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Abstract
Cancer Stem Cells/Cancer Initiating Cells (CSCs/CICs) is a rare sub-population within a tumor that is responsible for tumor
formation, progression and resistance to therapies. The interaction between CSCs/CICs and tumor microenvironment (TME) can
sustain “stemness” properties and promote their survival and plasticity. This cross-talk is also pivotal in regulating and modu-
lating CSC/CIC properties. This review will provide an overview of the mechanisms underlying the mutual interaction between
CSCs/CICs and TME. Particular focus will be dedicated to the immunological profile of CSCs/CICs and its role in orchestrating
cancer immunosurveillance. Moreover, the available immunotherapy strategies that can target CSCs/CICs and of their possible
implementation will be discussed. Overall, the dissection of the mechanisms regulating the CSC/CIC-TME interaction is
warranted to understand the plasticity and immunoregulatory properties of stem-like tumor cells and to achieve complete
eradications of tumors through the optimization of immunotherapy.
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Abbreviations
ALDH Aldehyde dehydrogenase
APC Antigen presenting cells
APM Antigen processing machinery
CAR Chimeric antigen receptor
CIC Cancer initiating cell
CRC Colorectal cancer
CT Cancer testis
CTLA-4 Cytotoxic lymphocyte antigen-4
CSPG4 Chondroitin sulphate protidoglycan 4
HLA Human leukocyte antigen
IDO Indoleamine 2,3-dioxygenase
GBM Glioblastoma multiforme
GDF-15 Growth differentiation factor-15
IFN Interferon

IL-4 Interleukin 4
IL-10 Interleukin 10
IL-13 Interleukin 13
IL-13α2 α2 chain of IL-13 receptor
mAb Monoclonal antibody;
MDSC Myeloid derived suppressor cell
NSCLC Non-small cell lung cancer
PD-1 Programmed death 1
PD-L1 Programmed death ligand 1
RCC Renal cell carcinoma
STAT3 Signal transducer and activator of transcription 3
TGFB Transforming growth factor beta
TAA Tumor associated antigen
Treg T regulatory cell.

Introduction

Tumors are composed by heterogeneous cellular components
including a rare subpopulation bearing “stemness properties”
and being responsible of tumor initiation and progression.
These cells have been denominated cancer stem cells
(CSCs) or cancer initiating cells (CICs) [1–6]. CSCs/CICs
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share several characteristics with normal stem cells, such as
the ability to self-renew and to give rise to differentiated prog-
eny and the resistance to DNA damage-induced cell death [3,
5–12]. CSCs/CICs, through the cycling from proliferation to
quiescence, expression of ABC drug pumps, high levels of
anti-apoptotic proteins and resistance to DNA damage, are
resistant to radiation and chemotherapy and play an important
role in disease relapse and tumor progression [13, 14].

CSCs/CICs have been isolated from both hematological
and solid tumors and they represent a rare subpopulation,
comprising 0.01–10% of cells within the tumor [15]. They
can be ex vivo identified based on their “stem cell-like” char-
acteristics and the expression of certain cell surface and func-
tional markers [16]. The identification of CSCs/CICs was first
reported in leukemia, showing a hierarchical organization of
tumor cells [17]. The leukemic cells were able to be engrafted
upon transplantation of CD34+CD38− cells into severe com-
bined immune-deficient (SCID) mice, which eventually led to
the identification of the hierarchical organization of tumors
with few cells endowed with stemness and tumorigenic prop-
erties [17]. Since then, a variety of studies highlighted the
existence of “stem-like” cancer cells in solid tumors with dif-
ferent histological origins [5, 18–23]. Multiple molecules
(e.g., ALDH-1, CD133, CD44, CD24, CBX3, ABCA5,
LGR5, etc) have been identified as CSC/CIC-associated
markers with differential expression depending on the tissues
of derivation, highlighting the high grade of heterogeneity of
these cells [16] (Table 1). Most of these molecules are over-
expressed by CSCs/CICs but are also shared with either dif-
ferentiated tumor cells or normal stem cells [4, 34]. As a result,

detecting the presence of these cells within tumor lesions
though probing for CSC/CIC- associated markers has not pro-
vided conclusive results. The xenotransplantation in immune
deficient mice represents a useful tool to demonstrate in vivo
the tumorigenic properties CSCs/CICs [35]. Xenograft
models have contributed to prove the existence within tumor
lesions of cell population endowed with stemness properties
that upon serial transplantation could propagate both tumori-
genic CSCs/CICs and malignant cells with differentiated phe-
notype without tumorigenic properties [18]. These subpopu-
lations can be identified only through transplantation in im-
mune deficient mice [4, 36–38].

Nevertheless, the available CSC/CIC-associated
markers are dependent on spatial and temporal features,
with their modulation occurring in relation to their inocu-
lation in immunodeficient mice, proving the high level of
plasticity of these cells and that none of the available
markers can be exploited to monitor the in vivo fate of
these cells [1, 39, 40] CSCs/CICs, similarly to normal stem
cells, require a “niche” to allow the survival of these cells
and their cycling from quiescence to proliferation and to
maintain stemness and multipotency [41–43]. The “niche”
is represented by the tumor microenvironment (TME),
which is composed of multicellular and dynamic compart-
ments that include fibroblasts, endothelial, stromal, mesen-
chymal and immune cells [41]. The interaction of TME
with stem-like cancer cells can regulate the fate of these
cells through modulating the proliferation, differentiation,
immunological properties and resistance to therapies
[44–50].

Table 1 Markers expressed by
CSCs/CICs isolated from solid
tumors and their role as TAAs

Markera Tumor type Recognition by T
cellsb

Reference

ALDH1 CRC; breast and gastric cancer; melanoma √ [24]

CD133 GBM, pancreas, lung, ovarian, prostate, and gastric
cancer

√ [25–27]

CD44 CRC, head and neck cancer

EpCAM CRC, Retinoblastoma [28]

EpCAM CD44
CD24

Pancreatic cancer

CD24 CRC √ [29, 30]

SOX2 GBM √ [31]

CBX3 Ostocarcinoma

LGR5 CRC

ABCB5 Melanoma

CD90 Liver cancer

HSP DNAJB8 RCC √ [32, 33]

CD166 CRC; NSCLC

aMarkers commonly identified as associated with CSCs/CICs; b the role of these antigens in eliciting T cell-
mediated immune responses against CSCs/CICs

CRC: colorectal cancer; GBM: glioblastoma multiforme; NSCLC: non-small cell lung cancer; RCC: renal cell
carcinoma
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The high grade of heterogeneity and plasticity of
CSCs/CICs can depend on their tissue of derivation and,
importantly, on their cross-talk with TME [4, 16, 51–53].
Limiting the isolation and the functional characterization
of CSCs/CICs to the usage of phenotypic markers is un-
satisfactory and do not consider the possibility that
“stemness” function of tumor cells can be reversible, as
shown by Quintana et al. for melanoma [1, 39]. Moreover,
xenotransplantation of these cells in immune deficient
mice is lacking the important variable of the TME and
its role in affect ing the fate of CSCs/CICs [1].
Therefore, the lack of standardized methods to isolate
CSCs/CICs and of in vivo models allowing to monitor
the cross-talk of these cells with TME can lead to the high
extent of variability in assessing the functional properties
of these cells and in preventing to accurately determine
their fate and role in the tissue of origins and in the clin-
ical outcome of cancer patients [54, 55]. The tool of
sphere forming assay to propagate in vitro CSCs/CICs is
too simplified, lacking the important component of TME

and of the “niche”, preventing the constant monitoring of
plasticity and heterogeneity of these cells (Figs. 1, 2).

Therefore, the combination of deep genomic, molecular
and functional profiling of CSCs/CICs could represent a rele-
vant method to achieve a comprehensive functional character-
ization of these cells and, possibly, of their role in tumor out-
come [56].

CSCs/CICs have been identified as the tumor compo-
nents responsible for resistance to standard therapy, as
well as immunotherapy [10, 57–60]. Although clinical
responses in cancer patients are observed following
treatments, these cells can remain in the minimal resid-
ual disease and upon changes in the environment they
can exit the quiescence status and give rise to novel
malignant lesion(s) or even initiate the metastatic colo-
nization [8, 61–63].

The extensive molecular and immunological characterization
of CSCs/CICs is warranted in order to understand the mecha-
nisms regulating their plasticity, quiescence, interaction with the
TME and resistance to therapies and to immune responses.

Fig. 1 Differential immunogenic profile by CSCs/CICs vs. bulk tumor
cells. CSCs/CICs can express defective levels of HLA molecules and
APM components leading to low immunogenicity and escape from im-
mune responses. In the presence of efficient expression of ligands of NK-
associated activatory receptors, these cells can become susceptible to NK
cell recognition. Moreover, TAAs can be expressed at suboptimal levels

by CSCs/CICs. Neoantigens, generated by somatic mutation bearing tu-
mor cells are equally expressed by both CSCs/CICs and differentiated
tumor cells. The latest TAAs represent highly immunogenic target mole-
cules, since they are not expressed by normal cells. APM: antigen pro-
cessing machinery; CSCs/CICs: cancer stem cells/cancer initiating cells;
NK: natural killer cells
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Immunological Profile of CSCs

HLA Molecules and APM Components

The expression of HLA class I and class II molecules
and APM has been investigated in CSCs/CICs isolated from
colorectal cancer (CRC) and glioblastoma multiforme (GBM)
showing an overall aberrant expression of these molecules,
with, in some cases, failure in their modulation by the pre-
treatment with IFNs (both alpha and gamma) or DNA
demethylating agent (5-Aza CdR) [64, 65]. This impairment
in antigen processing and presentation by CSCs/CICs lead,
upon co-culture of these cells with autologous T cells, to a
preferential selection and differentiation of TH2 type T cells
and failure in eliciting effector functions [64, 65]. The subop-
timal expression of HLA class I molecules and APM compo-
nents was also reported in CSCs/CICs isolated from different
type of solid tumors [64–69]. These peculiar observations
suggested that the defective expression of HLA molecules
could represent a tool for the identification of CSCs/CICs
[70]. On the contrary, the side population (SP) cells derived

from CRC and endowed with stemness properties, showed
detectable level of HLA class I molecules as well susceptibil-
ity to antigen-specific cytotoxic T lymphocytes (CTLs) [71],
however this study has been performed using long-term
in vitro established cell lines, that could have lost phenotypic
properties of primary CSCs/CICs. Indeed, stem-like cells iso-
lated by sphere-forming assay displayed aberrant expression
of HLA class I and APM components [16, 65]. Contradictory
results were obtained also in glioblastomamultiforme (GBM);
CSCs/CICs isolated as sphere forming cells from this tumor
have been shown to exhibit the expression of HLA class I
molecules [72] while, when applying these analyses to prima-
ry GBM-derived sphere forming cells, defective expression of
HLA class I and APMmolecules was detected [64]. Stem-like
cells expressing ABCB5 and isolated from melanoma were
found to express suboptimal levels of HLA class I molecules
while they were positive for HLA class II (45). APM compo-
nents (e.g., LMP2, LMP7 MECL-1, TAP1 and TAP2) detect-
ed through mRNA analyses were found to be expressed in
tumor sphere-models from different solid malignancies,
representing a tool for in vitro enrichment of stem-like cells

Fig. 2 Immunotherapy strategies to target CSCs/CICs. An overview of
immunotherapy approaches including adoptive cell therapy with either 1.
TCR or CAR engineered T lymphocytes; 2. Immune check point
blockade with mAbs; 3. Cancer vaccination with TAAs expressed by
both CSCs/CICs and differentiated tumor cells; 4. Innate immune re-
sponse or 5. γδ T cell recognition of tumor cells. Combination of either

multiple immunotherapy approaches or with standard therapies warrant
further investigation to assess the efficacy in increasing the immunoge-
nicity of CSCs/CICs and to implement the targeting of these cells by
immune responses. CSCs/CICs: cancer stem cells/cancer initiating cells;
TAA: tumor associated antigen
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and for the investigation of micro-metastasis [73]. However,
HLA class I and class II molecules were down-modulated in
these cells as compared to differentiated tumor cells, also fol-
lowing their pre-treatment in vitrowith IFN-γ, highlighting an
impairment of antigen presentation by these cells [64]. It
needs to be considered that this study did not analyze the
expression at protein levels of APM molecules, therefore
post-transcriptional mechanism could affect their expression.
Moreover, long term in vitro established cell lines were used
to isolate tumor cell spheres while in other studies reporting
defective expression of APM components, primary CSCs/
CICs have been investigated. These examples highlight that
an overall suboptimal immunogenic potency by CSCs/CICs
resulting in low or impaired susceptibility to T cell mediated
immune responses (Fig. 1). This represents a mechanisms of
evasion by immune responses that is shared with normal stem
cells, that could represent a typical feature of cells with
stemness properties [74]. Importantly, the failure in the ex-
pression of HLA molecules by tumor cells was found as one
of the mechanisms of failure of the clinical activity of immune
checkpoint blockade agents in cancer patients [75, 76], indi-
cating that either CSCs/CICs can display immune evasion
mechanisms shared by differentiated tumor cells or that in-
deed the suboptimal expression of HLA molecules of these
cells and their resistance to Tcell recognition can protect these
cells from immunotherapy interventions, leading to tumor re-
currence or progression. However, the lack of standardization
in methods for both, the isolation of cells with stemness prop-
erties and to analyze HLA and APM molecules, represents a
limitation in providing conclusive results. Nevertheless, de-
tailed analysis to identify the molecular mechanisms that lead
to aberrant expression of HLA molecules and APM compo-
nents are warranted.

The suboptimal expression of HLA class I molecules if
associated with detectable NKG2D ligands, can drive the in-
creased susceptibility of CSCs/CICs to Natural Killer (NK)
cells. This phenomenon has been observed in CSCs/CICs
from glioma, melanoma, and CRC [68, 77–79]. However,
down-modulation of NKG2D ligands on CSCs/CICs has been
documented, e.g., in GBM patients [64] suggesting that the
expression of low levels of NK cell activating ligands can
result in the impairment of anti-CSCs/CICs innate immune
responses (Fig. 1). The expression profile of molecules acti-
vating innate immune responses on CSCs/CICs can be affect-
ed by their crosstalk with TME, and thus, by their plasticity
that can influence the fate in vivo of these cells.

Tumor Associated Antigens and Adaptive Immune
Responses against CSCs/CICs

Tumor associated antigens (TAAs) can be recognized by
T lymphocytes when exposed on the surface of tumor
cells in the form of peptide/HLA complexes [80, 81].

They are categorized into three groups; ( i ) the
overexpressed/self-antigens that are expressed at high
levels by tumor cells and detectable, although at lower
levels, on normal tissues (e.g., MART-1/Melan-A,
hTERT, EGFR, survivin). (ii) Cancer testis (CT) antigens
that are detectable on tumor cells and not on normal cells,
except for testis and trophoblast (e.g., NY-ESO1, MAGE
A3-A4, PRAME, CT83, SSX2). (iii) Neoantigens or mu-
tated antigens derived by non-synonymous mutations in
cancer cells (e.g., MUM-1, CDK4, ME1, ACTN4, HLA-
A2) [82]. The neoantigens are higher immunogenic com-
pared to differentiation/self TAAs since are tumor specific
and do not induce tolerogenic mechanisms in immune
cells [83–85]. Neoantigens have been shown to drive im-
mune responses and to mediate efficient T cell recognition
of tumor cells, leading to cancer eradication in patients
treated with either mutanome based vaccines or adoptive
cell therapy (ACT) with tumor infiltrating lymphocytes
[84–86]. Notably, CSCs/CICs bearing a somatic mutation
in the CRC-associated “driver” gene SMAD4, could elicit
antigen-specific T cell responses directed to both stemness
and differentiated components of tumor [87].

A transcriptome analysis of the SP cells and main popu-
lation (MP) derived from CRC, breast and lung cancer re-
vealed a preferential expression of 18 CT antigens
(MAGEA2, MAGEA3, MAGEA4, MAGEA6, MAGEA12,
MAGEB2, GAGE1, GAGE8, SPANXA1, SPANXB1,
SPANXC, XAGE2, SPA17, BORIS, PLU-1, SGY-1,
TEX15 and CT45A1) in CSCs/CICs [32]. The TAA
DNAJB8, that is a member of the heat shock protein
(HSP) 40 family, was found to be preferentially expressed
in renal cell carcinoma (RCC); interestingly this protein
played an important role in the maintenance of
CSCs/CICs. DNAJB8-specific immune responses could be
detected in a mice model study of DNA vaccination for
RCC, rendering this molecule appealing for targeting
CSCs/CICs by the immune system [32, 33] (Table 1).
Recently a new antigen, Ankyrin repeat and SOCS box pro-
tein 4 (ASB4), was described as target molecule of CTLs
recognizing CSCs/CICs and not the differentiated cellular
components of the tumor [88]. Suboptimal expression of
TAAs (MART-1, ML-IAP, NY-ESO-1, and MAGE-A) was
reported in melanoma-derived CSCs/CICs (Fig. 1)[89].
Similar results were obtained in CSCs/CICs isolated from
GBM and CRC (Fig. 1 and Table 1) [64, 65]. On the other
hand, CD133+ CSCs/CICs isolated from melanoma were
shown to express either NY-ESO-1 or DEAD/H (Asp-Glu-
Ala-Asp/His) box polypeptide 3, X-linked (DDX3X)
representing target of tumor-specific T cells [90, 91]. Other
studies have described the isolation of T lymphocytes rec-
ognizing TAAs expressed by CSCs/CICs such as IL-13Rα2,
SOX2 and CD133 in GBM, CEP55 and COA-1 in CRC and
EpCAM in retinoblastoma (Table 1) [28, 65, 71, 92].
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Innate Immune Responses and their Relationship
with CSCs/CICs

Natural killer (NK) cells are the first line of defense against
cancer development and metastasis. NK cells have been de-
scribed to efficiently recognize and kill in vitro CSCs/CICs iso-
lated from CRC, melanoma and glioblastoma [68, 78, 93, 94].
The efficiency of NK cell-mediated lysis of CSCs/CICs was
dependent on the expression of NCR ligands (NKp30 and
NKp44), NKG2D ligands and when suboptimal or negative ex-
pression of HLA class I molecules were found on the surface of
CSCs/CICs (Fig 1) [68, 78, 93–95]. Tallerico et al. found that
CSC/CIC but not their differentiated counterpart of CRC is sus-
ceptible to NK cells [77]. Similar results have been reported in
GBM and melanoma, highlighting that the amount of ligands of
activatory NK receptors on CSCs/CICs was determinant for ef-
ficient innate immune responses [68, 77, 78]. In patients with
acute myeloid leukemia (AML), the suboptimal expression of
NKG2D ligands has been described as a mecahnisms of escape
by tumor cells from NK cell recognition [96], confirming that
these molecules can affect the susceptibility of cancer cells to
innate responses. The observations that NKG2D ligands could
represent as biomarkers for prediction of clinical responses to
immune checkpoint blockade in melanoma highlight that the
pattern of NKG2D ligands expression by tumor cells can affect
the type and efficiency of elicited anti-tumor immune responses
[97]. Therefore, the levels and pattern of expression of NKG2D
ligands by tumor cells, including CSCs/CICs could be a predic-
tive marker for the choice of the type of immunotherapy
interventions.

Dendritic cells (DCs) are antigen presenting cells (APCs)
that can activate either innate or adaptive immune responses
[98]. In addition, they play an important role in the formation
of anti-tumor T- and B cell immunologic memories [99].
Immature DCs can capture the tumor-derived antigens by
phagocytosis or pinocytosis and then migrate to lymphoid
organs where they present these TAAs in the form of HLA/
peptide complexes to T cells, resulting in antigen-specific im-
mune responses [100–102]. However, DCs depending on
their morphological and phenotypic subtypes can either in-
duce anti-tumor immune responses or promote tumor growth
and progression [103]. The crosstalk of tumor with their TME
is a crucial factor which results in the development of cancer
[104]. Along this line, it has been described that high extent of
expression of the chemokine (C-X-C motif) ligand 1
(CXCL1) by tumor and stromal cells can promote CSCs/
CICs survival and proliferation and attract at tumor site DCs
with suppressive functions, that could correlate tumor pro-
gression and poor survival of patients [104].

Macrophages represent important players for innate im-
mune responses and can act as APCs similarly to DCs [105].
Based on their phenotype and functions they can be distin-
guished in two subpopulations: 1. The M1 subtype that are

characterized by elevated pro-inflammatory cytokines, such
as IL-12, IL-1β, IL-6, and tumor necrosis factor α (TNF-α),
increased expression of HLA class II molecules, generation of
reactive oxygen and nitrogen intermediates and ability to in-
duce TH1-type T cell responses [106]. 2. In the presence IL-4,
IL-10, and IL-13, macrophages can polarize towards M2 phe-
notype. These cells express scavenging, mannose and galac-
tose receptors, IL-10, vascular endothelial growth factor
(VEGF), matrix metalloproteinases (MMPs) and activation
of the arginase pathway, leading to pro-tumoral effects
[105–107, 109]. The cross-talk between CSCs/CICs and
TAM is orchestrated by STAT3 signaling [102, 103]. Upon
iper-modulation of STAT3 in TAM, they can promote
stemness, survival and proliferation in cancer cells while the
latest cells can induce the immunosuppressive properties of
TAM, leading to the impairment of cancer immune-
surveillance [110].

Myeloid derived suppressor cells (MDSCs) are immune cells
endowed with suppressive functions that can inhibit the effector
functions of immune responses [111]. The frequency of these
cells either at tumor site or in the circulation has been described
as a prognostic factor for patients’ survival as well as of respon-
siveness to immunotherapy [112]. Interestingly, STAT3 can lead
the differentiation of monocytes towards MDSCs in pancreatic
tumors [113] regulating also the development of CSCs/CICs
[113]. The secretion of pro-inflammatory cytokines and
chemokines by tumor cells can induce the differentiation and
recruitment of immunosuppressive cells that can also contribute
to sustain the inflammatory TME and to the interaction and re-
ciprocal influence of CSCs/CICs and their niche [110, 113–115].
Another key regulator of the cross-talk between CSCs/CICs and
TAM and DCs is represented by CD47 [116]. This molecule is
over-expressed by CSCs/CICs of B cell malignancies. The bind-
ing of this molecule to the signal regulatory protein alpha
(SIRPα), that mediates phagocytic functions in DCs and macro-
phages, has been shown to mediate the impairment of innate
responses [116]. The cross-talk between CSCs/CICs and mye-
loid cells can affect both the fate and immunological profile of
these cells, with implications for their susceptibilities to immune
responses. Further studies should be designed to dissect the in-
teractions of CSCs/CICs with different immune cells, although
the major limitation is represented by the lack of in vivo models
to monitor the interaction of these different immune cell popula-
tion in the context of TME.

Immunomodulatory Properties of CSCs/CICs

The immunological profiling of CSCs/CICs has revealed that
they share some characteristics with embryonic, hematopoiet-
ic and mesenchymal stem cells displaying immunoregulatory
functions that render these cells invisible to immune responses
and able to escape from tumor immune responses [4, 74, 117].
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The principle mechanisms governing the immunomodulation
of CSCs/CICs are described below.

Cytokines, Chemokines, Growth Factors & Immune
Checkpoint Molecules

The observations that CSCs/CICs isolated from different tu-
mor types can secrete soluble factors, such as Galectin-3,
GDF-15, IL-10, IL-13, PGE2 and TGFb, or express
immune checkpoint molecules with immunosuppressive func-
tions, have suggested that these cells can regulate the impair-
ment of immune responses as well as regulating a pro-tumoral
TME (Table 2) [4, 51, 18–130]. These immunosuppressive
factors have been described to induce the differentiation of
regulatory T cells (Tregs) or MDSCs and M2 macrophages,
resulting in the impairment of effector functions of innate and
adaptive responses [4, 51, 130, 131]. Moreover, pro-
inflammatory cytokines such as IL-6, IL-8, IL-10 and IL-13,
released by CSCs/CICs can contribute to maintain an inflam-
matory and suppressive TME representing the “niche” sus-
taining cellular stemness (Table 2) [132, 133]. Indoleamine
2,3-dioxigenase (IDO), that mediates the catabolism of tryp-
tophan, has been shown to be expressed by CSCs/CICs, con-
tributing to the differentiation of Tregs, skewing the cytokine
profiling of T cells toward TH2 -type and inhibiting the sur-
vival and proliferation of CTL (Table 2) [133, 134].

In addition, the CSC/CIC-associated expression of IL-4
and CD200, through cell-to-cell interaction, lead to the

inhibition of T cell effector functions (Table 2) [65, 135]. It
has been demonstrated that the over-expression of IL-4 by
CRC-derived CSCs/CICs has led to inefficient TCR-
mediated proliferation and antigen recognition of CTLs [65].
Interestingly, the neutralization of this cytokine by mAb could
overcome the T cell mediated anti-tumor impairment and in-
duce antigen-specific recognition of both CSCs/CICs and dif-
ferentiated tumor cells [65]. This study showed that, upon up-
regulation of HLA class I and APM expression through IFN-γ
treatment of CSCs/CICs, Tcells could specifically recognize a
neoantigen, SMAD4, generated by a non-synonymous muta-
tion bearing stem-like cells and bulk tumor cells [65]. Thus,
CTL reactivity against CSCs/CICs and the TAA-specific
immunosurveillance could be improved by the usage of strat-
egies to correct the low immunogenic profile of these cells.

The immune suppressive profile of CSCs/CICs has been
also confirmed by evidences describing the expression by
these cells of immune checkpoint molecules (e.g. CTLA-4,
PD-L1, B7-H3 or B7-H4) (Table 2) [4, 34, 64, 65, 136].
These observations highlighted the similarities between
CSCs/CICs and normal stem cells in terms of the immune
profile [34, 137, 138]. Moreover, altered expression of
STAT3 pathway in CSCs/CICs can also affect their immune
suppressive activity through inhibiting T cell proliferation and
activation, inducing the differentiation of Tregs and triggering
T cell apoptosis [121]. The observations reported above show
that multiple mechanisms and molecular pathways are either
up-regulated or aberrantly activated in CSCs/CICs resulting in

Table 2 Immunomodulatory molecules detected in CSCs/CICs

Molecule Functiona Activity in CSCs/CICsb Reference

IL-4 Cytokine involved in differentiation of
naïve T cells to Th2.

Inhibition of TH1 cell mediated immune responses. [65, 118]

IL-10, IL-13 Anti-inflammatory cytokines Suppression of CTL functions; differentiation of
Tregs and MDSCs

[89, 119]

TGFB Growth factor with potent inhibitory function Tregs differentiation, inhibition of TH1 responses [89, 120]

STAT3 Transcription factor with a potential
anti-inflammatory function

Maintenance and proliferation of CSCs/CICs; differ-
entiation of MDSCs, iDCs, M2

[115, 121]

GDF15 Growth and differentiation factor
related to cellular stress.

Inhibition of anti-tumor immune responses [122]

Galectin-3 Protein with important role in cell-cell
adhesion and interactions with the extracellular envi-
ronment.

Inhibitor of T cell mediated immune responses [89, 123]

IDO Enzyme involved in tryptophan catabolism Suppression of TH1 type immune responses and
differentiation of Tregs.

[34, 51, 64, 65, 123]

CD200 A glycoprotein that regulates myeloid cell activity and
inhibits macrophage lineages.

Immune suppression and regulation of anti-tumor
activity.

[124, 125]

PD-L1 Ligand of PD-1 and Immune checkpoint molecule Inhibition of CTL immune responses. [64, 65, 126, 127]

B7-H3 and
B7-H4

Immune checkpoint molecules Immunomodulation of cellular immune responses [34, 64, 65, 128, 129]

a : function of the molecules listed in the Table
b : Activity of these molecules when expressed by CSCs/CICs

iDC: suppressive dendritic cell; MDSC:Myeloid derived suppressive cells; M2: M2 phenotype of monocytes/macrophages; TH1: T helper type 1; TH2:
T helper type 2
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their immune suppressive properties, therefore the blockade of
these signaling through the combination of inhibitory agents
should be considered in order to rescue the tumor-specific
immune responses.

MicroRNAs

miRNAs are non-coding RNAs regulating at post-
transcriptional levels, through complementary binding to tar-
get mRNA, the expression of genes [139]. The altered regu-
lation of gene expression in tumor cells can occur by both up-
or down regulation of miRNA [139]. The most common ac-
tivity of miRNAs in CSCs/CICs is represented by the control
of the expression of either oncogenes (e.g., MiR34a, MiR31
or MiR205) or tumor suppressor genes [139]. The aberrant
expression of few miRNAs, such as miRNAs 451and 199b-
5p, has been shown to affect stem-like cell properties isolated
from different type of tumors (e.g., GBM, breast cancer and
medulloblastoma) [139–143]. Of note, miRNAs displaying
regulatory activity on immune-related genes (e.g, miRNA-
199a that can regulate the IFN-mediated responses) can play
a role in the differentiation of mammalian CSCs/CICs [144].
The level of miRNA-124, through regulating the expression
of STAT3, can affect the efficiency of anti-CSC/CIC T cell
responses in GBM [145]. Along this line, miR203 and
miR92 can control the stemness and immunological profiles
of melanoma cells [146, 147].

Immune Evasion and Tumor Dormancy

Tumor dormancy is represented by quiescent cells that can
remain occult and undetectable by regular diagnostic methods
for long intervals of time, even after initial clinical responses
to therapies [148]. Quiescence of cells is the ability to exit cell
cycle and remain in G0 phase until permissive environmental
condition will lead to enter back into the cycling phase. This is
considered one of the principle mechanisms underlying tumor
dormancy. CSCs/CICs display the ability to cycle between
quiescence and proliferation and together with their resistance
to therapies represent the link between these cells and tumor
dormancy [2, 5, 8, 9, 149–151]. Furthermore, the immune
suppressive mechanisms associated with CSCs/CICs can or-
chestrate the evasion of these cells from immune recognition
and immunosurveillance, and could be considered additional
factors responsible of tumor dormancy [152].

An important mechanisms of immune-surveillance is the
homing of immune cells to the tumor site, which ultimately
form the immune infiltrate. Tumors arising from epithelial
breast cancer are known to possess high levels MHC class I
molecules and of infiltrating T effector cells and M1 macro-
phages. The immune infiltrate from mesenchymal like breast
cancer tumors exhibit low levels of MHC class I molecules,

high levels of PD-L1 and contain Tregs, M2 like macrophages
as well as exhausted T cells [153]. CSCs/CICs that are con-
sidered the architects of their own microenvironment [154], as
well as generated by epithelial-to-mesenchymal transition
(EMT) can be potentially responsible for the type of immune
infiltration depending of their pattern of immune profile.

Common gene expression patterns have been found in
normal mammary stem cells and dormant tumor cells
from breast cancer suggesting the possible presence
of stem-like cells in dormant tumors [151]. In addition,
different cell sub-populations could be isolated from re-
lapsed AML endowed with differential tumorigenic abili-
ty depending on their up-regulation of stemness signaling
[155].

A better understand of the relationship between stemness
properties, immunological profile of CSCs/CICs and tumor
dormancy will provide insights on the mechanisms of thera-
peutic resistance of these cells and will allow to identify strat-
egies for complete tumor eradication.

Immunological Targeting of CSCs/CICs

Cancer Vaccines

The recognition of TAAs expressed by CSCs/CICs by T cells
have been documented (see Table 1). These in vitro or in vivo
models were based on the usage of TAAs that represented
sources of antigens for the therapeutic administration of can-
cer vaccines in cancer patients [81]. However, the principle
limiting factor of the clinical efficacy of this strategy is repre-
sented by the usage of “self”/tolerogenic TAAs, shared with
normal tissues [81]. The low or negative expression of these
categories of antigens and of CT-TAAs by CSCs/CICs can
represent an additional reason of failure of high rate and long
duration of clinical responses observed in cancer patients
treated with cancer vaccines [4, 34]. In addition, the sub-
optimal levels of HLA class I molecules and APM by stem-
like cells can drive the failure in targeting CSCs/CICs by
cancer vaccines leading to the development of tumor dorman-
cy and tumor recurrence, although the observance of initial
clinical efficacy of these therapeutic interventions [4, 34].

DC-based vaccines, exploiting these cells as APC to pres-
ent TAAs to T cell-mediated responses, represent also a ther-
apeutic strategy for cancer patients showing encouraging clin-
ical activity [102, 156–162]. DCs loaded with either CSC/
CIC-lysates or mRNA isolated from these cells represented
source of antigens for vaccination in the context of Phase I/
II clinical trials of GBM patients [163, 164]. These studies
provided proof of principle of improved overall survival of
cancer patients treated with CSC/CIC targeted immunothera-
py [163–165]. Immune responses, with, in some cases in-
creased frequency of circulating NK cells, were detected in
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patients showing clinical benefit from these treatments [163,
165]. Of note, these therapeutic interventions could overcome
the failure of CSCs/CICs in expressing efficient levels of HLA
class I molecules and in presenting TAAs to T cells,
documenting for the first time, that cancer vaccine, if eliciting
NK cell-mediated responses, could target stem-like
tumor cells [158, 163–165]. Tumor cell clones expressing
immunogenic neoantigens can undergo immune selection
due to the recognition and elimination by T lymphocytes,
leading to the survival of tumor cell clones not expressing
strong immunogenic antigens and maintaining the expression
of low immunogenic TAAs [166] (and see https://www.
biorxiv.org/content/10.1101/536433v1). This process is also
associated with immune evasions mechanisms developed by
both tumor cells and TME [166].

In some tumors, the decrease in antigen presentation is a
result of epigenetic silencing of the genes involved in antigen
presentation machinery. The usage of demethylating agents
such as 5-Aza-2′-deoxycytidine to reduce the methylation of
genes involved in antigen presentation, is a potential strategy
to increase the antigen presentation in these CSC/CICs. The
effect of demethylation has been shown in CSCs/CICs from
breast cancer, where it resulted in high expression levels of
TAP1, which is involved in antigen presentation [167].

In addition, increased antigen presentation also improves
the potential of discovering novel antigens, which can then be
helpful in development of new anti-cancer vaccines (Fig. 2).

Immune Checkpoint Blockade

Immune checkpoints, including CTLA-4, PD-1 and PD-L1,
are important physiological regulators of innate and adaptive
immune responses [168]. Biological inhibitory agents have
been clinically developed, revealing striking therapeutically
success [169–175]. However, a significant proportion of can-
cer patients failed to benefit from these therapies.

The effectiveness of immune checkpoint blockade
(ICB) is largely dependent on the tumor microenviron-
ment [176]. Tumors such as melanoma, bladder cancer
and non-small cell lung cancer (NSCLC) can be charac-
terized as “hot” tumors due to their inflamed TME, high
levels of and neo-antigen expression and of T cell infil-
tration and detection of PD-L1. These tumors have been
reported to be associated with higher frequency of suscep-
tibility to immune checkpoint treatments. On the other
hand, prostate cancer is considered to be a “cold” tumor,
due to minimal level of T cell infiltration, and limited
response to single agent checkpoint inhibition [176].

Expression of immune checkpoint molecules has been ob-
served in CSCs/CICs from different histological origins [51].
PD-L1 expression was detected at high levels in CSCs/CICs
isolated from primary human head and neck squamous cell
carcinoma (HNSCC), gastric and breast cancer, CRC and

GBM [34, 64, 65, 177–179]. ,CSCs/CICs could theoretically
be targeted in vivo by immune checkpoint blockade agents,
enhancing the clinical efficacy of cancer vaccines, as demon-
strated in a mouse model [180]. However, recent reports de-
scribing that clinical failure of these therapies was associated
with defective expression of HLA class I molecules by tumor
cells [75, 76], suggest that these cells might evade from the
ICB-mediated unleash of immune responses (Fig. 2).

Adoptive Cell Therapy

ACT is represented by the isolation of T lymphocytes from
cancer patients, their ex vivo expansion, and the infusion back
into patients [181–183]. In addition, T lymphocytes
engineered to express TCR with high affinity for a cognate
TAA could be exploited for ACT studies [183]. Highly en-
couraging and sustained responses mediated by adoptively
transferred TCR targeting the TAA NY-ESO-1 have recently
been reported in different tumor types, such as breast cancer
and myeloma [86, 184]. Nevertheless, the antigen choice is
highly relevant to prevent severe toxicities due to “off-target”
cross-reaction with normal tissues sharing the same antigens
or expressing molecules mimicking the TAAs [182].

Neoantigens have been described as candidate TAAs effi-
ciently recognized by T cells that can be exploited for ACTof
cancer patients and, interestingly, CTL targeting these anti-
gens could be isolated from tumor infiltrating lymphocytes
(TILs) of melanoma and other type of malignant lesions
[183, 185, 186]. Nevertheless, ACT to target neoantigens
can represent a promising approach for treatment of cancer
patients upon assessment of HLA expression by both CSCs/
CICs and differentiated tumor cells and, in case of suboptimal
levels of expression, the achievement of their up-regulation by
pre-treatment with immunomodulating agents [4, 34, 51].

T cell can be genetically modified to express a chimeric
antigen receptor (CAR) that is composed of epitope-specific
domains isolated from mAbs linked to T cell-derived
activatory/costimulatory molecules [182, 187–189]. CAR-T
cells can recognize TAAs independently on the expression
of HLA molecules and APM components [189]. CAR-T cell
therapy for some subgroups of hematological malignancies
represent the salvage intervention leading to stable clinical
responses and improved overall survival of patients refractory
to standard therapies or with recurrences [187, 189–192]. The
usage of CAR-T cell therapy for solid tumors is currently
under investigation, showing encouraging results in cancer
patients with aggressive tumor types, including malignant me-
sothelioma, pancreatic cancer and GBM [193–197].

CAR-T cells targeting TAAs, such as CD133, EGFRvIII,
EpCAM, CSPG4 and B7-H3, expressed by different type of
solid tumors, including CSC/CIC components, have been de-
veloped in pre-clinical studies [196–201]. These studies have
shown that the targeting of TAAs that are expressed only by
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tumor cells, including CSCs/CICs, and not by normal cells,
could provide the rational for safe and efficient clinical devel-
opment of CAR-T cells therapy for these tumors(Fig. 2) [200,
202]. Moreover, the combination of CAR-T cells targeting
dual TAAs, EGFRvIII and CD133, has been used for the
successful therapeutic treatment of a patient with advanced
cholangiocarcinoma [203].

CAR-T cells targeting NKG2D ligands on CSCs/CICs
have been investigated and tested both in vitro and in vivo
[204, 205]. CSCs/CICs from glioblastoma expressing detect-
able NKG2D ligands could be efficiently targeted by CAR- T
cells. These tools showed to efficintly eliminate also xenograft
tumors [205]. Nevertheless, a major limitation associated with
the use of these CAR-T cells is represented by the variability
of the levels of NKG2D ligands on the surface of CSCs/CICs,
depending on their origin and methodology used for their
ex vivo isolation.

Nevertheless, further investigations aimed at a comprehen-
sive genomic and immunological characterization CSCs/CICs
are warranted to implement the efficiency and safety of ACT
strategies.

Conclusions

Recent advances in the genomic, molecular and immunolog-
ical profiling of CSCs/CICs have contributed to the identifi-
cation of dysregulated molecular pathways that orchestrate
stem-like cancer cells and their interaction with TME. The
heterogeneity and plasticity of these cells and the mutual ef-
fect of TME and CSCs/CICs on the resulting anti-tumoral or
pro-tumoral environment, represent the principle limitations
in predicting the fate of these cells and their role in cancer
patients’ outcome. In addition, these cells have been identified
as key players in therapeutic resistance of tumors and in the
development of their dormancy. The down-modulation of
HLA molecules and NK activatory ligands on CSCs/CICs,
through decreasing their susceptibility to T or NK cell
targeting, might represent one of the principle factors leading
to resistance to immunotherapy. Although, the mechanisms
regulating the levels of HLA molecules and NKG2D ligands
on CSCs/CICs are yet to be dissected. Due to the complexity
of the cross-talk between CSCs/CICs and TME and the high
plasticity of these cells, it is difficult to predict what type of
immune cells could play a relevant role in targeting
CSCs/CICs. Multifactorial investigations, including the im-
munological profile, immunomodulating molecules, the inter-
action with TME and the type of immune cell infiltration will
allow to provide insights. Nevertheless, the available tools to
isolate and characterize CSCs/CICs, such as spheroids, immu-
nodeficient mice, antigenic profile, are unsatisfactory to dis-
sect the cross-talk of these cells with TME. Moreover, the
development of pre-clinical in vivo models engrafted with

human immune system is desirable to allow the monitoring
of the interaction of CSCs/CICs with TME.

The targeting of CSCs/CICs by immunotherapy could re-
sult in the complete tumor eradication and stable clinical re-
sponses in cancer patients. This goal could be achieved by the
design of combination of strategies based on innate and/or
antigen-specific T cell responses with immunoregulatory
agents that can render CSCs/CICs susceptible to cell-
mediated immunosurveillance. In cases where epigenetic fac-
tors are responsible for low antigen presentation, the usage of
demethylating agents could represent a potential strategy to
overcome the low expression of HLA molecules.

Molecular approaches dissecting the fate of CSCs/CICs
within tumor tissues will allow to develop immune-based pre-
cision medicine approaches and to identify biomarkers predic-
tive of patients’ responsiveness to therapies.
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