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Abstract
It is generally assumed that the brain uses something akin to sparse distributed representations. These representations, however,
are high-dimensional and consequently they affect classification performance of traditional Machine Learning models due to
the “curse of dimensionality”. In tasks for which there is a vast amount of labeled data, Deep Networks seem to solve this
issue with many layers and a non-Hebbian backpropagation algorithm. The brain, however, seems to be able to solve the
problemwith few layers. In this work, we hypothesize that this happens by using Hebbian learning. Actually, the Hebbian-like
learning rule of Restricted Boltzmann Machines learns the input patterns asymmetrically. It exclusively learns the correlation
between non-zero values and ignores the zeros, which represent the vast majority of the input dimensionality. By ignoring
the zeros the “curse of dimensionality” problem can be avoided. To test our hypothesis, we generated several sparse datasets
and compared the performance of a Restricted Boltzmann Machine classifier with some Backprop-trained networks. The
experiments using these codes confirm our initial intuition as the Restricted Boltzmann Machine shows a good generalization
performance, while the Neural Networks trained with the backpropagation algorithm overfit the training data.

Keywords Hebbian learning · Restricted Boltzmann machines · Sparse distributed representations · Curse of dimensionality

1 Introduction

Deep Learning enables high-level abstractions in data using
architectures composed of multiple non-linear transforma-
tions. These models have significantly improved the state-
of-the-art in different domains, such as speech recognition,
visual object recognition, object detection and many oth-
ers (LeCun and Bengio 1998; Huanget et al. 2019). Recent
deep learning models have made significant strides in dif-
ferent learning paradigms such as supervised, unsupervised
and self-supervised learning (Gui et al. 2024; Baevski et al.
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2023; Schmarje et al. 2021). Some examples of recentmodels
that have shown great success include Vision Transform-
ers (Vaswani et al. 2017), Generative Adversarial Networks
(Goodfellow et al. 2014), Large Language Models (Brown
et al. 2020; Thoppilan et al. 2022)

However, despite these advancements, the backpropaga-
tion learning rule and the deep architectures employed by
these models represent a significant departure from the prin-
ciples of biological neural networks (Serre 2019). The human
brain seems to have better generalization performance with
much fewer neurons and complexity, which greatly reduces
energy consumption. This discrepancy highlights the need
for exploring alternative approaches that more closely align
with brain-related learning mechanisms.

The brain is the best natural example of a learning system
that can perform extremely difficult tasks in a mostly unsu-
pervised manner (Trappenberg 2009; Golomb et al. 1990).
In order to represent information, the brain is thought to
share neurons between concepts, which means that a single
neuron can be part of the representation of many differ-
ent concepts. Furthermore, empirical evidence demonstrates
that every region of the neocortex represents information by
using sparse activity patterns (Tyler et al. 2000; Ahmad and
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Hawkins 2015). When looking at any population of neurons
in the neocortex their activity will be sparse, that is, a low
percentage of neurons are highly active and the remaining
neurons are inactive (Tyler et al. 2000; Hawkins et al. 2016).

Sparse Distributed Representations (SDRs) is the method
used to implement computationally the way information is
represented in the brain (Tyler et al. 2000; Tyler and Moss
2001; Quiroga 2012). An SDR is a binary vector com-
posed of a large number of bits where each bit represents a
neuron in the neocortex (Ouyang et al. 2020). Besides high-
dimensional, these vectors are also sparse,whichmeans there
is a low percentage of informative (non-zero) bits (Hinton
et al. 1997; Sa-Couto and Wichert 2023).

To recognize a particular activity pattern a neuron forms
synapses to the active cells in that pattern of activity (Palm
1980). This way, a neuron only needs to form a small number
of synapses, to accurately recognize a sparse pattern in many
cells. (Hawkins et al. 2016; Milnor 1985; Hertzet al. 1991).

As discussed previously, SDRs are binary vectors com-
posed of many bits, which means we are dealing with a
high-dimensional input. These sparse representations are
known to work well with associative memory models Palm
(1982, 1980); Golomb et al. (1990); Sa-Couto and Wichert
(2020), but when we try to classify them, we must deal with
some problems.

Classic Machine Learning models, such as Feed-Forward
Networks, struggle with high-dimensional sparse inputs. The
dimensionality of the input data results in a vast number of
parameters, making the models prone to overfitting Tan et al.
(2010). Additionally, the sparseness of the data increases
problem complexity, affecting classification performance
due to the “curse of dimensionality”. This concept refers
to the challenges that arise when dealing with data in high-
dimensional spaces, often leading to increased complexity
and decreased performance in machine learning models. As
the number of dimensions in a dataset increases, the vol-
ume of the space grows exponentially, causing the data to
become sparse. This sparsity can significantly affect the per-
formance of machine learning models. In high-dimensional
spaces, models can easily become overly complex, fitting the
noise in the training data rather than capturing the underlying
patterns. This results in overfitting, where models perform
well on training data but poorly on unseen test data. The
increased dimensionality introduces more parameters to esti-
mate, thereby escalating the risk of overfitting Altman and
Krzywinski (2018); Goodfellow et al. (2016).

1.1 Hypothesis

When dealing with sparse data there is a low percentage of
informative bits in the vector. Thus, in order to learn a good
and general classifier from these representations, it would
be great if there was a model capable of ignoring the empty

Table 1 Train and test mean accuracies of LR when classifying a sam-
ple of the original binarized MNIST and a flipped version of the same
sample

Train accuracy(%) Test accuracy(%)

Original version 99.6 85.2

Flipped version 99.7 84.5

dimensions and focusing on active units. Ignoring the zeros
would ignore a lot of the dimensionality of the sparse vectors,
thus solving many of the previously referred issues.

Classic Machine Learning models cannot ignore empty
dimensions (zeros) in high-dimensional sparse data. Thus,
these models have to learn all the dimensions of the sparse
input.

A good way to prove this statement is to classify the same
information encoded in two different ways. In Fig. 1, the ten
top images represent the binarized version of the well-known
MNIST1 dataset, in which the bits representing each digit are
set to 1 and the background information to 0. The ten bottom
images represent a flipped sample of the original binarized
MNIST, where the bits representing each digit are set to 0
and the background information to 1.

We started by performing the aforementioned experiment
using a Logistic Regression (LR), which basically amounts
to a softmax-based single layered Neural Network trained
by backpropagation of errors and it is generally used as the
output layer of a Deep Learning classifier.

By analysing the results on Table 1, one concludes that
this model has similar performances when classifying the
original and the flipped version of the MNIST dataset.

The similar accuracy results achieved by LR in both prob-
lems can be explained by the fact that this model learns the
information given by 1s in the same way it does with 0 s.
This implies that, when LR is dealing with high-dimensional
sparse inputs, all the dimensions are learnt.

Our hypothesis states that a biologicallymotivatedHebbian-
like local learning rule can ignore the empty dimensions (zero
values). In fact, the Restricted Boltzmann Machine (RBM)
learning rule ignores the zeros present on the input data,
which means it exclusively learns the non-zero dimensions.
Considering that the empty dimensions represent the vast
majority of the input dimensionality, by ignoring the zeros
the “curse of dimensionality” problem can be avoided.

We considered a RBM with the same architecture to clas-
sify both versions of the binarized MNIST, the original and
the flipped one. If our intuition points in the right direction,
the model should be able to accurately classify the original
version in which the digits information are represented by

1 http://yann.lecun.com/exdb/mnist/.
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Fig. 1 Ten image sample of
MNIST test set. The ten top
images represents a binarized
version of an original MNIST
sample, while the bottom
images represent the same
sample flipping the bits

Table 2 Train and test mean accuracies of RBM when classifying a
sample of the original binarized MNIST and a flipped version of the
same sample

Train accuracy(%) Test accuracy(%)

Original version 91.6 86.2

Flipped version 15.5 13.8

1 s and fail on the flipped version in which the digits are
represented by 0s.

With a sample of 5000 training examples and 1000 test
examples of both datasets, Table 2 shows the results achieved
by the RBM classifier.

By analysing the results achieved by the RBMs with 500
hidden units, one can conclude that with the original version
of the binarized MNIST, the model seems to learn the cor-
relations between active neurons, which represent the digits.
As the active bits represent a relatively small percentage of
each sample, the model is able to capture the correlations
between these active features and have a good generalization
performance.

In the flipped version of the binarized MNIST, the RBM
fails completely. This may be justified by the fact that this
model is unable to catch the correlations between all the
active neurons that represent the background.

This small experiment validates the strong potential of
RBMs to deal with high-dimensional sparse inputs. Our
hypothesis is that RBMs ignore the zeros and exclusively
capture correlations between active units. Could it be that by
ignoring the zeroswe can avoid the “curse of dimensionality”
problem when classifying sparse data?

Actually, throughout this research paper we will answer
this main question by:

1. Demonstrating that LR lacks generalization performance
when dealing with high-dimensional sparse data as it
learns all the dimensions of the sparse input.

2. Showing that the RBM has a good generalization capabil-
ity as it exclusively learns the correlation between active
neurons of the high-dimensional sparse data.

3. Comparing the RBM with a Multi-Layer Perceptron
(MLP) to prove the generalization capability of the RBM
is not a consequence of it being a non-linear classifier.

2 Background

2.1 Restricted Boltzmannmachines

RestrictedBoltzmannMachines (RBMs)were initially invented
under the nameHarmonium. They are a variant of Boltzmann
machines, with the restriction that there is a single layer of
m visible units v = (v1, v2, ..., vm) and a single layer of n
hidden units h = (h1, h2, ..., hn) with no visible-visible or
hidden-hidden connections Salakhutdinov et al. (2007).

The energy function of a Restricted Boltzmann Machine
can be written as

H(v, h) = −
n∑

i=1

m∑

j=1

wi j · hi · v j −
m∑

j=1

b j · v j −
n∑

i=1

ci · hi

(1)

For all i ∈ 1, ..., n and j ∈ 1, ...,m, wi j is a real valued
weight associated with the edge between the units v j and hi ,
and b j and ci are real valued bias terms associated with unit j
of the visible layer and unit i of the hidden layer, respectively
Meyder et al. (2008).

2.1.1 Contrastive divergence algorithm

Markov Chain Monte Carlo (MCMC) methods generally
require many sampling steps to obtain unbiased estimates
of the log-likelihood gradient. However, research has shown
that running the chain for only a few steps can provide esti-
mates sufficient for model training Hinton (2002); Fischer
and Igel (2014). Contrastive divergence (CD) speeds up the
computing time of the negative learning phase by avoiding
the need for Gibbs sampling to reach thermal equilibrium
Fischer and Igel (2014). In this algorithm, the training phase
begins by fixing the visible units at v0 and then computing
the hidden layer units h0 as follows:
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p(hi = 1|v) = σ

⎛

⎝
m∑

j=1

wi j · v j + ci

⎞

⎠ (2)

Equation (2) defines
〈
v j hi

〉0
data . As previously discussed,

there are no connections between visible-visible or hidden-
hidden units. Consequently, each hidden unit hi operates
independently of the other hidden units. This independence
allows for h0 to be computed in parallel, as each hidden unit
exclusively depends on the connected visible units Hinton
et al. (2006).

The second step involves updating all the visible units
simultaneously to obtain a “ reconstruction” v1, which can
be computed by:

p(v j = 1|h) = σ

(
n∑

i=1

wi j · hi + b j

)
(3)

Equation (3) defines
〈
v j hi

〉1
recon . The visible units are now

fixed with v1 and the hidden layer units h1 are computed in
parallel using Eq. (2). This reconstruction algorithm can be
repeated τ times or until convergence is reached. In some
cases, CD may require many iterations (1 � τ) to converge.
When τ = 1 we are performing a single-step reconstruc-
tion Hertzet al. (1991); Wichert (2020). The weights update
computed for τ steps of the reconstruction algorithm is given
by:

�wi j = η · (
〈
v j hi

〉0
data − 〈

v j hi
〉τ
recon) (4)

Hebbian learning is a type of activity-dependent synap-
tic plasticity in which the connection between two neurons
is strengthened when the pre and postsynaptic neurons are
activated simultaneously Jaeger and Jung (2014).

The learning rule of RBMs follows a form of Hebbian
learning, as the weights are adjusted in proportion to the cor-
relations between the states of nodes i and j . In this process,
the visible vectors are fixed to a vector from the training data,
and the hidden states are randomly set to 0 or 1 Goodfellow
et al. (2016); Hinton (2002).

2.1.2 Persistent contrastive divergence algorithm

Initializing the Markov chains at each gradient step using
their states from the previous step is an alternative approach
to address many of the issues with Contrastive Divergence
(CD). Initially discovered in the applied mathematics and
statistics community as Stochastic Maximum Likelihood,
this method was later rediscovered as Persistent Contrastive
Divergence (PCD) Younes (1998).

The key idea behind this strategy is that if the stochas-
tic gradient algorithm takes small steps, the model from the
previous step will be similar to the current model. Therefore,
samples from the previousmodel’s distributionwill be nearly
fair samples from the current model’s distribution.

By continuously updating each Markov chain throughout
the learning process, rather than restarting them at each gra-
dient step, the chains can thoroughly explore the model’s
landscape and find all the minima. Consequently, Persistent
Contrastive Divergence is significantly less likely to form
models with spurious minima compared to the original Con-
trastiveDivergence algorithmMnih et al. (2011);Goodfellow
et al. (2016).

2.1.3 Restricted Boltzmannmachines for classification

In general, RBMs are described and thought of as generative
models. However, one can look at the same architecture as
Feed-Forward Network classifier with a different learning
algorithm.

First we have the training phase, where the RBM learns
to model the joint probability distribution of input data
(explanatory variables) and the corresponding label (output
variable), both represented by the visible units of the model
as shown in the left network on Fig. 2. The RBM is trained
with one of the previously described algorithm: either CD or
PCD Fischer and Igel (2014); Hinton (2002).

Following the training phase, we have the sampling where
the label corresponding to an input example can be obtained
by fixing the visible variables that correspond to the data and
then sampling the remaining visible variables allocated to
the labels from the joined probability distribution of data and
labels modeled by the RBM. Hence, a new input example
can be clamped to the corresponding visible neurons and the
label can be predicted by sampling Fischer and Igel (2014).

2.2 Backpropagation neural networks

Deep Learning architectures are composed ofmultiple layers
that perform non-linear transformations LeCun et al. (2015).
The foundation of these complex multi-layer networks is the
single-layered model known as Logistic Regression (LR),
often represented as the final layer in these architectures.
These networks are typically trained using Stochastic Gradi-
ent Descent. The backpropagation procedure can be used to
compute gradients, as long as the neurons in each layer are
smooth functions of their inputs and internal weights. This
algorithm operates iteratively through two main phases. Ini-
tially, the forward phase propagates input data through the
network to generate an output. Next, the backward phase
computes the gradient of the objective with respect to the
input of a layer by propagating backwards from the gradient
with respect to the layer’s output. The backpropagation algo-
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Fig. 2 RBM that models the joint probability distribution of input images and the corresponding labels (left) and the Feed-Forward perspective of
the same network (right)

rithm allows for repeated propagation of gradients through
all layers. It starts from the output layer, where predictions
are generated, and propagates backward to the input layer,
where data enters. This means error calculations begin at the
output layer and are propagated backwards, giving rise to
the concept of errors backpropagating through the network.
LeCun et al. (2015); Goodfellow et al. (2016).

After computing these gradients, determining the gradi-
entswith respect to theweights between each layer k becomes
straightforward by using the expression for the partial deriva-
tive of the error with respect to each weight:

�wk
i j = −η · ∂E

∂wk
i j

(5)

Backpropagation learning rule (Eq. (5)), adjusts theweights
to minimize the error between the actual output and the out-
put predicted by the network. Actually, this is a non-Hebbian
learning rule as it does not change weights based on local
correlations between neurons.

Figure3 illustrates two Neural Network architectures that
can be trained using the backpropagation algorithmdescribed
earlier. The architecture on the left represents a Neural
Network without any hidden layers, commonly known as
Logistic Regression. The network on the right has the same
input and output layers but includes one hidden layer in
between. Although more layers could be added to these
Neural Networks, the architectures in Fig. 3 are specifi-
cally chosen to be comparable to the Restricted Boltzmann
Machine model, which also has a single hidden layer.

In fact, the only difference between this Neural Network
with one hidden layer and the RBM is the learning algorithm.
The Neural Networks in Fig. 3 are trained with backpropaga-

tion of error, which adjusts the weights to minimize the error
between the actual output and the predicted output of the net-
work. In contrast, the RBM uses the Contrastive Divergence
algorithm, which follows a local Hebbian-like learning rule.
Unlike in backpropagation, there is no error propagation in
RBMs, instead it learns to model the joint probability distri-
bution of input data and the corresponding label.

3 Experiments

The main hypothesis of our research work grounds on the
advantage of the local Hebbian-like rule used by Restricted
Boltzmann Machines (RBMs) to avoid the “curse of dimen-
sionality” problemwhen dealingwith sparse distributed data.
With the desire to validate this hypothesis, we dedicate this
section to analyze the performed experiments.

The first step required before diving into the experimental
analysis, is the definition of the used sparse data.

In fact, generating binary sparse data is not a trivial task
as it is hard to find a complexity balance in the learning
problem. Thus, instead of generating binary data, we decided
to generate a dataset where each class follows a multivariate
normal distribution. This approach was driven by the need to
create a sufficiently challenging dataset that could effectively
demonstrate the problem.

Bearing in mind our hypothesis, we started by imple-
menting a RBM. This implementation is modelled with
Bernoulli visible and hidden units, which means that this
RBM is prepared to receive input data in the range [0,1].
By considering that the generated data is real-valued, some
exploratory experiments with a Gaussian-Bernoulli RBM
were performed, but tuning the value of the Standard Devia-
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Fig. 3 Architecture of a single-layer Neural Network, which is also known as Logistic Regression (left) and a multi-layer Neural Network with
one hidden layer (right)

tion parameter is a hard task, which can produce an unstable
learning process (Hinton 2012).

In fact, the only difference between using Bernoulli or
Gaussian visible units occurs when sampling the visible units
of the negative phase of the learning algorithm. Constraining
the values of the visible units to be between 0 and 1 imparts a
kind of regularization to the learning process. In the sampling
phase, the use of Bernoulli visible units is necessary as the
sampled label is binary.

To prove our hypothesis is accurate, a comparison was
done between the implementedRBMand aBackprop-trained
model. As previously stated the model used to be compared
with the RBM is the Logistic Regression (LR). The main
reason for the choice of thismodel is the fact that it represents
a Backprop-trained single layered Neural Network and it is
generally used as the output layer of a Deep Neural Network.

Previously to the experimental analysis results presen-
tation and discussion, we describe in detail the dataset
generation strategy and the pipeline followed in each exper-
iment.

3.1 Dataset generation

Each dataset is generated with two classes, in which each one
follows a Gaussian distribution. The first half of the samples
belong to class 0 and follow a Gaussian distribution with
mean centered at the origin, the other half corresponds to
class 1 and follows another Gaussian distribution with mean
centered in a vector of fives. The covariance matrix for each
class is defined as a diagonal matrix in which the diagonal
values are set to the norm of the difference between the mean
vector of each class multiplied by a small number as to reach
a good balance in problem complexity.

Moreover, the number of features will be further defined
for each experiment. In case the dataset is intended to be
dense, the number of features is set to a low value, whereas in
the casewhere the dataset is intended to be high-dimensional,
the number of features is fixed to a high value.

3.2 Pipeline

For each experiment, we started by setting the parameters
and then running 10 times the following pipeline:

1. Populating the dataset by sampling from the two mul-
tivariate normal distribution with the previously defined
parameters and associate each multivariate normal distri-
bution to a class, either 0 or 1.

2. Centering the data, which consists in subtracting themean
of each feature to every value of that feature.

3. Transforming the dataset into sparse data, which means
choosing a few random features to keep in each sample
and set the remaining features to zero.

4. Dividing the samples of the dataset into train and test,
with the respective percentages of 80% and 20%.

5. Training a LR model with the generated train set.
6. Evaluating a LRmodel by computing and storing the train

and test accuracies.
7. Training the RBM with the generated train set using the

PCD algorithm.
8. Evaluating the RBM by performing Gibbs sampling to

get the reconstruction of the class unit for both train and
test sets. After having all the reconstructions, the model’s
train and test accuracies can be computed and stored.

After running the described pipeline, four lists with 10
train and test accuracy values for both models were obtained.
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Fig. 4 Performance of the LR in a dense versus a high-dimensional
sparse dataset

Subsequently, the mean and the standard deviation for each
list was calculated. In the end, a single train accuracy for
both models and a single test accuracy for both models were
stored, as well as the respective standard deviations.

3.3 Experimental analysis

We started by generating a dense and a sparse dataset. The
dense dataset was generated as described in Sect. 3.1. For the
dataset to be dense, the number of features was fixed to 500
and all the values of the data were kept. When generating the
high-dimensional sparse dataset, the methodology described
in Sect. 3.1 was also used. In this case, the number of features
was set to 5000. Furthermore, the sparsity was fixed to 95%,
which means that for each sample 5% of the features were
kept and the remaining values set to 0.

In Fig. 4, the results show that LR performs well when the
dataset is dense, with a mean train accuracy of 100% and
a mean test accuracy of 99.25%. However, when analysing
its performance on the high-dimensional sparse dataset the
model registers tremendous overfitting, with a mean train
accuracy of 100% and a mean test accuracy of 63.5%.

This first experiment provides a baseline to guide the
next steps. In what follows, the intent was to show that the
RBM performs accurately in a classification task with high-
dimensional sparse data. Before diving into the experiments,
the parameters must be defined. With these experiments,
the aim was to assess the behaviour of a LR and a RBM
with increasing sparseness of the dataset. For this reason, the
remaining parameters of both models were fixed to the same
values, as to achieve a trustful comparison between models.

The number of samples was fixed to 2000 and the dimen-
sionality of the input to 5000. As far as the parameters of
the RBM architecture were concerned, the number of hidden
units was set to 500. Additionally, a batch size of 50 and a
learning rate of 0.1 was used.

Fig. 5 Comparison between accuracies of LR andRBMclassifiers with
increasing percentage of sparseness

With the final objective of taking meaningful conclusions
about both models when the dataset sparsity increases, i.e.,
the number of zero values increases, the pipeline described
in Sect. 3.2 was followed. To make an easier comparison
between models, the sparsity percentage was set to each x-
axis value and the mean accuracies of LR and RBM were
plotted in Fig. 5.

By analysing the results plotted in Fig. 5, one can observe
that the LR classifier has an accuracy of 100% on the training
set, though it is not able to perform accurately on the test set,
which suggests that this model is learning the noise in the
training data. As the data gets sparser the learning problem
becomes harder and test set accuracy decreases. This means
that LR can represent the training set of sparse data perfectly,
however, is unable to generalize, which results in a poor test
set performance. On the contrary, the RBM classifier can
generalize the learning problem.

To understand how LR and RBM behave with different
dimensionalities and sparseness percentages, both models
varying these two parameters were run. The 3-D surface
plots in Fig. 6, show the difference between train and test
accuracies of RBM and LR considering the number of fea-
tures (dimensionality) and the sparseness percentage used
with each different dimensionality dataset. In the 3-D sur-
face plot on the right, one can observe that as the data gets
sparser the difference between both surfaces,which represent
the test accuracies, increases and the RBM shows to perform
better than the LR. With lower sparseness the RBM and the
LR have similar test results. The dimensionality behaves in
the sameway,whichmeans thatwith higher dimensional data
it is easier to notice the better results achieved by the RBM.
The 3-D surface plot on the left shows the train accuracy
difference of both models. The LR has a train accuracy of
100%, regardless of the sparsity or the dimensionality of the
data. The surface plotted representing the RBM train accu-
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Fig. 6 The left plot shows the difference between train accuracies of RBMand LR considering increasing dimensionality and sparseness percentage.
The right plot shows the difference between test accuracies of RBM and LR considering increasing dimensionality and sparseness percentage

racy is very similar to the RBM test surface, which shows a
good generalization performance.

The good results and generalization performance achieved
by the RBM classifier can be mainly justified by the fact that
this model exclusively learns the correlations between active
units and ignores the zeros, which represents most of the
dimensionality of the input. Besides, the RBM has a hid-
den layer that represents hidden correlations between active
features of sparse vectors. Therefore, this model can map
a high-dimensional sparse vector into a lower dimensional
hidden layer, which catches the relevant features present on
the high-dimensional sparse vector.

This justification seems to bewell grounded, although one
may still wonder: Can the good performance of the RBM be
justified by the presence of hidden units, which makes it a
non-linear classifier?

To answer this question, a comparison was made between
the performances of the RBM and a Multi-Layer Perceptron
(MLP).Toderivemeaningful conclusions, aRBMandaMLP
with the same number of hidden units were defined. Addi-
tionally, the MLP activation function for the hidden layer
units used was the logistic sigmoid function.

More experiments were carried out, in which normally
distributed datasets were created following the pipeline
described in Sect. 3.2. However, instead of comparing the
RBM to a LR, the comparison was made with a MLP. In
this experiment, the number of samples was fixed to 2000,
the dimensionality of the input to 5000 and the number of
hidden units of the RBM and the MLP is fixed to 500. With
these parameters and a sparsity of 95%, the mean train and
test accuracies in Table 3 were obtained.

As a matter of fact, the overfitting undergone by the MLP
model led to the conclusion that, the generalization capabil-
ity of the RBM is not a consequence of it being a non-linear
classifier. The insertion of a hidden layer does not changes
the conclusions taken with the LR. Notably, the experiment
with the MLP at 95% sparsity, which represents the harder

case, yielded similar results to those obtained with the LR.
This consistency suggests that both LR and MLP exhibit
similar behavior when dealing with high-dimensional sparse
data. Thus, our initial intuition pointed in the right direc-
tion and one can conclude that the main reason for the good
generalization performance of the RBM is justified by the
Hebbian-like learning algorithm and not by the presence of
hidden layers.

3.4 Discussion

Our work emphasizes the importance of sparse represen-
tations, which appear to be the way the brain encodes
information. However, it is also crucial to consider that
Hebbian Learning is recognized as the method by which
the brain performs learning, where the activation of a neu-
ron exclusively depends on the neurons connected to it.
While modern neural networks utilize both active and inac-
tive neurons to capture complex patterns, the Hebbian-like
learning rule in RBMs focuses on learning the correlations
among active neurons. The learning algorithms are dis-
tinct in their approaches: backpropagation updates weights
globally, while Hebbian Learning performs updates based
exclusively on local connections. This Hebbian Learning
approach enhances generalization when learning Sparse Dis-
tributed Representations.

The experimental analysis performed on the previous sec-
tion ground our initial hypothesis where we state that the
local Hebbian-like learning rule used by RBMs represents
the key factor to avoid the “curse of dimensionality” prob-
lem in sparse distributed data. By analysing the experimental
results present on the previous section, one can conclude that
the explored Backprop-trained networks, i.e. the LR and the
MLP, show a lack of generalization performance on this kind
of data. This is justified by the fact that they learn all the
dimensions of the high-dimensional sparse representations.
Contrarily, the RBM shows a good generalization capability
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Table 3 Train and test mean
accuracies of MLP and RBM
given the generated data

Train accuracy(%) Test accuracy(%)

Multi-layer perceptron (MLP) 100 64.12

Restricted Boltzmann machine (RBM) 76.18 73.98

by exclusively learning the correlation between active neu-
rons of the high-dimensional sparse representations.

In order to expand the performed analysis, we suggest the
following directions of research: (1) Tackle a Real-World
Sparse Data problem by using a RBM and compare it with
Backprop-trained networks. (2) Assess the potential increase
in performance by using more powerful networks. To that
end, a deeper MLP can be used and compared with a Deep
Belief Network (DBN), which is a deep architecture of mul-
tiple stacks of RBMs.

4 Conclusion

SDRs are the fundamental form of representing information
in the brain. The activity of any population of neurons in the
neocortex is sparse, where a low percentage of neurons are
highly active, and the remaining neurons are inactive (Tyler
and Moss 2001; Quiroga 2012; Hawkins et al. 2016). Previ-
ous research explored these representations with biologically
plausible models to perform associative memory tasks. To
learn a good and general classifier without running into the
“curse of dimensionality” problem is a hard task. Deep Net-
works with non-Hebbian learning progressively reduce the
dimensionality of the SDR from layer to layer and have suc-
cess in tasks in which there is a great amount of data with
labels.

The present article explores the capabilities of a Hebbian-
like learning rule to side step the limitations that classic
MachineLeaningmodels have,when classifying high dimen-
sional sparse data.

Our hypothesis grounds on the capability of the Hebbian
learning of RBMs to ignore the empty dimensions of the
input data focusing on active units.

To analyze the validity of our hypothesis, we defined a
dataset generation strategy in which each class followed a
multivariate normal distribution. Several experiments were
carried out using this high-dimensional sparse data, in which
datasets with varying dimensionalities and sparseness were
generated.

The good generalization capability achieved by the RBM
shows that the local Hebbian-like rule used in the network
learning algorithm represents the key factor to avoid the
“curse of dimensionality” problem in sparse distributed data.
This model by exclusively learning the correlation between
non-zero neurons is able to map a high-dimensional sparse

vector into a hidden layer, which catches the relevant features
present on the high-dimensional sparse vector.

On the other hand, both LR and MLP, by using the non-
Hebbian backpropagation algorithm, have to learn all the
dimensions of the sparse data and consequently become too
adapted to the training set, leading to the overfitting problem.

Considering that we are dealing with biological-like rep-
resentations, it is expected that a biologically plausible
algorithm can better deal with these representations. We can
conclude that using a Hebbian-like learning rule represents a
clear advantage when dealing with high-dimensional sparse
data.
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