XES formats. This tool is made to run experiments with
security-oriented information systems. It allows to generate
special event logs with particular parameters useful for security
analysis of processes. Unfortunately, this orientation imposes
restrictions on models which can be used by tool. Resulting
event logs are also hardly useful when testing non-security-
oriented algorithms.

d) Manual generation: Manual generation of logs has
evident limitations and disadvantages including the necessity
of learning XES or MXML standard. Creation of a big number
of logs through manual generation is extremely tedious and
inevitably leads to a tremendous quantity of mistakes. It is also
very time-consuming activity even if a researcher has enough
experience.

As we’ve seen, all of these tools have inconveniences.
Using PLG user cannot use any existent models, because
they are generated automatically. These tools do not provide
possibility to change probabilities of outputs to be fired. None
of them apart from CPN Tools do not support visual editing of
models. When running some tools even a small mistake may

cause significant deviation of results and give false view about
correctness of algorithms.

III. TOOL OVERVIEW

A. Functionality

In this paper we present the tool that intended to help
researchers to generate sets of event logs by a Petri net replay.
Petri net is a mathematical modelling language also known as
a place/transition net. It is commonly used for modelling and
representation of processes and systems. Petri net is a directed
bipartite graph constructed from the following elements:

• Transitions signified by bars. They serve as events
which may occur.

• Places signified by circles. They serve as conditions
and connectivity elements.

• Directed arcs signified by arrows.

Out tool uses a Petri net as a model for event logs generation.
We use this modelling language because of its prevalence
among researchers who work on business process management
[1]. Formally, an event log is a multiset of traces, where
each trace is a sequence of events describing the life-cycle
of a particular process instance [1]. Each event is a record
representing some activity of a system (or model of a system).
In figure 1 the example of a Petri net is shown.

Fig. 1. An example of a Petri net

Table I shows an event log corresponding to a model from
figure 1.

TABLE I. AN EXAMPLE EVENT LOG

Case Events
0 A,B,D
1 A,B,C,D
2 A,C,D
3 A,B,D
4 A,C,D

Places in a Petri net may contain a number of tokens.
Marking of a net is a distribution of tokens over the places.
Marking represents a state of a Petri net. Any transition in
a Petri net may fire if it is enabled, i.e. there are sufficient
tokens in all of its input places. A firing of a transition is a
single step in a modelled process, i.e. execution of an activity.
When transition fires, it consumes tokens from input places,
and produces token in its output places. Simultaneously with
the transition firing an event record is added to a log. For a
Petri net one can consider initial (starting) and final (ending)
markings.

Process miners and developers of new algorithms for
process discovering and analysis are interested in example-
generation instrument. These people are core users for the



presented approach. Our tool has been developed as a plug-
in for ProM 6 framework using Java 7 Standard Edition. The
main features of the presented plug-in are:

• A user can easily generate a set of event logs with
additional noise.

• Generation settings allow users to decide how many
event logs will be generated, how many traces will
these logs include. In order to prevent loops which will
not terminate, user is asked about a maximum number
of steps during algorithm execution. All event logs will
be generated within one execution of the plug-in. By
default the tool generates 5 event logs while every log
consists of 10 traces and it does at most 100 steps.

• In cases when several outputs from one place are
available it gives the possibility for flexible modifi-
cations of simulated behaviour which bring the higher
accuracy of model behaviour describing the real world
processes.

• It is possible to separate the start of a transition and
the termination of a transition in event log records.
Furthermore, in such cases users can define time of
execution for every transition and how accurate they
are executed by defining deviations bounds.

• The tool can create both event logs which completely
fit the given model, and the logs with noise added.

We decided to implement our approach in the form of
ProM 6 framework plug-in. The framework already has plug-
ins which take care of visualization for Petri nets, event logs
import and export, compatibility of logs with miner plug-ins,
and provide further opportunities to work with resulting data.
It was not necessary to develop additional supporting software.

B. Approach

This section describes an approach for log generation
proposed in this work. Our approach contains three main parts:
(1) simple log generation, (2) generation of a set of event logs,
and (3) adding of an artificial noise. In the following we will
consider all these parts.

1) Generation of an event log: This subsection describes
simple log generation process. In order to generate a case in
an event log the tool does the following steps:

(a) Adds tokens to all places from the initial marking.

(b) Creates an empty set which will be used to store the
places with tokens. At this step only initial places have already
obtained a token so they are added to the set.

(c) Next step is to select from which place we will try to
fire a transition. It is handled by randomly picking a place from
the set of places with tokens. Our algorithm does it without
looking whether this place has outputs which could be fired or
not. We do it in a way that prevents the looping in a situation
when a place has a token, available outputs, but these outputs
eventually lead to the same place without any other possible
ways.

(d) The chosen place checks whether it has available
outputs. If this is the case, an output will be chosen and fired

Data: Initial marking as initialMarking,
Final marking as finalMarking,
Settings as settings.
Result: Event log
log = ∅;
time = getCurrentTime();
index = 1;
while index ≤ settings.numberOfTraces do

trace = ∅;
initialPlaces = initialMarking.getPlaces();
finalPlaces = finalMarking.getPlaces();
foreach place in initialPlace do

place.addToken();
end
placesWithTokens = ∅;
placesWithTokens.addAll(initialPlaces);
step = 0;
hasFinished = false;
while step < settings.numberOfSteps AND NOT
hasFinished do

// Chooses place using random number
currentPlace = choosePlace(placesWithTokens);
// Tries to move from this place, if it is possible
// moves, makes record about it in the trace
// and returns set of places which got tokens
newPlacesWithTokens =
currentPlace.move(trace, time);
removePlacesWithoutTokens(placesWithTokens);
foreach place in finalPlaces do

if place.getNumberOfTokens() > 0 then
hasFinished = true;
break;

end
end
placesWithTokens.addAll(newPlacesWithTokens);

step = step + 1;
end
foreach place in placesWithTokens do

place.deleteAllTokens();
end
log.add(trace);
index= index + 1;

end
return log;

Algorithm 1: An event log generation method

according to priorities of available outputs. Looking for the
place available is done in the following way: (1) we iterate
through inputs and try to hold one token from every input;
(2) if we meet an input from which we cannot hold a token, it
means that this output is not available; (3) otherwise, an output
is available; (4) in both cases we release held tokens.

(e) Firing of a transition implies the following steps: (1)
information about the event is recorded into an event log
(according to the chosen settings of noise generation and
timing mode); (2) tokens are added to all places which are
located as outputs for this transition; (3) a set of places which
got tokens is returned.

(f) Then we check if any of final places got a token. In



this case we finish the evaluation, otherwise we do the next
two steps: (1) places from the original set which have no more
tokens are eliminated, and (2) two sets of places are joined.

(g) Evaluation ends with deleting tokens from places which
have them.

Algorithm 1 shows more precise and formal schema of the
general log generation method.

Data: Initial marking as initialMarking, Final marking
as finalMarking, Settings as settings.

Result: Event Log Array
i = 0;
eventLogArray = ∅;
while i < settings.numberOfLogs do

log = generateLog(initialMarking, finalMarking,
settings);
eventLogArray.add(log);
i = i + 1;

end
return eventLogArray;

Algorithm 2: Generation of a set of event logs

2) Generation of a set of logs: Multiple log generation is
one of the main features of the tool presented. To generate a set
of logs the tool is using a loop which is called generateLog().
Every time we use it we generate one log. So we repeat
it until we get the desired number of logs. If the initial
marking contains several places and a set of initial places to be
randomly selected, each execution of log generation method
works with it’s own start. A set of event logs is stored in
an object of EventLogArray class. This is the special class
from ProM 6 Divide and Conquer package [12] intended to
store the sets of event logs. As previously mentioned, ProM
framework has a modular structure and contains lots of plug-
ins for different operations [6]. Several plug-ins contain classes
and methods which support the work with particular modelling
formalisms and approaches. In our work we use one of these
common classes to work with sets of event logs. Thus, one
can process the generated sets directly in other plug-ins which
are based on Divide and Conquer package. Algorithm 2 is
intended to generate a set of event logs.

Fig. 2. Priorities

3) Priorities: In the case when a place has multiple output
arcs the plug-in allows users to decide which output is more
likely to be fired. Every output has a so-called priority which
resembles the probability of this output to be selected. Each
output can have a priority between 0 and 100 (including
0 and 100). Zero priority means that this output arc will
be completely ignored. However, maximum priority does not
mean that this output will be always fired. For every 2 outputs
o1 and o2 it is true that relationship of the o1 probability to

be fired to the o2 probability is equal to the relationship of o1
priority to o2 priority. Hence the higher priority, the higher
chance for this output to be fired. Outputs with the same
priority have equal chances to be fired. Algorithm 3 shows
the approach.

Lets consider the example shown in figure 2. Consider the
outputs (from p1 to t1), (from p1 to t2), (from p1 to t3) which
have the priorities a, b, c respectively. Plug-in creates an array
with a size of 3 elements. First element is equal to a, second
is equal to a+ b, the third is equal to a+ b+ c. Then plug-in
gets a random number within a range from 0 to a + b + c
(excluding 0 and including a+ b+ c). If this random number
is less or equal to a then the output (from p1 to t1) is fired.
If the number is bigger than a, but less or equal to a+ b then
the output (from p2 to t1) is fired, otherwise the fired output
is (from p1 to t3).

Data: List of available outputs as availableOutputs.
Result: Output transition
// Creation of array whose length is
// equal to the length of availableOutputs
priorities;
if priorities.length > 0 then

priorities[0] = availableTransitions[0].priority;
i = 1;
while i < priorities.length do

priorities[i] = priorities[i - 1] +
availableTransitions[i].priority;
i = i + 1;

end
if priorities[priorities.length - 1] = 0 then

return NULL;
end
randomNumber = getRandomNumber(0,
priorities[priorities.length - 1]) + 1;
i = 0;
while i < priorities.length do

if randomNumber ≤ priorities[i] then
return availableOutputs[i];

end
i = i+1;

end
end

Algorithm 3: Selection of a transition to fire

4) Noise adding: Noise is defined as deliberate deviations
of generated event logs from a model real behaviour. If noise
is applied a user is asked to select the so-called noise level.
Noise level shows the probability of adding noise events to a
log.

In the real-life processes noise usually consists of two com-
ponents. First one is a totally chaotic represents interferences
or crashes. Second one has more or less strict order. This
component represents breakages, incorrect or unfair activities.
In this work both components are taken into account.

Noise event can be represented in several ways:

• adding artificial transitions (with names specified by
user);



• adding existent transitions from a model in incorrect
order;

• skipped events; in such a case artificial events and
existing transitions may be added to a log.

Thus, noise is added during the log generation process.
Many tools try to add noise in a totally correct event log
which already generated by some instrument or obtained from
any system. Another way is to change the original model
and to generate correct event logs from this changed model.
Our scheme is more similar to real-life process execution. We
generate logs with drawbacks and deviations during process
functioning, which is usual for a number of processes. Table
II shows an event log corresponding to a model from figure 1
with noise added.

TABLE II. AN EVENT LOG WITH NOISE

Case Events
0 A,B,B,D
1 A,D,B,C,D
2 A,C,D
3 A,B,D
4 A,D

C. How to use the tool

The plug-in presented has several UI screens to interact
with user. We provide a number of screenshots in order to
illustrate our tool and make it easier for user to begin using
it. The main screen asks a user about general settings of log
generation (see figure 3). User may select desired number of
logs to be created, number of traces per each log, maximum
number of algorithm steps for one trace. In case when user
uses noise generation, this is not a number of events per trace:
some activities may be skipped, others may be added. User
may specify to the plug-in to use (or not) priorities and/or
noise. The screens specifying noise generation options are
shown to the user, if he (or she) selects to use generation with
noise.

Fig. 3. First screen: General settings

User may specify if an execution of an activity is repre-
sented in a log with 1 or 2 events. Each transition is writen as
2 log events if it is important to separate whent execution of
the transition starts and finishes. In such a case the first event
indicates when the execution of the activity begin, whereas

the second one indicates when it ends recording information
about time according to specified time of execution.In addition,
if user chooses to separate the start and complete events for
each activity, it is possible to set the time of execution of every
activity manually or skip it and use default values.

One of the screens demonstrates to a user the Petri net
given as plug-in input (see figure 4). It uses visualization plug-
in from the Petrinet package to show the model. User can use
this screen to specify simulation settings more simply. This is
favourable for Petri nets of any size.

Fig. 4. Screen demonstrates a model given as plug-in input

Two screens ask user to pick an initial and final markings.
User selects initial places from which an initial marking con-
sists. The plug-in uses a final marking to end the simulation.
Once a token is added to any of final places, the execution
ends.

Some screens are optional. Series of screens help user to
specify priorities for each place with undetermined output.
Noise settings also may be specified with special screens.
Users may specify the noise level and which kind of noise
will be used. There are two possibilities: use only transitions
of the given net, or add additional artificial transitions. Screen
shown in figure 5 allows user to choose any number of
transitions from a model given to appear in event log as noise
transitions. Another screen helps to assign the set of artificial
noise transitions. Screen with time settings allows to specify
execution time for every transition (including artificial noise
transitions) and maximum deviation from this time allowed
for noise generator. We do not give all the screens here to not
clutter up the text.

D. The tool and ProM 6 framework

This section presents an overview of the ProM 6 architec-
ture. ProM is an open-source framework for implementation
of the process mining algorithms in a standard environment.
ProM consists of disjointed parts to increase the flexibility.
The core part of the framework is distributed under GNU
Public License. One may to upload plug-ins developed in the
specific way and to work with them. The framework takes care
about parameters needed for plug-ins. Special plug-ins were
developed which load data into the environment and export
results to disc as well as being stored in ProM resource pool
for using them in other plug-ins. Almost all data types typical



Fig. 5. Noise settings

for working with Petri nets have visualizers, so researchers and
developers do not have to spend time on creating them.

Plug-ins may run with GUI or without it. It is allowed
to call the other plug-ins or employ data types, visualization,
import and export methods from a plug-in via special plug-
in manager. The framework manages this usage in such a
way: our plug-in sends a request to execute code from another
package. The plug-in manager processes this request and
returns an instance of the plug-in called. For example, model
on screen shown in figure 4 visualized by a standard visualizer
from the Petri nets package. In the future work we plan to
improve this screen by using self-engineered visualizer which
allows to set up several generation options (like priorities)
directly on a model visualized.

Plug-in manager enables not only to call the known plug-
ins but also to look for the plug-ins with specific signature,
to call it, and to get results of its execution. Work with plug-
ins based on such named contexts. Each plug-in must have
a context. It may use the data objects within the context. For
every context one can make a child context. Thus, it is possible
to construct hierarchy of plug-in calls from a one parent plug-
in.

The framework allows users to take an advantage of reusing
previous executions of plug-ins via mechanism of so-called
connections. In fact, connection is an object which holds a
number of data objects in weak hash map. Connection can
be reached after its registration in a framework context by any
other plug-ins using connection manager. Connection manager
takes one argument and searches for all the connections which
hold specific parameter. The mechanism of connections allows
to process data obtained by one plug-in by another one.

The core part of a typical ProM processing plug-in is a
class which contains at least one public method. This class
needs to contain at least one method with special annotation
which registers it in the ProM framework as a plug-in. The
name, input and output parameter lists are also listed inside
the annotation. Particular plug-in context of a current ProM
session should be among the other parameters.

The tool which implements an approach presented in this
work is built as a plug-in for the ProM Framework, therefore
architecture of the tool had to fulfil all requirements of ProM

plug-ins listed above. Our tool consists of 6 main classes:

• LogGenerator class is responsible for interaction with
framework and GUI.

• AbstractPetriNode represents an element of Petri net
(place or transition). It wraps an object of PetriNode
class from PetriNets package providing convenient
access to inputs and outputs of a node.

• Place extends AbstractPetriNode getting specific fea-
tures of a place. An object of this class holds a number
of tokens and allows to choose between the outputs.

• Transition also extends AbstractPetriNode getting spe-
cific features of a transition. Actions of transition
firing and writing to an event log are described in
this class.

• Generator class encapsulates creation of a net accept-
able for the log generation based on a given Petri net
and performs generation.

• Object of GenerationDescription class holds informa-
tion about settings specified by a user about the set
of event logs to be generated (number of event logs,
number of traces per log, priorities and others).

E. Example of the tool usage

Figure 6 shows several examples generated by our ap-
proach. In the first line (a), b), c)) original models are shown.

To examine our approach for each model were generated
sets of event logs with different noise levels and generation
settings. In figure 6 shown the model discovered by process
discovery algorithm [1] from only one model for each set
generated using 5% and 20% noise levels. Second line shows
the models obtained using alpha algorithm [1] from the event
log generated using 5% noise level. Level of 20% was used
for the event logs from which the models in the third line were
obtained.

In the first case (see d), g)) transitions A− st, B − st and
Final were used as noise transitions. Transitions e1, e3 and e6
are used as noise transitions in the second case (see e), h)). In
the third case (see f), i)) transitions c and e were used as noise
transitions. Artificial noise transitions were used in all cases:
noise1, noise2, noise3. Transition skipping was enabled.

We do not show the models obtained from the logs with
0% noise level. Such a model is totally identical to the original
one if sufficient number of traces is used. Process discovery
algorithms may show strange or inappropriate results for a tiny
event logs generated from the complex models.

Resulting model complexity highly depends on structure
of original model used for generation and noise setting. For
example, one can choose to add lots of artificial transitions to
a log. Such setting leads to a generation of an event log from
which one can obtain very sophisticated model.

In our example models obtained from event logs with 5%
noise level differ from original models only in several actions.
Whereas in cases with 20% models are more complex and
different from original ones. It is useless to generate logs
using total noise levels of 50% or more: one obtains chaotic



a) b) c)

d) e) f)

g) h) i)

Fig. 6. Examples of models discovered from the event logs generated by the approach presented

behaviour totally different from the behaviour of an original
model.

IV. CONCLUSION

In this paper we have presented an approach for generation
of sets of event logs. This approach is implemented as a ProM
6 framework plug-in which can be easily used by process
miners, researchers, and developers. It allows not only to
generate the simple event logs, but also to generate a set of
event logs, or event logs with noise. All these functions allow
to run experiments in the relatively easy way with different
algorithms implemented as a ProM plug-ins. Generated logs
can be exported using standard ProM plug-ins to use them in
other applications. Noise generation is also quite useful during
plug-in testing process.

The tool presented takes into account the advantages and
drawbacks of other existing approaches. Nevertheless, it also
has its areas to improve. In the future work authors plan
to deal with a generation of logs with additional resources.
Another future development is the incorporation of different
model formalisms into existing plug-in in addition to the Petri
nets. Several improvement should be done in graphical user
interface to simplify interaction with plug-in.

ACKNOWLEDGMENT

This work is output of a research project implemented as
part of the Basic Research Program at the National Research

University Higher School of Economics (HSE). Authors would
like to thank all the colleagues from the PAIS Lab whose
advice was very helpful in the preparation of this work.

REFERENCES

[1] Wil M. P. van der Aalst, Process mining: discovery, conformance and
enhancement of business processes. Springer, 2011.

[2] IEEE Task Force on Process Mining, “Process mining manifesto,” in
Business Process Management Workshops, ser. Lecture Notes in Busi-
ness Information Processing, F. Daniel, K. Barkaoui, and S. Dustdar,
Eds., vol. 99. Springer-Verlag, Berlin, 2012, pp. 169–194.

[3] W. M. P. v. d. Aalst, A. J. M. M. Weijters, and L. Maruster, “Workflow
mining: Discovering process models from event logs,” IEEE Transac-
tions on Knowledge and Data Engineering, vol. 16, no. 9, pp. 1128–
1142, 2004.

[4] A. Rozinat and W. M. P. v. d. Aalst, “Conformance testing: Measuring
the fit and appropriateness of event logs and process models,” in
Business Process Management Workshops. Springer, 2006, pp. 163–
176.

[5] B. F. van Dongen, W. M. P. van der Aalst, C. W. Günther, A. Rozinat,
E. Verbeek, and T. Weijters, “ProM: the process mining toolkit,”
in Business Process Management Demonstration Track (BPMDemos
2009), ser. CEUR Workshop Proceedings, A. K. A. d. Medeiros and
B. Weber, Eds., vol. 489. Ulm, Germany: CEUR-WS.org, 2009, pp.
1–4.

[6] H. M. W. Verbeek, J. C. A. M. Buijs, B. F. van Dongen, and W. M. P.
van der Aalst, “Prom 6: The process mining toolkit,” Proc. of BPM
Demonstration Track, vol. 615, pp. 34–39, 2010.

[7] W. M. P. van der Aalst, “Decomposing petri nets for process mining: A
generic approach,” Distributed and Parallel Databases, vol. 31, no. 4,
pp. 471–507, 2013.



[8] W. M. P. van der Aalst, “Mine your own business: Using process
mining to turn big data into real value,” in Proceedings of the 21st
European Conference on Information Systems (ECIS 2013). Utrecht,
The Netherlands: AIS Electronic Library, 2013, pp. 1–9.

[9] A. K. A. d. Medeiros and C. W. Günther, “Process mining: Using CPN
tools to create test logs for mining algorithms,” in Proceedings of the
Sixth Workshop on the Practical Use of Coloured Petri Nets and CPN
Tools (CPN 2005), ser. DAIMI, K. Jensen, Ed., vol. 576. Aarhus,
Denmark: University of Aarhus, 2005, pp. 177–190.

[10] A. Burattin and A. Sperduti, “PLG: a framework for the generation
of business process models and their execution logs,” in BPM 2010
Workshops, Proceedings of the Sixth Workshop on Business Process
Intelligence (BPI2010), ser. Lecture Notes in Business Information
Processing, J. Su and M. z. Muehlen, Eds., vol. 66. Springer-Verlag,
Berlin, 2011.

[11] T. Stocker and R. Accorsi, “Secsy: Security-aware synthesis of process
event logs,” in Proceedings of the 5th International Workshop on
Enterprise Modelling and Information Systems Architectures, St. Gallen,
Switzerland, 2013.

[12] E. Verbeek and W. M. P. v. d. Aalst, “Decomposing replay problems:
A case study,” in Joint Proceedings of the International Workshop on
Petri Nets and Software Engineering (PNSE’13) and the International
Workshop on Modeling and Business Environments (ModBE’13),
Milano, Italy, June 24 - 25, 2013, ser. CEUR Workshop Proceedings,
D. Moldt, Ed., vol. 989. CEUR-WS.org, 2013, pp. 219–235. [Online].
Available: http://ceur-ws.org/Vol-989/paper07.pdf


