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Abstract: The present paper considers the equilibrium theory of thermo-microstretch elastic solids with microtempera-
tures. The method to solve the Neumann-type boundary value problem (BVP) for the whole space with spherical cavity
is presented. The solution of this BVP in the form of absolutely and uniformly convergent series is obtained.
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1. Introduction
The theory of thermoelasticity for elastic materials with microtemperatures, whose particles contain a displace-
ment vector and temperature field, was established by Grot [11].

Eringen developed the theory of micromorphic bodies and the theory of thermo-microstretch elastic
solids. An extensive review and basic results in the microcontinuum field theories for solids (micromorphic,
microstretch, and micropolar) including electromagnetic and thermal interactions are given in his works [9,10].

In [16], Ieşan and Quintanilla formulated the boundary value problems of the theory of thermoelasticity
with microtemperatures and presented a unique result and a solution of Boussinesq–Somigliana–Galerkin type.
The theory of micromorphic elastic solids with microtemperatures was presented by Ieşan in [12,15]. In [18],
Ieşan and Quintanilla discussed various problems using thermoelasticity with microtemperatures.

Many investigators studied different types of problems for thermo-microstretch medium in detail (some
of those works can be seen in [1-8,13,14,17,20-24,26,27] and the references therein).

The present paper considers the equilibrium theory of thermo-microstretch elastic solids with microtem-
peratures. The method to solve the Neumann-type boundary value problem (BVP) for the whole space with
spherical cavity is presented. The solution of this BVP in the form of absolutely and uniformly convergent
series is obtained.

2. Basic equations

Let x = (x1, x2, x3) be a point of Euclidean three-dimensional space E3. Let us assume that D+ is a ball with
radius R, centered at point O(0, 0, 0) in space E3 , and S is a spherical surface with radius R. Denote the
whole space with a spherical cavity and with boundary S by D . ( D = E3\D+).
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The system of equations of the linear equilibrium theory of thermoelasticity for isotropic and homogeneous
thermo-microstretch elastic solids may be written as [12,26]

µ∆u + (λ+ µ)graddivu − βgradθ + β1gradφ = 0, (1)

k6∆w + (k4 + k5)graddivw − k3gradθ − k2w = 0, (2)

k∆θ + k1divw = 0, (3)

γ∆φ− β1divu − ddivw +mθ − ςφ = 0, (4)

where u = (u1, u2, u3)
⊤ is the displacement vector; w = (w1, w2, w3)

⊤ is the microtemperature vector;
θ(x) is the temperature measured from the constant absolute temperature T0 (T0 > 0) by the natural
state (i.e. by the state of the absence of loads); φ is the microstretch function (microdilatation function);
λ, µ, β, β1, k, kj , d, m, γ, ς j=1,...,6, are constitutive coefficients; and ∆ is the 3D Laplace
operator. Throughout this paper, superscript ⊤ denotes transposition.

Definition 2.1 A vector-function U = (u,w, θ, φ) defined in domain D is called regular if

U ∈ C2(D) ∩ C1(D)

and at infinity it satisfies the following conditions:

U(x) = O(|x|−1)
∂U
∂xj

= O(|x|−2) |x|2 = x21 + x22 + x23 >> 1, j = 1, 2, 3.

The Neumann-type BVP for Eqs.(1)–(4) is formulated as follows:
Find a regular solution U(u,w, θ, φ) to Eqs. (1)–(4), for x ∈ D, satisfying the following boundary

conditions:

lim
D∋x→z∈S

u(x),= G(z), lim
D∋x→z∈S

P(2) (∂x,n)w(x),= f(y),

lim
D∋x→z∈S

(
k
∂θ

∂n + k1nw
)

= f4(y), lim
D∋x→z∈S

(
γ
∂φ

∂n − dnw
)

= f5(y), y ∈ S,

where n(z) is the external unit normal vector on z ∈ S, the vector-functions G(z) = (G1, G2, G3),

f(z) = (f1, f2, f3), and the functions f4(z), f5(z), ) are prescribed on S, at z, and the vector P(2)(∂x,n)w
has the following form [23]:

P(2)(∂x,n)w = (k5 + k6)
∂w
∂n + k4ndivw + k5[n · rotw]. (5)

[x · g] denotes the vector product of the two vectors x and g.
The following assertion holds.

Theorem 2.1([23]) The Neumann-type BVP has at most one regular solution in domain D .
To solve the above-mentioned problem, we proceed as follows: first is to study the BVP for equations (2)

and (3) separately. By supposing that w and θ are known, we can study the BVP for equations (1) and (4),
with respect to u and φ . By combining the obtained results, we obtain the solution of the BVP for equations
(1)–(4).
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3. Preliminaries
In this section, some basic results from previous papers [1,3] are given:

The spherical coordinates are:

x1 = ρ sin ξ cos η, x2 = ρ sin ξ sin η, x3 = ρ cos ξ, x ∈ D

y1 = R sin ξ0 cos η0, y2 = R sin ξ0 sin η0, y3 = R cos ξ0, y ∈ S

|x| = ρ =
√
x21 + x22 + x23, 0 ≤ ξ ≤ π, 0 ≤ η ≤ 2π.

(x · w) =
3∑

k=1

xkwk denotes the usual scalar product of two vectors x and w.

Operator ∂

∂Sk(x)
is defined as follows:

[x · ∇]k =
∂

∂Sk(x)
, k = 1, 2, 3, ∇ =

(
∂

∂x1
,
∂

∂x2
,
∂

∂x3

)
.

If gm is the spherical harmonic, then [19]:

3∑
k=0

∂2gm(x)
∂S2

k(x)
= −m(m+ 1)gm(x).

The following theorems hold true:

Theorem 3.1 ([1])The regular solution W = (w, θ), where w = (w1, w2, w3), of the homogeneous equations
(2) and (3), in D , can be represented in the following form (for details see [1]):

w(x) = a gradϑ(x) + b gradϑ1(x) + c rotφ3(x),

θ(x) = ϑ(x) + ϑ1(x),
(6)

where
∆ϑ = 0, (∆− s21)ϑ1 = 0, (∆− s22)φ

3 = 0, divφ3 = 0,

s21 =
kk2 − k1k3

kk7
> 0, s22 =

k2
k6

> 0, a = −k3
k2
, b = − k

k1
, c = −k6

k2
,

φ3(x) = [x · ∇]φ3(x) + rot[x.∇]φ4(x), (∆− s22)φj = 0, j = 3, 4.

(7)

In addition, if ∫
S(0,a1)

φjds = 0, j = 3, 4,

where S(0, a1) ⊂ D is an arbitrary spherical surface with radius a1, then between the vector W(x) = (w, θ)
and the functions ϑ, ϑ1, φj , j = 3, 4, there exists one-to-one correspondence.
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Remark. The solutions of Eqs. (2) and (3) can be rewritten in the following form [1]:

w(x) = a gradϑ(x) + b gradϑ1(x) + [x · ∇]φ4(x) + c rot[x · ∇]φ3(x),

θ(x) = ϑ(x) + ϑ1(x).
(8)

Theorem 3.2([3]) The regular solution U = (u, φ), where u = (u1, u2, u3), of the following equations:

µ∆u + (λ+ µ)graddivu + β1gradφ = βgrad(ϑ+ ϑ1), (9)

γ∆φ− β1divu − ςφ = (dbs21 −m)ϑ1 −mϑ, (10)

in D , can be represented in the following form (for details see [3]:)

u = Φ+ u0, (11)

φ = ψ + ψ3 + ψ0, (12)

where u0 is a particular solution of equation (9):

u0 = grad
{
ββ1 −m(λ+ µ)

µβ1
ϑ0 +

(λ+ µ)ς − β2
1

µβ1
Ψ0 −

β1
µ0s23

ψ3 +
a22
s21
ϑ1

}
,

a22 =
β(γs21 − ς) + β1(m− dbs21)

γµ0(s21 − s23)
.

(13)

ψ0 is a particular solution of equation (10):

ψ0 =
a11ϑ1
s21 − s23

, s23 =
µ0ς − β2

1

µ0γ
, a11 =

ββ1 − µ0(m− dbs21)

γµ0
.

The vector-function Φ is a harmonic function and is chosen such that

∆Φ = 0, divΦ =
mµ0 − ββ1

µβ1
ϑ− µ0γs

2
3

β1µ
ψ, ∆divΦ = 0.

Ψ0 and ϑ0 are chosen such that

∆Ψ0 = ψ, ∆ϑ0 = ϑ, ∆∆Ψ0 = 0, ∆∆ϑ0 = 0.

The functions ψ and ψ3 are solutions of the following equations:

∆ψ = 0, (∆− s23)ψ3 = 0,

and respectively, divu satisfies the following condition:

divu =
mϑ− ςψ

β1
− β1
µ0
ψ3 + a22ϑ1. (14)

Thus, the general solutions of Eqs. (1)–(4) are represented by means of harmonic, biharmonic, and
metaharmonic functions and are given by formulas (8),(11), and (12).
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4. Solution of the Neumann boundary value problem
In this section, we present the method to solve the Neumann BVP for a whole space with a spherical cavity.

Taking into account (8) and the following identities:

∂

∂ngradh(x) = 1

ρ
grad

[(
ρ
∂

∂ρ
− 1

)
h(x)

]
,

∂

∂n roth(x) = 1

ρ
rot

[(
ρ
∂

∂ρ
− 1

)
h(x)

]
,

(15)

the vector (P(2)(∂x,n)w takes the following form [2]:

P(2)(∂x,n)w =

k5 + k6
ρ

{
grad

[(
ρ
∂

∂ρ
− 1

)
(aϑ(x) + bϑ1(x))

]
+ c rot

(
ρ
∂

∂ρ
− 1

)
φ3(x)

}

+k4bs
2
1

xϑ1
ρ

+
k5
ρ
[x ·φ3(x)].

(16)

On account of formulas (16) and (8), the following identities hold true:(
x · P(2)(∂x,n)w

)
= (k5 + k6)aρ

∂2ϑ(x)
∂ρ2

+

[
(k5 + k6)bρ

∂2

∂ρ2
+ k4bs

2
1ρ

]
ϑ1(x)

+c(k5 + k6)

(
∂

∂ρ
− 1

ρ

)
3∑

k=1

∂2φ3(x)
∂S2

k(x)
,

3∑
k=1

∂

∂Sk(x)

[
x · P(2)(∂x,n)w

]
k
= (k5 + k6)

(
∂

∂ρ
− 1

ρ

) 3∑
k=1

∂2(aϑ(x) + bϑ1(x))
∂S2

k(x)

−
{
c(k5 + k6)

[
ρ
∂2

∂ρ2
+

∂

∂ρ
− 1

ρ

]
+ k5ρ

}
3∑

k=1

∂2φ3(x)
∂S2

k(x)
,

3∑
k=1

∂

∂Sk(x)

[
P(2)(∂x,n)w)

]
k
= k5

(
∂

∂ρ
− 1

ρ

) 3∑
k=1

∂2φ4(x)
∂S2

k(x)
,

∂θ

∂n
=
∂ϑ

∂ρ
+
∂ϑ1
∂ρ

, (x · w) = aρ
∂ϑ

∂ρ
+ bρ

∂ϑ1
∂ρ

+ c

3∑
k=1

∂2φ3

∂S2
k(x)

.

(17)

Let us assume that functions ϑ, ϑ1 and φj , j = 3, 4 are sought in the following form [25]:

ϑ(x) =
∞∑

n=0

Rn+2

(2n+ 1)ρn+1
Y1n(ϑ, φ),

ϑ1(x) =
∞∑

n=0
Ψn(is1ρ)Y2n(ϑ, φ),

φj(x) =
∞∑

n=0
Ψn(is2ρ)Yjn(ϑ, φ), ρ > R, j = 3, 4,

(18)
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respectively, where Y1m, Y2mm and Yjm are the unknown spherical harmonic of order n,

Ψn(iskρ) =

√
R1H

(1)

n+ 1
2

(iskρ)

√
ρH

(1)

n+ 1
2

(iskR)
, k = 1, 2.

By substituting (18) into (17) we obtain:

(
x · P(2)(∂x,n)w

)
=

∞∑
n=0

{
(k5 + k6)a

(n+ 1)(n+ 2)Rn+2

(2n+ 1)ρn+2
Y1n +

[
(k5 + k6)bρ

∂2

∂ρ2
+ k4bs

2
1ρ

]
Ψn(is1ρ)Y2n(ξ, η)

−c(k5 + k6)

(
∂

∂ρ
− 1

ρ

)
n(n+ 1)Ψn(is2ρ)Y3n

}
,

3∑
k=1

∂

∂Sk(x)

[
x · P(2)(∂x,n)w

]
k
=

∞∑
n=0

n(n+ 1)

{
(k5 + k6)

[
a
(n+ 2)Rn+2

(2n+ 1)ρn+2
Y1n −

(
∂

∂ρ
− 1

ρ

)
bΨn(is1ρ)Y2n

]
+

[
c(k5 + k6)

(
ρ
∂2

∂ρ2
+

∂

∂ρ
− 1

ρ

)
+ k5ρ

]
Ψn(is2ρ)Y3n

}
,

3∑
k=1

∂

∂Sk(x)

[
P(2)(∂x,n)w)

]
k
= −k5

∞∑
n=0

n(n+ 1)

(
∂

∂ρ
− 1

ρ

)
Ψn(is2ρ)Y4n,

(x · w) =
∞∑

n=0

{
−a(n+ 1)Rn+2

(2n+ 1)ρn+1
Y1n + bρ

∂

∂ρ
Ψn(is1ρ)Y2n − cn(n+ 1)Ψn(is2ρ)Y3n

}
,

(19)

k
∂θ

∂n + k1(nw) =

∞∑
n=0

[
− (k + ak1)(n+ 1)Rn+2

(2n+ 1)ρn+2
Y1n − ck1n(n+ 1)

R
Ψm(is2ρ)Y3n

]
.

Let us introduce the following functions:

(z · G)− = h1(z),
3∑

k=1

∂

∂Sk(z)
[z · G]−k = h2(z),

3∑
k=1

(
∂Gk

∂Sk(z)

)−

= h3(z), (z · f)− = h4(z),

3∑
k=1

∂

∂Sk(z)
[z · f]−k = h5(z),

3∑
k=1

(
∂fk

∂Sk(z)

)−

= h6(z),

(
k
∂θ

∂n + k1(nw)

)−

= h7(y),
(
γ
∂φ

∂n − d(nw)

)−

= h8(y), y ∈ S.
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Let us assume that functions hk, k = 1, .., 8, are representable in the form of the following series:

hk(y) =
∞∑

n=0
hkn(ξ0, η0),

where hkn k = 1, .., 8 are the spherical harmonics of order n :

hkn =
2n+ 1

4πR2

∫
S

Pn(cos γ)hk(y)dSy,

Pn is the Legender polynomial of the nth order, and γ is an angle formed by the radius-vectors Ox and Oy,

cos γ =
1

|x||y|

3∑
k=1

xkyk.

Remark. ([3])The condition
∫

S(0,a1)

φjds = 0 implies that Y30 = Y40 = 0.

Keeping in mind the boundary conditions, from (19), when ρ → R, we get the following system of
algebraic equations:

(k5 + k6)a
(n+ 1)(n+ 2)

(2n+ 1)
Y1n +

[
(k5 + k6)bR

(
∂2Ψn(is1ρ)

∂ρ2

)
ρ=R

+ k4bs
2
1R

]
Y2n(ξ, η)

−c(k5 + k6)n(n+ 1)

[(
∂

∂ρ
− 1

ρ

)
Ψn(is2ρ)

]
ρ=R

Y3n = h4n,

n(n+ 1)

{
(k5 + k6)

[
a
n+ 2

2n+ 1
Y1n − b

(
∂Ψn(is1ρ)

∂ρ

)
ρ=R

Y2n +
b

R
Y2n

]
+

[
c(k5 + k6)

(
R
∂2Ψn(is2ρ)

∂ρ2
+
∂Ψn(is2ρ)

∂ρ
− 1

R

)
ρ=R

+ k5R

]
Y3n

}
= h5n,

−k5n(n+ 1)

(
∂Ψn(is2ρ)

∂ρ
− 1

ρ

)
ρ=R

Y4n = h6n, h50 = 0, h60 = 0,

[
(k + ak1)(n+ 1)

(2n+ 1)
Y1n +

ck1n(n+ 1)

R
Y3n

]
= −h7n.

(20)

According to Theorem 2.1, we conclude that system (20) for n ≥ 0 is uniquely solvable and we shall find
functions Yjn. This means that functions w and θ are known.
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In the same way, from formulas (11) and (12), as above, we can easily derive [3]:

(x · u) = (x ·Φ) + ρ
∂

∂ρ

{
ββ1 −m(λ+ µ)

µβ1
ϑ0 +

(λ+ µ)ς − β2
1

µβ1
Ψ0 −

β1
µ0s23

ψ3 +
a22
s21
ϑ1

}
,

3∑
k=1

∂

∂Sk(x)
[x · u]k =

3∑
k=1

∂

∂Sk(x)
[x ·Φ]k

+
3∑

k=1

∂2

∂S2
k(x)

{
ββ1 −m(λ+ µ)

µβ1
ϑ0 +

(λ+ µ)ς − β2
1

µβ1
Ψ0 −

β1
µ0s23

ψ3 +
a22
s21
ϑ1

}
,

3∑
k=1

∂uk
∂Sk(x)

=

3∑
k=1

∂Φk

∂Sk(x)
, γ

∂

∂nφ− d(nw) = γ
∂

∂ρ

[
ψ + ψ3 +

a11ϑ1
s21 − s23

]
− d(nw),

(21)

where function ϑ1 is defined from (20) and (18), and the function ϑ0 is defined as:

ϑ0(x) =
1

2

∞∑
n=0

Rn+2

(1− 4n2)ρn−1
Y1n(ϑ, η). (22)

Functions (x ·Φ) and
3∑

k=1

∂

∂Sk(x)
[x ·Φ]k can be replaced with functions ϑ , ϑ0, Ψ0, and ψ in the following

form [3]:

(x ·Φ) = Ω + 2

[
mµ0 − ββ1

µβ1
ϑ0 −

µ0γs
2
3

β1µ
Ψ0

]
,

3∑
k=1

∂

∂Sk(x)
[x ·Φ]k = ρ2

[
mµ0 − ββ1

µβ1
ϑ− µ0γs

2
3

β1µ
ψ

]
−

(
ρ
∂

∂ρ
+ 1

)
(x ·Φ),

(23)

where Ω is an arbitrary harmonic function ∆Ω = 0.

Then (21) takes the following form:

(x · u) = Ω− 2
µ0γs

2
3

β1µ
Ψ0 + ρ

∂

∂ρ

{
(λ+ µ)ς − β2

1

µβ1
Ψ0 −

β1
µ0s23

ψ3

}

+2
mµ0 − ββ1

µβ1
ϑ0 + ρ

∂

∂ρ

{
ββ1 −m(λ+ µ)

µβ1
ϑ0 +

a22
s21
ϑ1

}
,

3∑
k=1

∂

∂Sk(x)
[x · u]k = −ρ2µ0γs

2
3

β1µ
ψ −

(
1 + ρ

∂

∂ρ

)[
Ω− 2

µ0γs
2
3

β1µ
Ψ0

]

+
3∑

k=1

∂2

∂S2
k

[
(λ+ µ)ς − β2

1

µβ1
Ψ0 −

β1
µ0s23

ψ3

]
+

3∑
k=1

∂2

∂S2
k

[
ββ1 −m(λ+ µ)

µβ1
ϑ0 ++

a22
s21
ϑ1

]

+R2mµ0 − ββ1
µβ1

ϑ− 2
mµ0 − ββ1

µβ1

(
1 + ρ

∂

∂ρ

)
ϑ0,

3∑
k=1

∂uk
∂Sk(x)

=

3∑
k=1

∂Φk

∂Sk(x)
, γ

∂

∂nφ− d(nw) = γ
∂

∂ρ

[
ψ + ψ3 +

a11ϑ1
s21 − s23

]
− d(nw).

(24)
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Let functions ψ, Ω, ψ3, and
3∑

k=1

∂Φk

∂Sk(x)
be sought in the following form [25]:

ψ(x) =
∞∑

n=0

Rn+2

(2n+ 1)ρn+1
Zn(ξ, η), ρ > R,

Ω(x) =
∞∑

n=0

Rn+2

(2n+ 1)ρn+1
Z1n(ξ, η), ρ > R,

ψ3(x) =
∞∑

n=0
Ψn(is3ρ)Z3n(ξ, η), ρ > R,

3∑
k=1

∂Φk

∂Sk(x)
=

∞∑
n=0

Rn+2

(2n+ 1)ρn+1
Z4n(ξ, η), ρ > R,

(25)

where Zn, Z1n , and Zjn, j = 3, 4 , are the unknown spherical harmonics of order n. Using (25), the solution
of equation ∆Ψ0 = ψ can be written in the following form:

Ψ0(x) =
1

2

∞∑
n=0

Rn+2

(1− 4n2)ρn−1
Zn(ξ, η). (26)

Substituting (26) and (25) into (24), passing to the limit as ρ→ R, for the determination of unknown functions
we arrive at the following system of algebraic equations:

RZ1n

2n+ 1
+

−µ0γs
2
3(n+ 1) + ςµ(n− 1)

2µβ1(1− 4n2)
R3Zn − β1R

µ0s23

[
∂

∂ρ
Ψn(is3ρ)

]
ρ=R

Z3n = ω5n,

nRZ1n

2n+ 1
+

(n+ 1)R3

2µβ1(1− 4n2)
[(2− n)µ0γs

2
3 + nµς]Zn +

β1n(n+ 1)

µ0s23
Z3n = −ω6n,

RZ4n

2n+ 1
= h3n, −γ n+ 1

2n+ 1
Zn + γ

[
∂

∂ρ
Ψn(is3ρ)

]
ρ=R

Z3n = ω7n,

(27)

where

ω5 = h1 − 2
mµ0 − ββ1

µβ1
[ϑ0]ρ=R −

{
ρ
∂

∂ρ

[
ββ1 −m(λ+ µ)

µβ1
ϑ0 +

a22
s21
ϑ1

]}
ρ=R

=

∞∑
m=0

ω5m,

ω6 = h2 −
{

3∑
k=1

∂2

∂S2
k

[
ββ1 −m(λ+ µ)

µβ1
ϑ0 +

a22
s21
ϑ1

]}
ρ=R

−R2mµ0 − ββ1
µβ1

[ϑ]ρ=R + 2
mµ0 − ββ1

µβ1

[(
ρ
∂

∂ρ
+ 1

)
ϑ0

]
ρ=R

=

∞∑
m=0

ω6m,

ω7 = h8 −
γa11
s21 − s23

[
∂

∂ρ
ϑ1

]
ρ=R

+ [d(nw)]ρ=R =

∞∑
m=0

ω7m,

ωkn =
2n+ 1

4πR2

∫
S

Pn(cos γ)ωk(y)dSy, k = 5, 6, 7.

By virtue of Theorem 2.1, we get the following result: the system (27) for n ≥ 0 is uniquely solvable.
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5. Conclusions
By using the above-mentioned method, it is possible to construct explicitly the solutions of basic BVPs for
systems (1)–(4) for simple cases of 2D domains (circle, plane with a circular hole) in the form of absolutely and
uniformly convergent series.

This method can be extended to the systems of equations in modern linear theories of poroelasticity and
thermoelasticity for materials with microstructures.
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