PROBABILITY AND MATHEMATICAL STATISTICS

Vol. 39, Fasc. 2 (2019), pp. 299–314 doi:10.19195/0208-4147.39.2.4

ON THE EXACT DIMENSION OF MANDELBROT MEASURE

RV

NAJMEDDINE ATTIA (TUNISIA)

Abstract. We develop, in the context of the boundary of a supercritical Galton–Watson tree, a uniform version of the argument used by Kahane (1987) on homogeneous trees to estimate almost surely and simultaneously the Hausdorff and packing dimensions of the Mandelbrot measure over a suitable set \mathcal{J} . As an application, we compute, almost surely and simultaneously, the Hausdorff and packing dimensions of the level sets $E(\alpha)$ of infinite branches of the boundary of the tree along which the averages of the branching random walk have a given limit point.

2010 AMS Mathematics Subject Classification: Primary: 11K55; Secondary: 60G57.

Key words and phrases: Mandelbrot measure, Hausdorff dimension.

1. INTRODUCTION AND MAINS RESULTS

Let (N,W_1,W_2,\ldots) be a random vector taking values in $\mathbb{N}_+\times\mathbb{R}_+^{*\mathbb{N}_+}$. Then consider $\{(N_{u0},W_{u1},W_{u2},\ldots)\}_{u\in\bigcup_{n\geqslant 0}\mathbb{N}_+^n}$, a family of independent copies of this random vector indexed by the finite sequences $u=u_1\ldots u_n, n\geqslant 0, u_i\in\mathbb{N}^*$ (n=0 corresponds to the empty sequence denoted by \emptyset). Let \mathbb{T} be the Galton–Watson tree with defining element $\{N_u\}$: we have $\emptyset\in\mathbb{T}$, and if $u\in\mathbb{T}$ and $i\in\mathbb{N}_+$, then ui, the concatenation of u and i, belongs to \mathbb{T} if and only if $1\leqslant i\leqslant N_u$. Similarly, for each $u\in\bigcup_{n\geqslant 0}\mathbb{N}_+^n$, denote by $\mathbb{T}(u)$ the Galton–Watson tree rooted at u and defined by $\{N_{uv}\}, v\in\bigcup_{n\geqslant 0}\mathbb{N}_+^n$.

For each $u \in \bigcup_{n\geqslant 0} \mathbb{N}_+^n$ we denote by |u| its length, i.e. the number of letters of u, and by [u] the cylinder $u \cdot \mathbb{N}_+^{\mathbb{N}_+}$, i.e. the set of $t \in \mathbb{N}_+^{\mathbb{N}_+}$ such that $t_1t_2 \dots t_{|u|} = u$. If $t \in \mathbb{N}_+^{\mathbb{N}_+}$, we put $|t| = \infty$, and the set of prefixes of t consists of $\{\emptyset\} \cup \{t_1t_2 \dots t_n : n \geqslant 1\} \cup \{t\}$. Also we set $t_{|n|} = t_1 \dots t_n$ if $n \geqslant 1$ and $t_{|0|} = \emptyset$.

The probability space over which the previous random variables are built is denoted by $(\Omega, \mathcal{A}, \mathbb{P})$, and the expectation with respect to \mathbb{P} is denoted by \mathbb{E} .

We assume that $\mathbb{E}(N) > 1$ so that the Galton–Watson tree is supercritical. Without loss of generality, we also assume that the probability of extinction equals zero, so that $\mathbb{P}(N \geqslant 1) = 1$.

The boundary of T is the subset of $\mathbb{N}_{+}^{\mathbb{N}_{+}}$ defined as

$$\partial \mathsf{T} = \bigcap_{n\geqslant 1} \bigcup_{u\in \mathsf{T}_n} [u],$$

where $T_n = T \cap \mathbb{N}_+^n$. The set $\mathbb{N}_+^{\mathbb{N}_+}$ is endowed with the standard ultrametric distance

$$d_1:(s,t)\mapsto \exp(-|s\wedge t|),$$

where $s \wedge t$ stands for the longest common prefix of s and t, and with the convention that $\exp(-\infty) = 0$. The set ∂T endowed with the induced distance is almost surely (a.s.) compact.

For the sake of simplicity we will assume throughout that the logarithmic moment generating function

$$\tau(q) = \log \mathbb{E}\left(\sum_{i=1}^{N} W_i^q\right)$$

is finite over \mathbb{R} . Then, we define, for $u \in \bigcup_{n \ge 0} \mathbb{N}^n_+$, the random variable

$$W_{q,u} = \frac{W_u^q}{\mathbb{E}(\sum_{i=1}^{N} W_i^q)} = W_u^q e^{-\tau(q)}.$$

Consider the set

$$J = \{ q \in \mathbb{R} : \ \tau(q) - q\tau'(q) > 0 \} = \{ q \in \mathbb{R} : \ \tau^*(\tau'(q)) > 0 \},$$

where τ^* is the Legendre transform of the function τ defined, for all $\alpha \in \mathbb{R}$, as

$$\tau^*(\alpha) = \inf_{q \in \mathbb{R}} (\tau(q) - q\alpha).$$

Let

$$\Omega^1_{\gamma} = \mathrm{int} \big\{ q : \mathbb{E} \big[\big| \sum_{i=1}^N W_i^q \big|^{\gamma} \big] < \infty \big\}, \quad \Omega^1 = \bigcup_{\gamma \in (1,2]} \Omega^1_{\gamma} \quad \text{and} \quad \mathcal{J} = J \cap \Omega^1.$$

Then, for $n \geqslant 1$ and $u \in \mathbb{N}^n_+$, we define the sequence $\big(Y_p(q,u)\big)_{p \geqslant 1}$ as

$$Y_p(q, u) = \sum_{v \in \mathsf{T}_n(u)} \prod_{k=1}^n W_{q, uv_1 \dots v_k};$$

when $u = \emptyset$, this quantity will be denoted by $Y_n(q)$, and when n = 0, its value equals one.

Since, for all $q \in \mathcal{J}$, we have

$$\begin{cases} \mathbb{E}\left(\sum_{i=1}^{N} W_{q,i}\right) = 1, \\ \mathbb{E}\left(\sum_{i=1}^{N} W_{q,i} E \log W_{q,i}\right) = q\tau'(q) - \tau(q) < 0, \\ \mathbb{E}\left(\left(\sum_{i=1}^{N} W_{q,i}\right) \log^{+}\left(\sum_{i=1}^{N} W_{q,i}\right)\right) < \infty, \end{cases}$$

it follows that $(Y_p(q,u))$ converges to a positive limit Y(q,u) with probability one, while the limit exists and vanishes if the condition is violated. This fact was proven by Kahane in [14] when N is constant and by Biggins in [5] in general. Then, we can associate the Mandelbrot measure defined on the σ -field $\mathcal C$ generated by the cylinders of $\mathbb N^{\mathbb N_+}$ as

(1.1)
$$\mu_q([u]) = \begin{cases} W_{q,u_1} W_{q,u_2} \dots W_{q,u_1...u_n} Y(q,u) & \text{if } u \in \mathsf{T}_n, \\ 0 & \text{otherwise,} \end{cases}$$

and supported on ∂T . Moreover, under the property $E\big(Y(q)\log^+Y(q)\big)<\infty$, hence in particular when $E\big(Y(q)^h\big)<\infty$ for some h>1, where $Y(q)=Y(q,\emptyset)$, we have, following [14], [16], [4], for all $q\in\mathcal{J}$, a.s., for μ_q -almost every $t\in\partial T$,

$$\liminf_{n\to\infty} \frac{\log \mu_q([t_{|n}])}{-n} \geqslant \tau(q) - q\tau'(q).$$

Hence, for all $q \in \mathcal{J}$, a.s., the lower Hausdorff dimension of μ_q is

$$\underline{\dim}\,\mu_q \geqslant \tau(q) - q\tau'(q),$$

see Section 6 for the definition.

The Mandelbrot measure μ_q is naturally considered when studying the multifractal analysis of some random sets (see [10], [19], [1]–[3], [7]). By exploiting the simultaneous construction of the Mandelbrot measure μ_q , $q \in \mathcal{J}$, and using a uniform version of the argument applied by Kahane in [13] on homogeneous trees, we get the following result.

THEOREM 1.1. With probability one, for all
$$q \in \mathcal{J}$$
, $\underline{\dim} \mu_q \geqslant \tau(q) - q\tau'(q)$.

As an application we study, for $q \in \mathcal{J}$, the set $E(\tau'(q))$ associated with the branching random walk with $(X_i = \log(W_i))_{1 \leqslant i \leqslant N}$ (see Section 4). Since, with probability one, for all $q \in \mathcal{J}$, the set $E(\tau'(q))$ is supported by μ_q and its packing dimension is smaller than $\tau^*(\tau'(q))$ (see Proposition 2.7 in [2]), we get

a.s.,
$$\forall q \in \mathcal{J}, \ \overline{\text{Dim}} \, \mu_q \leqslant \tau(q) - q\tau'(q),$$

where $\overline{\text{Dim}} \mu_q$ is the upper packing dimension of μ_q (see Section 6 for the definition). As a consequence, we infer that the measures are exact dimensional.

COROLLARY 1.1. With probability one, for all $q \in \mathcal{J}$,

$$\dim \mu_q = \operatorname{Dim} \mu_q = \tau(q) - q\tau'(q),$$

where dim μ_q and Dim μ_q denote the Hausdorff and packing dimensions of μ_q , respectively.

REMARK 1.1. These results are known (see [1], [3]). Using a uniform version of a percolation argument, we will give a new proof of the sharp lower bounds for the lower Hausdorff dimension of these measures.

2. PRELIMINARIES

Given an increasing sequence $\{A_n\}_{n\geqslant 1}$ of sub- σ -fields of A and a sequence of random functions $\{P_n(t,\omega)\}_{n\geqslant 1}$ $(t\in\partial T)$ such that

- 1. $P_n(t) = P_n(t, \omega)$ are non-negative and independent processes; $P_n(\cdot, \omega)$ is Borelian for almost all ω ; $P_n(t, \cdot)$ is \mathcal{A}_n -mesurable for each t;
 - 2. $\mathbb{E}(P_n(t)) = 1$ for all $t \in \partial \mathsf{T}$.

Such a sequence $\{P_n\}$ is called a *sequence of weights* adopted to $\{A_n\}$. Let

$$Q_n(t) = Q_n(t, \omega) = \prod_{k=1}^n P_k(t, \omega).$$

For any $n \ge 1$ and any positive Radon measure σ on ∂T (we write $\sigma \in \mathcal{M}^+(\partial T)$), we consider the random measures $Q_n \sigma$ defined as

$$Q_n \sigma(A) = \int_A Q_n(t) d\sigma(t) \quad (A \in \mathcal{B}(\partial \mathsf{T})),$$

where $\mathcal{B}(\partial \mathsf{T})$ is the Borel field on $\partial \mathsf{T}$. For all $A \in \mathcal{B}(\partial \mathsf{T})$, $Q_n \sigma(A)$ is a positive martingale so it converges almost surely. Also, for all $\sigma \in \mathcal{M}^+(\partial \mathsf{T})$, the random measure $Q_n \sigma$ converges weakly, almost surely, to the random measure $Q\sigma$.

There are two possible extreme cases. The first one is that $Q_n\sigma(\partial\mathsf{T})$ converges almost surely to zero, i.e. $Q\sigma=0$ a.s. In this case, we say that Q degenerates on σ or σ is said to be Q-singular. The second one is that $Q_n\sigma(\partial\mathsf{T})$ converges in L^1 so that $\mathbb{E}\big(Q_n(\sigma)(\partial\mathsf{T})\big)=\sigma(\partial\mathsf{T})$. In this case we say that Q fully acts on σ or σ is said to be Q-regular.

THEOREM 2.1. Let α be a positive number such that $\mathcal{H}^{\alpha}(\partial \mathsf{T}) < \infty$, where \mathcal{H}^{α} denotes the α -dimensional Hausdorff measure. Let 0 < h < 1 and C > 0. Suppose

(2.1)
$$\sup_{t \in \bar{B}} \left(Q_n(t)^h \right) \leqslant C|B|^{(1-h)\alpha}$$

for all balls B and some n = n(B) depending on B. Then Q is completely degenerate, that is, $Q\sigma = 0$ a.s. for all $\sigma \in \mathcal{M}^+(\partial T)$.

This provides a good tool to verify the Q-singularity of σ . Indeed, if a measure is not killed, it means that it has a lower Hausdorff dimension at least α .

3. PROOF OF THEOREM 1.1

For each $\beta \in (0,1]$, let W_{β} be a random variable taking the value $1/\beta$ with probability β and the value 0 with probability $1-\beta$. Then, let $\{W_{\beta,u}\}_{u\in\bigcup_{n\geqslant 0}\mathbb{N}^n_+}$ be a family of independent copies of W_{β} . Denote by $(\Omega_{\beta}, \mathcal{A}_{\beta}, \mathbb{P}_{\beta})$ the probability space on which this family is defined.

We naturally extend to $(\Omega_{\beta} \times \Omega, \mathcal{A}_{\beta} \otimes \mathcal{A}, \mathbb{P}_{\beta} \otimes \mathbb{P})$ the random variables $W_{\beta,u}$ and the random vectors (N_{u0}, W_{u1}, \ldots) as

$$W_{\beta,u}(\omega_{\beta},\omega) = W_{\beta,u}(\omega_{\beta})$$

and

$$(N_{u0}(\omega_{\beta},\omega),W_{u1}(\omega_{\beta},\omega),\dots)=(N_{u0}(\omega),W_{u1}(\omega),\dots),$$

so that the families $\{W_{\beta,u}\}_{u\in\bigcup_{n\geqslant 0}\mathbb{N}^n_+}$ and $\{(N_{u0},W_{u1},\ldots)\}_{u\in\bigcup_{n\geqslant 0}\mathbb{N}^n_+}$ are independent.

The expectation with respect to $\mathbb{P}_{\beta} \otimes \mathbb{P}$ will also be denoted by \mathbb{E} . For $n \geqslant 1$ and $\beta \in (0,1]$, we set $\mathcal{F}_n = \sigma \left((N_u, W_{u1}, W_{u2}, \ldots) : u \in \bigcup_{k=0}^n \mathbb{N}_+^{k-1} \right)$ and $\mathcal{F}_{\beta,n} = \sigma \left((W_{\beta,u1}, W_{\beta,u2}, \ldots) : u \in \bigcup_{k=0}^n \mathbb{N}_+^{k-1} \right)$. We denote by \mathcal{F}_0 and $\mathcal{F}_{\beta,0}$ the trivial σ -field.

If $\beta \mathbb{E}(N) > 1$, the random variables

$$N_{\beta,u}(\omega_{\beta},\omega) = \sum_{i=1}^{N_u(\omega)} \mathbf{1}_{\{\beta^{-1}\}} (W_{\beta,ui}(\omega_{\beta}))$$

define a new supercritical Galton–Watson process with which the trees $\mathsf{T}_{\beta,n}\subset\mathsf{T}_n$ and $\mathsf{T}_{\beta,n}(u)\subset\mathsf{T}_n(u),\,u\in\bigcup_{n\geqslant 0}\mathbb{N}^n_+,\,n\geqslant 1$, are associated, as well as the infinite tree $\mathsf{T}_\beta\subset\mathsf{T}$ and the boundary $\partial\mathsf{T}_\beta\subset\partial\mathsf{T}$ conditional on non-extinction.

For $u \in \bigcup_{n \geqslant 0} \mathbb{N}^n_+$, $1 \leqslant i \leqslant N(u)$, and $q \in \mathcal{J}$ we define

$$W_{\beta,q,ui} = W_{\beta,ui}W_{q,ui}.$$

For $q\in\mathcal{J},\, \beta\mathbb{E}(N)>1,\, n\geqslant 0$ and $u\in\bigcup_{n\geqslant 0}\mathbb{N}^n_+,$ we define

$$Y_n(\beta, q, u) = \sum_{v_1 \dots v_n \in \mathsf{T}_n(u)} \prod_{k=1}^n W_{\beta, q, u \cdot v_1 \dots v_k}.$$

When $u = \emptyset$, this quantity will be denoted by $Y_n(\beta, q)$, and when n = 0, its value equals one.

3.1. A family of measures indexed by \mathcal{J} . For $\beta \in \left(\mathbb{E}(N)^{-1},1\right]$ and $\epsilon>0$ we set

$$\mathcal{J}_{\beta,\epsilon} = \{ q \in \mathcal{J} : \tau^* (\tau'(q)) > -\log \beta + \epsilon \}.$$

Notice that $\tau^* \big(\tau'(q) \big)$ takes values between zero and $\tau(0) = \log \big(E(N) \big)$ over $\mathcal{J}.$ Then

(3.1)
$$\mathcal{J} = \bigcup_{\beta \in (\mathbb{E}(N)^{-1}, 1], \epsilon > 0} \mathcal{J}_{\beta, \epsilon}.$$

The following propositions will be established in Section 5.

PROPOSITION 3.1. (1) For all $u \in \bigcup_{n \geq 0} \mathbb{N}^n_+$, the sequence of continuous functions $Y_n(\cdot, u)$ converges uniformly, almost surely and in L^1 norm, to a positive limit $Y(\cdot, u)$ on \mathcal{J} .

(2) With probability one, for all $q \in \mathcal{J}$, the mapping

(3.2)
$$\mu_q([u]) = \left(\prod_{k=1}^n W_{q,u_1...u_k}\right) Y(q, u)$$

defines a positive measure on ∂T .

PROPOSITION 3.2. Let $\beta \in (0,1]$ such that $\beta \mathbb{E}(N) > 1$. Then, for all $\epsilon \in \mathbb{Q}_+^*$:

- (1) the sequence of continuous functions $Y_n(\beta, \cdot)$ converges uniformly, almost surely and in L^1 norm, to a positive limit $Y(\beta, \cdot)$ on $\mathcal{J}_{\beta, \epsilon}$;
 - (2) the sequence of continuous functions

$$q \mapsto \widetilde{Y}_n(\beta, q) = \sum_{u \in \mathsf{T}_n} \left(\prod_{k=1}^n W_{\beta, u_1 \dots u_k} \right) \mu_q([u])$$

converges uniformly, almost surely and in L^1 norm, toward $Y(\beta, \cdot)$ on $\mathcal{J}_{\beta,\epsilon}$.

3.2. Proof of Theorem 1.1. Let $\epsilon \in \mathbb{Q}_+^*$ and $\beta \in (0,1]$ such that $\beta \mathbb{E}(N) > 1$. For every $t \in \partial \mathsf{T}$ and $\omega_\beta \in \Omega_\beta$ set

$$Q_{\beta,n}(t,\omega_{\beta}) = \prod_{k=1}^{n} W_{\beta,t_{|k}},$$

so that for $q \in \mathcal{J}_{\beta,\epsilon}, \widetilde{Y}_n(\beta,q)$ is the total mass of the measure $Q_{\beta,n}(t,\omega_\beta) \cdot \mathrm{d}\mu_q^\omega(t)$. Now, Proposition 3.2 claims that there exists a measurable subset A of $\Omega \times \Omega_\beta$ of full probability in the set of those (ω,ω_β) such that $(\mathsf{T}_{\beta,n})_{n\geqslant 1}$ survives and for all $(\omega,\omega_\beta) \in A$, for all $q \in \mathcal{J}_{\beta,\epsilon}, \widetilde{Y}_n(\beta,q)$ does not converge to zero. Moreover, since the branching number of the tree T is \mathbb{P} -almost surely equal to the constant $\mathbb{E}(N)$ and $\beta\mathbb{E}(N)>1$, conditional on T, the \mathbb{P}_β -probability of non-extinction of $(\mathsf{T}_{\beta,n})_{n\geqslant 1}$ is positive ([17], Theorem 6.2). Thus, the projection of A to Ω has

 \mathbb{P} -probability one and there exists a measurable subset $\Omega(\beta,\epsilon)$ of Ω such that $\mathbb{P}\big(\Omega(\beta,\epsilon)\big)=1$ and for all $\omega\in\Omega(\beta,\epsilon)$, there exists $\Omega^\omega_\beta\subset\Omega_\beta$ of positive probability such that for all $\omega\in\Omega(\beta,\epsilon)$, for all $q\in\mathcal{J}_{\beta,\epsilon}$, for all $\omega_\beta\in\Omega^\omega_\beta$, $\widetilde{Y}_n(\beta,q)$ does not converge to zero. In terms of the multiplicative chaos theory developed in [12], this means that for all $\omega\in\Omega(\beta,\epsilon)$ and $q\in\mathcal{J}_{\beta,\epsilon}$, the set of those ω_β such that the multiplicative chaos $\big(Q_{\beta,n}(\cdot,\omega)\big)_{n\geqslant 1}$ has not killed μ_q on the compact set ∂T has a positive \mathbb{P}_β -probability. Now, the good property of $\big(Q_{\beta,n}(\cdot,\omega)\big)_{n\geqslant 1}$ is

$$\mathbb{E}_{\beta} \left(\sup_{t \in B} \left(Q_{\beta, n}(t) \right)^h \right) = e^{n(1-h)\log(\beta)} = (|B|)^{-(1-h)\log(\beta)}$$

for any $h \in (0,1)$ and any ball B of generation n in ∂T , where |B| stands for the diameter of B and \mathbb{E}_{β} stands for the expectation with respect to \mathbb{P}_{β} . Thus, we can apply Theorem 3 of [12] and claim that for all $\omega \in \Omega(\beta, \epsilon)$ and all $q \in \mathcal{J}_{\beta, \epsilon}$, no piece of μ_q is carried by a Borel set of Hausdorff dimension less than $-\log(\beta)$.

Let $\Omega' = \bigcap_{\beta \in (\mathbb{E}(N)^{-1},1] \cap \mathbb{Q}_+^*, \epsilon \in \mathbb{Q}_+^*} \Omega(\beta,\epsilon)$. This set is of \mathbb{P} -probability one. Let $q \in \mathcal{J}$. By (3.1), there exists a sequence of points $(\beta_n,\epsilon_n) \in (\mathbb{E}(N)^{-1},1] \times \mathbb{Q}_+^*$ such that $\tau(q) - q\tau'(q) > -\log(\beta_n) + \epsilon_n/2$ for all $n \geqslant 1$, $\lim_{n \to \infty} -\log(\beta_n) = \tau(q) - q\tau'(q)$, $\lim_{n \to \infty} \epsilon_n = 0$ and $q \in \bigcap_{n \geqslant 1} \mathcal{J}_{\beta_n,\epsilon_n}$. Consequently, the previous paragraph implies that for all $\omega \in \Omega'$,

$$\underline{\dim}(\mu_q^{\omega}) \geqslant \limsup_{n \to \infty} -\log(\beta_n) = \tau(q) - q\tau'(q).$$

4. APPLICATION

Let (N,X_1,X_2,\ldots) be a random vector taking values in $\mathbb{N}_+\times(\mathbb{R})^{\mathbb{N}_+}$. Then consider $\{(N_u,X_{u1},X_{u2},\ldots)\}_{u\in\bigcup_{n\geqslant 0}\mathbb{N}_+^n}$ a family of independent copies of the vector (N,X_1,X_2,\ldots) indexed by the set of finite words over the alphabet \mathbb{N}_+ . We assume that $\mathbb{E}(N)>1$ and $\mathbb{P}(N\geqslant 1)=1$. Suppose that, for all $u\in \mathsf{T},X_u$ is integrable and the sequences $(X_u)_{u\in\bigcup_{n\geqslant 0}\mathbb{N}_+^n}$ are i.i.d. Given $t\in\partial\mathsf{T}$, by the strong law of large numbers, we have $\lim_{n\to\infty}n^{-1}S_n(t)=\mathbb{E}(X_1)$ almost surely, where $S_n(t)=\sum_{k=1}^nX_{t1...t_k}$. Since $\partial\mathsf{T}$ is not countable, the following question naturally arises: are there some $t\in\partial\mathsf{T}$ so that $\lim_{n\to\infty}n^{-1}S_n(t)=\alpha\neq\mathbb{E}(X_1)$? Multifractal analysis is a framework adapted to answer this question. Consider the set \mathcal{I} of those $\alpha\in\mathbb{R}$ such that

$$E(\alpha) = \left\{ t \in \partial \mathsf{T} : \lim_{n \to \infty} \frac{1}{n} \sum_{k=1}^{n} X_{u_1 \dots u_k} = \alpha \right\} \neq \emptyset.$$

These level sets can be described geometrically through their Hausdorff dimensions. They have been studied by many authors, see [10], [19], [1]–[3], [7]; all these papers also deal with the multifractal analysis of associated Mandelbrot measure (see also [14], [21], [16] for the study of Mandelbrot measures dimension).

Take, for $u\in\bigcup_{n\geqslant 0}\mathbb{N}^n_+$, the random variable $W_u=e^{X_u}$ and set

$$I = \{ \tau'(q); \ q \in \mathcal{J} \}.$$

THEOREM 4.1. With probability one, for all $\alpha \in I$, the multifractal formalism holds at α , i.e.,

$$\dim E(\alpha) = \operatorname{Dim} E(\alpha) = \tau^*(\alpha);$$

in particular, $E(\alpha) \neq \emptyset$.

Proof. A simple covering argument yields, with probability one, for all $\alpha \in I$, $\operatorname{Dim} E(\alpha) \leqslant \tau^*(\alpha)$ (see, for example, Proposition 2.7 in [2]). In addition, consider the Mandelbrot measure $\mu_q, q \in \mathcal{J}$, defined by (1.1). It is known (see, for example, Corollary 2.5 in [1]) that with probability one, $\mu_q \left(E\left(\tau'(q)\right) \right) = 1$. In addition, according to Theorem 1.1, we have, with probability one, for all $q \in \mathcal{J}, \underline{\dim} \, \mu_q \geqslant \tau(q) - q\tau'(q)$. We deduce the result from the mass distribution principle (Theorem 6.2 below).

REMARK 4.1. This result has been proved in [3] when N is not random, and in the weaker form, for each fixed $\alpha \in I$, almost surely $\dim E(\alpha) = \tau^*(\alpha)$ in [10], [19], [7], when N is random.

REMARK 4.2. Using the Cauchy formula, we can prove Theorem 1.1 (see [1]). Then our result gives a new approach to estimate, almost surely and simultaneously, the lower Hausdorff dimension of the Mandelbrot measure over \mathcal{J} .

5. PROOF OF PROPOSITIONS 3.1 AND 3.2

Define, for $(q, p, \beta) \in \mathcal{J} \times [1, \infty) \times (0, 1]$, the function

$$\varphi_{\beta}(p,q) = \exp(\tau(pq) - p\tau(q) + (1-p)\log\beta).$$

LEMMA 5.1. For all nontrivial compact $K \subset \mathcal{J}_{\beta,\epsilon}$ there exists a real number $1 < p_K < 2$ such that for all 1 we have

$$\sup_{q \in K} \varphi_{\beta}(p_K, q) < 1.$$

Proof. Let $q \in \mathcal{J}_{\beta,\epsilon}$; we have $\frac{\partial \varphi_{\beta}}{\partial p}(1^+,q) < 0$ and there exists $p_q > 1$ such that $\varphi_{\beta}(p_q,q) < 1$. Therefore, in a neighborhood V_q of q, we have $\varphi_{\beta}(p_q,q') < 1$ for all $q' \in V_q$. If K is a nontrivial compact of $\mathcal{J}_{\beta,\epsilon}$, it is covered by a finite number of such V_{q_i} . Let $p_K = \inf_i p_{q_i}$. If $1 and <math>\sup_{q \in K} \varphi_{\beta}(p,q) \geqslant 1$, there exists $q \in K$ such that $\varphi_{\beta}(p,q) \geqslant 1$, and $q \in V_{q_i}$ for some i. By log-convexity of the mapping $p \mapsto \varphi_{\beta}(p,q)$ and the fact that $\varphi_{\beta}(1,q) = 1$, since $1 , we have <math>\varphi_{\beta}(p,q) < 1$, which is a contradiction.

LEMMA 5.2. For all compact $K \subset \mathcal{J}$, there exists $\tilde{p}_K > 1$ such that

$$\sup_{q \in K} \mathbb{E}\left(\left(\sum_{i=1}^{N} W_{i}^{q}\right)^{\tilde{p}_{K}}\right) < \infty.$$

Proof. Since K is compact and the family of open sets $J \cap \Omega^1_{\gamma}$ increases to \mathcal{J} as γ decreases to one, there exists $\gamma \in (1,2]$ such that $K \subset \Omega^1_{\gamma}$. Take $\tilde{p}_K = \gamma$. The conclusion comes from the fact that the function $q \mapsto \mathbb{E} \left(\left(\sum_{i=1}^N W_i^q \right)^{\tilde{p}_K} \right)$ is continuous over $\Omega^1_{\tilde{p}_K}$.

LEMMA 5.3 (Biggins [6]). If $\{X_i\}$ is a family of integrable and independent complex random variables with $\mathbb{E}(X_i) = 0$, then $\mathbb{E}\left|\sum X_i\right|^p \leqslant 2^p \sum \mathbb{E}|X_i|^p$ for $1 \leqslant p \leqslant 2$.

The same lines as in Lemma 2.11 in [1], we get the following lemma.

LEMMA 5.4. Let (N, V_1, V_2, \ldots) be a random vector taking values in $\mathbb{N}_+ \times \mathbb{C}^{\mathbb{N}_+}$ and such that $\sum_{i=1}^N V_i$ is integrable and $\mathbb{E}(\sum_{i=1}^N V_i) = 1$. Consider a sequence $\{(N_u, V_{u1}, V_{u2}, \ldots)\}_{u \in \bigcup_{n \geqslant 0} \mathbb{N}_+^n}$ of independent copies of (N, V_1, \ldots, V_N) . We define the sequence $(Z_n)_{n \geqslant 0}$ by $Z_0 = 1$ and for $n \geqslant 1$

$$Z_n = \sum_{u \in \mathsf{T}_n} \left(\prod_{k=1}^n V_{u_{|k}} \right).$$

Let $p \in (1,2]$. There exists a constant C_p depending on p only such that for all $n \ge 1$,

$$\mathbb{E}(|Z_n - Z_{n-1}|^p) \leqslant C_p \Big(\mathbb{E} \Big(\sum_{i=1}^N |V_i|^p \Big) \Big)^{n-1} \Big(\mathbb{E} \Big(\Big| \sum_{i=1}^N |V_i|^p \Big) + 1 \Big).$$

Proof of Proposition 3.2. (1) Recall that the uniform convergence result uses an argument developed in [6]. Fix a compact $K \subset \mathcal{J}_{\beta,\epsilon}$. By Lemma 5.2 we can fix a compact neighborhood K' of K and $\widetilde{p}_{K'} > 1$ such that

$$\sup_{q \in K'} \mathbb{E} \Big(\big(\sum_{i=1}^N W_i^q \big)^{\tilde{p}_{K'}} \Big) < \infty.$$

By Lemma 5.1, we can fix $1 < p_K \leqslant \min(2, \tilde{p}_{K'})$ such that $\sup_{q \in K} \varphi_\beta(p_K, q) < 1$. Then for each $q \in K$, there exists a neighborhood $V_q \subset \mathbb{C}$ of q whose projection to \mathbb{R} is contained in K' and such that for all $u \in \mathsf{T}$ and $z \in V_q$, the random variable

$$W_{\beta,z,u} = W_{\beta,u} \frac{e^{z \log W_u}}{\mathbb{E}\left(\sum\limits_{i=1}^{N} e^{z \log W_i}\right)}$$

is well defined, and we have

$$\sup_{z \in V_a} \varphi_{\beta}(p_K, z) < 1,$$

where for all $z \in \mathbb{C}$

$$\varphi_{\beta}(p_K, z) = \beta^{1 - p_K} \mathbb{E}\left(\sum_{i=1}^N |e^{z \log W_i}|^{p_K}\right) \left| \mathbb{E}\left(\sum_{i=1}^N e^{z \log W_i}\right) \right|^{-p_K}.$$

By extracting a finite covering of K from $\bigcup_{q \in K} V_q$, we find a neighborhood $V \subset \mathbb{C}$ of K such that $\sup_{z \in V} \varphi_\beta(p_K, z) < 1$. Since the projection of V to \mathbb{R} is included in K' and the mapping $z \mapsto \mathbb{E} \big(\sum_{i=1}^N e^{z \log W_i} \big)$ is continuous and does not vanish on V, by considering a smaller neighborhood of K included in V if necessary, we can assume that

$$A_{V} = \sup_{z \in V} \mathbb{E}(\left|\sum_{i=1}^{N} e^{z \log W_{i}}\right|^{p_{K}}) \left|\mathbb{E}\left(\sum_{i=1}^{N} e^{z \log W_{i}}\right)\right|^{-p_{K}} + 1 < \infty.$$

Now, for $u \in T$, we define the analytic extension of $Y_n(\beta, q, u)$ to V given by

$$Y_n(\beta, z, u) = \sum_{v \in \mathsf{T}_n(u)} \prod_{k=1}^n W_{\beta, z, uv_1 \dots v_k}.$$

We denote also $Y_n(\beta, z, \emptyset)$ by $Y_n(\beta, z)$. Now, applying Lemma 5.4 with $V_i = W_{\beta, z, i}$, we obtain

$$\mathbb{E}(|Y_n(\beta, z) - Y_{n-1}(\beta, z)|^{p_K}) \leq C_{p_K} \left(\mathbb{E}(\sum_{i=1}^N |V_i|^{p_K}) \right)^{n-1} \left(\mathbb{E}(|\sum_{i=1}^N V_i|^{p_K}) + 1 \right).$$

Notice that $\mathbb{E}\left(\sum_{i=1}^{N}|V_{i}|^{p_{K}}\right)=\varphi_{\beta}(p_{K},z)$. Then,

$$\mathbb{E}(|Y_n(\beta, z) - Y_{n-1}(\beta, z)|^{p_K}) \leqslant C_{p_K} A_V \sup_{z \in V} \varphi(p_K, z)^{n-1}.$$

With probability one, the functions $z \in V \mapsto Y_n(\beta, z), n \ge 0$, are analytic. Fix a closed disc $D(z_0, 2\rho) \subset V$. Theorem 6.1 below implies

$$\sup_{z \in D(z_0, \rho)} |Y_n(\beta, z) - Y_{n-1}(\beta, z)| \leq 2 \int_{[0, 1]} |Y_n(\beta, \zeta(\theta)) - Y_{n-1}(\beta, \zeta(\theta))| d\theta,$$

where, for $\theta \in [0,1]$, $\zeta(\theta) = z_0 + 2\rho e^{i2\pi\theta}$. Furthermore, Jensen's inequality and

Fubini's theorem give

$$\begin{split} \mathbb{E} \big(\sup_{z \in D(z_0,\rho)} |Y_n(\beta,z) - Y_{\beta,n-1}(z)|^{p_K} \big) \\ &\leqslant \mathbb{E} \Big(\big(2 \int\limits_{[0,1]} \big| Y_n \big(\beta, \zeta(\theta) \big) - Y_{n-1} \big(\beta, \zeta(\theta) \big) \big| d\theta \big)^{p_K} \Big) \\ &\leqslant 2^{p_K} \mathbb{E} \Big(\int\limits_{[0,1]} \big| Y_n \big(\beta, \zeta(\theta) \big) - Y_{n-1} \big(\beta, \zeta(\theta) \big) \big|^{p_K} d\theta \Big) \\ &\leqslant 2^{p_K} \int\limits_{[0,1]} \mathbb{E} \big| Y_n \big(\beta, \zeta(\theta) \big) - Y_{n-1} \big(\beta, \zeta(\theta) \big) \big|^{p_K} d\theta \\ &\leqslant 2^{p_K} C_{p_K} A_V \sup_{z \in V} \varphi_\beta(p_K, z)^{n-1}. \end{split}$$

Since $\sup_{z \in V} \varphi_{\beta}(p_K, z) < 1$, it follows that

$$\sum_{n \geqslant 1} \| \sup_{z \in D(z_0, \rho)} |Y_n(\beta, z) - Y_{n-1}(\beta, z)| \|_{p_K} < \infty.$$

This implies that $z \mapsto Y_n(\beta, z)$ converge uniformly, almost surely and in L^{p_K} norm over the compact $D(z_0, \rho)$, to a limit $z \mapsto Y(\beta, z)$. This also implies that

$$\|\sup_{z\in D(z_0,\rho)}Y(\beta,z)\|_{p_K}<\infty.$$

Since K can be covered by finitely many such discs $D(z_0,\rho)$, we get the uniform convergence, almost surely and in L^{p_K} norm, of the sequence $(q \in K \mapsto Y_n(\beta,q))_{n\geqslant 1}$ to $q \in K \mapsto Y(\beta,q)$. Moreover, since $\mathcal{J}_{\beta,\epsilon}$ can be covered by a countable union of such compact K, we get the simultaneous convergence for all $q \in \mathcal{J}_{\beta}$. The same holds simultaneously for all the functions $q \in \mathcal{J}_{\beta} \mapsto Y_n(\beta,q,u)$, $u \in \bigcup_{n\geqslant 0} \mathbb{N}^n_+$, because $\bigcup_{n\geqslant 0} \mathbb{N}^n_+$ is countable.

To complete the proof of (1), we must show that a.s., $q \in K \mapsto Y(\beta,q)$ does not vanish. Without loss of generality we suppose that K = [0,1]. If I is a dyadic closed subinterval of [0,1], we denote by E_I the event $\{\exists \ q \in I : Y(\beta,q) = 0\}$. Let I_0, I_1 stand for two dyadic subintervals of I in the next generation. The event E_I being a tail event of probability zero or one, if we suppose that $P(E_I) = 1$, there exists $j \in \{0,1\}$ such that $P(E_{I_j}) = 1$. Suppose now that $P(E_K) = 1$. The previous remark allows us to construct a decreasing sequence $I_0(I_n) = 1$ dyadic subintervals of $I_0(I_n) = 1$. Let $I_0(I_n) = 1$ be the unique element of $I_0(I_n) = 1$. Since $I_0(I_n) = 1$ is continuous, we have $I_0(I_n) = 1$ which contradicts the fact that $I_0(I_n) = 1$ converges to $I_0(I_n) = 1$.

(2) Here we develop, in the context of the boundary of a supercritical Galton–Watson tree, a uniform version of the argument used by Kahane in [13] on homogeneous trees, and written in complete rigor in [24]. Fix $\epsilon > 0$ and a compact set

K in $\mathcal{J}_{\beta,\epsilon}$. Denote by E the separable Banach space of the real-valued continuous functions over K endowed with the supremum norm.

For $n \ge m \ge 1$ and $q \in K$ let

$$Z_{m,n}(\beta,q) = \sum_{u \in T_m} Y_{n-m}(q,u) \prod_{k=1}^m W_{\beta,q,u_1...u_k}.$$

Notice $Z_{n,n}(\beta,q)=Y_n(\beta,q)$. Moreover, since $Y_n(\beta,\cdot)$ converges almost surely and in L^1 norm to $Y(\beta,\cdot)$ as $n\to\infty, Y_n(\beta,\cdot)$ belongs to $L^1_E=L^1_E(\Omega_\beta\times\Omega,\mathcal{A}_\beta\times\mathcal{A},\mathbb{P}_\beta\times\mathbb{P})$ (where we use the notation of Section V-2 in [20]), so that the continuous random function $\mathbb{E}\big(Z_{n,n}(\beta,q)|\mathcal{F}_{\beta,m}\otimes\mathcal{F}_n\big)$ is well defined by Proposition V-2-5 in [20]; also, for any fixed $q\in K$, we can deduce from the definitions and the independence assumptions that

$$Z_{m,n}(\beta,q) = \mathbb{E}(Z_{n,n}(\beta,q)|\mathcal{F}_{\beta,m}\otimes\mathcal{F}_n)$$

almost surely. By Proposition V-2-5 in [20] again, since $g \in E \mapsto g(q)$ is a continuous linear form over E, we thus have

$$Z_{m,n}(\beta,q) = \mathbb{E}(Z_{n,n}(\beta,\cdot)|\mathcal{F}_{\beta,m}\otimes\mathcal{F}_n)(q)$$

almost surely. By considering a dense countable set of q in K, we can conclude that the random continuous functions $Z_{m,n}(\beta,\cdot)$ and $\mathbb{E}\big(Z_{n,n}(\beta,\cdot)|\mathcal{F}_{\beta,m}\otimes\mathcal{F}_n\big)$ are equal almost surely.

Similarly, since for each $q \in K$ the martingale $(Y_n(\beta, q), \mathcal{F}_{\beta,n} \otimes \mathcal{F}_n)$ converges to $Y(\beta, q)$ almost surely and in L^1 , and $Y(\beta, \cdot) \in L^1_E$, by using Proposition V-2-5 in [20] again we can get almost surely (5.1)

$$Z_{n,n}(\beta,\cdot) = \mathbb{E}(Y(\beta,\cdot)|\mathcal{F}_{\beta,n}\otimes\mathcal{F}_n), \text{ hence } Z_{m,n}(\beta,\cdot) = \mathbb{E}(Y(\beta,\cdot)|\mathcal{F}_{\beta,m}\otimes\mathcal{F}_n).$$

Moreover, it follows from Proposition 3.2(1) and the definition of $\mu_q([u])$ that $Z_{m,n}(\beta,\cdot)$ converges almost surely uniformly and in L^1 norm, as $n\to\infty$, to $\widetilde{Y}_m(\beta,\cdot)$. This and (5.1) yield, by Proposition V-2-6 in [20],

$$\widetilde{Y}_m(\beta,\cdot) = \lim_{n \to \infty} Z_{m,n}(\beta,\cdot) = \mathbb{E}\Big(Y(\beta,\cdot)|\mathcal{F}_{\beta,m} \otimes \sigma\big(\bigcup_{n \geqslant 1} \mathcal{F}_n\big)\Big)$$

and finally

$$\lim_{m\to\infty}\widetilde{Y}_m(\beta,\cdot)=\mathbb{E}\Big(Y(\beta,\cdot)|\sigma\big(\bigcup_{m\geqslant 1}\mathcal{F}_{\beta,m}\big)\otimes\sigma\big(\bigcup_{n\geqslant 1}\mathcal{F}_n\big)\Big)=Y(\beta,\cdot)$$

almost surely (since, by construction, $Y(\beta,\cdot)$ is $\sigma(\bigcup_{m\geqslant 1}\mathcal{F}_{\beta,m})\otimes\sigma(\bigcup_{n\geqslant 1}\mathcal{F}_n)$ -measurable), where the convergences hold in the uniform norm. Moreover, since $\mathcal{J}_{\beta,\epsilon}$ can be covered by a countable union of such compact K, we get the simultaneous convergence for all $q\in\mathcal{J}_{\beta,\epsilon}$.

Proof of Proposition 3.1. The proof of the first point is similar to the proof of Proposition 3.2(1) ($\beta = 1$). The second point is a consequence of the branching property:

$$Y_{n+1}(q,u) = \sum_{i=1}^{N} W_{q,ui} Y_n(q,ui).$$

6. APPENDICES APPENDIX 1 — CAUCHY FORMULA

DEFINITION 6.1. Let $D(\zeta,r)$ be a disc in $\mathbb C$ with center ζ and radius r. The set ∂D is the boundary of D. Let $g \in \mathcal C(\partial D)$ be a continuous function on ∂D . We define the *integral* of g on ∂D as

$$\int_{\partial D} g(\zeta)d\zeta = 2i\pi r \int_{[0,1]} g(\zeta(t))e^{i2\pi t}dt,$$

where $\zeta(t) = \zeta + re^{i2\pi t}$.

THEOREM 6.1. Let D = D(a, r) be a disc in \mathbb{C} with radius r > 0, and f be a holomorphic function in a neighborhood of D. Then, for all $z \in D$

$$f(z) = \frac{1}{2i\pi} \int_{\partial D} \frac{f(\zeta)d\zeta}{\zeta - z}.$$

It follows that

(6.1)
$$\sup_{z \in D(a,r/2)} |f(z)| \leq 2 \int_{[0,1]} |f(\zeta(t))| dt.$$

APPENDIX 2 — MASS DISTRIBUTION PRINCIPLE

THEOREM 6.2 (Falconer [9]). Let ν be a positive and finite Borel probability measure on a compact metric space (X,d). Assume that $M\subseteq X$ is a Borel set such that $\nu(M)>0$ and

$$M \subseteq \bigg\{ t \in X, \liminf_{r \to 0^+} \frac{\log \nu \big(B(t,r) \big)}{\log r} \geqslant \delta \bigg\}.$$

Then the Hausdorff dimension of M is bounded from below by δ .

APPENDIX 3 — HAUSDORFF AND PACKING MEASURES AND DIMENSIONS

Given a subset K of $\mathbb{N}_+^{\mathbb{N}_+}$ endowed with a metric d making it σ -compact, $g: \mathbb{R}_+ \to \mathbb{R}_+$ a continuous non-decreasing function near zero and such that g(0) = 0,

and E a subset of K, the *Hausdorff measure* of E with respect to the gauge function g is defined as

$$\mathcal{H}^g(E) = \lim_{\delta \to 0^+} \inf \left\{ \sum_{i \in \mathbb{N}} g(\operatorname{diam}(U_i)) \right\},$$

the infimum being taken over all the countable coverings $(U_i)_{i\in\mathbb{N}}$ of E by subsets of K of diameters less than or equal to δ .

If $s \in \mathbb{R}_+^*$ and $g(u) = u^s$, then $\mathcal{H}^g(E)$ is also denoted by $\mathcal{H}^s(E)$ and called the *s-dimensional Hausdorff measure* of E. Then, the *Hausdorff dimension* of E is defined as

$$\dim E = \sup\{s > 0 : \mathcal{H}^s(E) = \infty\} = \inf\{s > 0 : \mathcal{H}^s(E) = 0\},\$$

with the convention $\sup \emptyset = 0$ and $\inf \emptyset = \infty$.

Packing measures and dimensions are defined as follows. Given g and $E\subset K$ as above, one first defines

$$\overline{\mathcal{P}}^g(E) = \lim_{\delta \to 0^+} \sup \big\{ \sum_{i \in \mathbb{N}} g(\operatorname{diam}(B_i)) \big\},$$

the supremum being taken over all the packings $\{B_i\}_{i\in\mathbb{N}}$ of E by balls centered on E and with diameter smaller than or equal to δ . Then, the *packing measure* of E with respect to the gauge g is defined as

$$\mathcal{P}^g(E) = \lim_{\delta \to 0^+} \inf \left\{ \sum_{i \in \mathbb{N}} \overline{\mathcal{P}}^g(E_i) \right\},$$

the infimum being taken over all the countable coverings $(E_i)_{i\in\mathbb{N}}$ of E by subsets of E of diameters less than or equal to E. If E is also denoted by E and called the E-dimensional measure of E. Then, the packing dimension of E is defined as

$$Dim E = \sup\{s > 0 : \mathcal{P}^s(E) = \infty\} = \inf\{s > 0 : \mathcal{P}^s(E) = 0\},\$$

with the convention $\sup \emptyset = 0$ and $\inf \emptyset = \infty$. For more details the reader is referred to [9].

If μ is a positive and finite Borel measure supported on K, then its *lower Hausdorff and packing dimensions* are defined as

$$\underline{\dim}(\mu) = \inf \{ \dim F : F \text{ Borel}, \ \mu(F) > 0 \},$$

$$\underline{\dim}(\mu) = \inf \{ \dim F : F \text{ Borel}, \ \mu(F) > 0 \},$$

and its upper Hausdorff and packing dimensions are defined as

$$\overline{\dim}(\mu) = \inf \{ \dim F : F \text{ Borel}, \ \mu(F) = \|\mu\| \},$$

$$\overline{\dim}(\mu) = \inf \{ \dim F : F \text{ Borel}, \ \mu(F) = \|\mu\| \}.$$

We have (see [8], [11])

$$\underline{\dim}(\mu) = \operatorname{ess inf}_{\mu} \lim_{r \to 0^{+}} \frac{\log \mu(B(t, r))}{\log(r)},$$

$$\underline{\operatorname{Dim}}(\mu) = \operatorname{ess inf}_{\mu} \lim_{r \to 0^{+}} \sup_{l} \frac{\log \mu(B(t, r))}{\log(r)}$$

and

$$\overline{\dim}(\mu) = \operatorname{ess sup}_{\mu} \liminf_{r \to 0^{+}} \frac{\log \mu(B(t, r))}{\log(r)},$$

$$\overline{\operatorname{Dim}}(\mu) = \operatorname{ess sup}_{\mu} \limsup_{r \to 0^{+}} \frac{\log \mu(B(t, r))}{\log(r)},$$

where B(t,r) stands for the closed ball of radius r centered at t. If $\underline{\dim}(\mu) = \overline{\dim}(\mu)$ (resp. $\underline{\mathrm{Dim}}(\mu) = \overline{\mathrm{Dim}}(\mu)$), this common value is denoted by $\dim \mu$ (resp. $\underline{\mathrm{Dim}}(\mu)$), and if $\dim \mu = \underline{\mathrm{Dim}}(\mu)$, one says that μ is *exact dimensional*.

REFERENCES

- [1] N. Attia, On the multifractal analysis of the branching random walk in \mathbb{R}^d , J. Theoret. Probab. 27 (4) (2014), pp. 1329–1349.
- [2] N. Attia and J. Barral, Hausdorff and packing spectra, large deviations, and free energy for branching random walks in \mathbb{R}^d , Comm. Math. Phys. 331 (1) (2014), pp. 139–187.
- [3] J. Barral, Continuity of the multifractal spectrum of a random statistically self-similar measure, J. Theoret. Probab. 13 (4) (2000), pp. 1027–1060.
- [4] J. Barral, Generalized vector multiplicative cascades, Adv. in Appl. Probab. 33 (4) (2001), pp. 874–895.
- [5] J. D. Biggins, Martingale convergence in the branching random walk, J. Appl. Probab. 14 (1) (1977), pp. 25–37.
- [6] J. D. Biggins, Uniform convergence of martingales in the branching random walk, Ann. Probab. 20 (1) (1992), pp. 137–151.
- [7] J. D. Biggins, B. M. Hambly, and O. D. Jones, *Multifractal spectra for random self-similar measures via branching processes*, Adv. in Appl. Probab. 43 (1) (2011), pp. 1–39.
- [8] C. D. Cutler, Connecting ergodicity and dimension in dynamical systems, Ergodic Theory Dynam. Systems 10 (3) (1990), pp. 451–462.
- [9] K. Falconer, Fractal Geometry: Mathematical Foundations and Applications, second edition, Wiley, Hoboken, NJ, 2003.
- [10] K. J. Falconer, *The multifractal spectrum of statistically self-similar measures*, J. Theoret. Probab. 7 (3) (1994), pp. 681–702.
- [11] A. H. Fan, Sur les dimensions de mesures, Studia Math. 111 (1) (1994), pp. 1–17.
- [12] J.-P. Kahane, Sur le chaos multiplicatif, Ann. Sci. Math. Québec 9 (2) (1985), pp. 105–150.
- [13] J.-P. Kahane, *Positive martingales and random measures*, Chin. Ann. Math. Ser. B 8 (1) (1987), pp. 1–12.
- [14] J.-P. Kahane and J. Peyrière, Sur certaines martingales de Benoit Mandelbrot, Adv. Math. 22 (2) (1976), pp. 131-145.
- [15] Q. Liu, Sur une équation fonctionnelle et ses applications: Une extension du théorème de Kesten–Stigum concernant des processus de branchement, Adv. in Appl. Probab. 29 (2) (1997), pp. 353–373.

- [16] Q. Liu and A. Rouault, On two measures defined on the boundary of a branching tree, in: Classical and Modern Branching Processes (Minneapolis, MN, 1994), K. B. Athreya and P. Jagers (Eds.), Springer, New York 1997, pp. 187–201.
- [17] R. Lyons, Random walks and percolation on trees, Ann. Probab. 18 (3) (1990), pp. 931–958.
- [18] R. Lyons, A simple path to Biggins' martingale convergence for branching random walk, in: Classical and Modern Branching Processes (Minneapolis, MN, 1994), K. B. Athreya and P. Jagers (Eds.), Springer, New York 1997, pp. 217–221.
- [19] G. M. Molchan, Scaling exponents and multifractal dimensions for independent random cascades, Comm. Math. Phys. 179 (3) (1996), pp. 681–702.
- [20] J. Neveu, Martingales à temps discret, Masson et Cie, éditeurs, Paris 1972.
- [21] J. Peyrière, Calculs de dimensions de Hausdorff, Duke Math. J. 44 (3) (1977), pp. 591-601.
- [22] R. T. Rockafellar, Convex Analysis, Princeton University Press, Princeton, NJ, 1970.
- [23] B. von Bahr and C.-G. Esseen, Inequalities for the rth absolute moment of a sum of random variables, $1 \le r \le 2$, Ann. Math. Statist. 36 (1965), pp. 299–303.
- [24] E. C. Waymire and S. C. Williams, Multiplicative cascades: Dimension spectra and dependence, in: Proceedings of the Conference in Honor of Jean-Pierre Kahane (Orsay, 1993), J. Fourier Anal. Appl. (1995), Special Issue, pp. 589–609.

Najmeddine Attia Faculté des Sciences de Monastir Avenue de l'environnement 5000 Monastir, Tunisia *E-mail*: najmeddine.attia@gmail.com

> Received on 12.7.2017; revised version on 22.2.2018