
IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING 1

VulDeeLocator: A Deep Learning-based
Fine-grained Vulnerability Detector

Zhen Li, Deqing Zou, Shouhuai Xu, Zhaoxuan Chen, Yawei Zhu, and Hai Jin, Fellow, IEEE

Abstract—Automatically detecting software vulnerabilities is an important problem that has attracted much attention from the academic
research community. However, existing vulnerability detectors still cannot achieve the vulnerability detection capability and the locating
precision that would warrant their adoption for real-world use. In this paper, we present a vulnerability detector that can simultaneously
achieve a high detection capability and a high locating precision, dubbed Vulnerability Deep learning-based Locator (VulDeeLocator).
In the course of designing VulDeeLocator, we encounter difficulties including how to accommodate semantic relations between the
definitions of types as well as macros and their uses across files, how to accommodate accurate control flows and variable define-
use relations, and how to achieve high locating precision. We solve these difficulties by using two innovative ideas: (i) leveraging
intermediate code to accommodate extra semantic information, and (ii) using the notion of granularity refinement to pin down locations
of vulnerabilities. When applied to 200 files randomly selected from three real-world software products, VulDeeLocator detects 18
confirmed vulnerabilities (i.e., true-positives). Among them, 16 vulnerabilities correspond to known vulnerabilities; the other two are not
reported in the National Vulnerability Database (NVD) but have been “silently” patched by the vendor of Libav when releasing newer
versions.

Index Terms—Vulnerability detection, deep learning, locating, program analysis, program representation.

F

1 INTRODUCTION

SOFTWARE vulnerabilities are a major cause of cyber
attacks. Unfortunately, vulnerabilities are prevalent as

evidenced by the steady increase of vulnerabilities reported
by the Common Vulnerabilities and Exposures (CVE) [1]. One
important approach towards eliminating vulnerabilities is to
design vulnerability detectors to detect (and patch) them. An
ideal vulnerability detector should simultaneously achieve
a high detection capability and a high locating precision (i.e.,
precisely pinning down the vulnerable lines of code).

A popular family of vulnerability detectors is based
on static analysis. These detectors can be divided into code
similarity-based ones and pattern-based ones. Code similarity-
based detectors [2–4] can detect vulnerabilities caused by

Corresponding author: Deqing Zou.

• Z. Li is with the National Engineering Research Center for Big Data
Technology and System, Services Computing Technology and System
Lab, Cluster and Grid Computing Lab, Big Data Security Engineering
Research Center, School of Cyber Science and Engineering, Huazhong
University of Science and Technology, Wuhan 430074, China, and also
with School of Cyber Security and Computer, Hebei University, Baoding,
071002, China. E-mail: lizhenhbu@gmail.com

• D. Zou is with the National Engineering Research Center for Big Data
Technology and System, Services Computing Technology and System
Lab, Cluster and Grid Computing Lab, Big Data Security Engineering
Research Center, School of Cyber Science and Engineering, Huazhong
University of Science and Technology, Wuhan 430074, China. E-mail:
deqingzou@hust.edu.cn

• S. Xu is with the Department of Computer Science, University of Colorado
Colorado Springs, Colorado, USA 80918. This work was partly done at
University of Texas at San Antonio. E-mail: sxu@uccs.edu.

• Z. Chen, Y. Zhu, and H. Jin are with the National Engineering Research
Center for Big Data Technology and System, Services Computing Technol-
ogy and System Lab, Cluster and Grid Computing Lab, Big Data Security
Engineering Research Center, School of Computer Science and Technology,
Huazhong University of Science and Technology, Wuhan 430074, China.
E-mail: {zhaoxaunchen, yokisir, hjin}@hust.edu.cn

code cloning, and can achieve a high locating precision
when they indeed detect vulnerabilities. However, they
incur high false-negatives (i.e., low detection capability)
when applied to detect vulnerabilities that are not caused by
code cloning. Pattern-based detectors can be further divided
into rule-based ones and machine learning-based ones. Rule-
based detectors [5–10] can identify the vulnerable lines of
code when they indeed correctly detect vulnerabilities, but
often incur a low detection capability (because of their high
false-positives and high false-negatives). Moreover, they re-
quire human analysts to define vulnerability detection rules.
Machine learning-based detectors use vulnerability patterns
for detection, where the patterns are learned from analyst-
defined feature representation of vulnerable programs [11–
15]. However, these detectors cannot achieve a high locating
precision because they operate at a coarse granularity, typi-
cally at the function level [11].

The recent development in machine learning-based vulner-
ability detection is to use deep learning [16–18], while op-
erating at a fine-grained program slice level. These detectors
can relieve the problem of manual-feature definition, which
has received further attention recently [19–23]. However,
these detectors still offer inadequate detection capability and
inadequate locating precision.

In order to see their inadequate detection capability, we
observe that the state-of-the-art detector [17], despite its
improvement upon [16], achieves an F1-measure of 86.0%,
a false-positive rate of 10.1%, and a false-negative rate of
12.2% for synthetic and academic programs, and achieves
an F1-measure of 70.8%, a false-positive rate of 18.2%, and a
false-negative rate of 32.0% for real-world programs (see Ta-
ble 5 in Section 6.7). This unsatisfactory performance can be
attributed to their incapability in (i) capturing the relations
between semantically-related statements across program

ar
X

iv
:2

00
1.

02
35

0v
2

 [
cs

.C
R

]
 1

 M
ay

 2
02

1

2 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING

files and (ii) accommodating accurate control flows and vari-
able define-use relations. Note that (i) is important because
programs often contain many user-defined and/or system
header files (e.g., .h) for specifying types and macros, but (i)
cannot be achieved by analyzing each source code file alone
because these types and macros are used in program files
(e.g., .c) while defined in header files. This mandates cross-
file dependence analysis, which was not clear until now.
Note that (ii) cannot be achieved by source code analysis be-
cause it cannot accurately identify control flows and variable
define-use relations [24], which is caused by the fact that each
variable is not assigned exactly once and source code-based
representations have many constructs (e.g., identifiers). As
a consequence of not being able to achieve the preceding
(i) and (ii), the semantics-based statements that are used
for learning vulnerability detectors cannot contain enough
semantic information, causing ineffective vulnerability de-
tectors.

To see their inadequate locating precision, we observe that
although they operate on program slices (which are finer-
grained than functions), a program slice can have many
lines of code. For example, according to the dataset pub-
lished in [17], 78.7% of their program slices have at least
10 lines of code and 47.8% of them have at least 20 lines,
indicating a low locating precision. That is, coarse-grained
vulnerability detection is merely a pre-step for vulnerability
assessment because it cannot precisely pinpoint vulnerabil-
ities [25].

Our contributions. In this paper we propose a deep
learning-based vulnerability detector for C programs with
source code, dubbed Vulnerability Deep learning-based Locator
(VulDeeLocator). When compared with the state-of-the-art
detector [17], VulDeeLocator offers, on average, (i) a 9.8%,
7.9%, and 8.2% improvement in the vulnerability detection
F1-measure, false-positive rate, and false-negative rate re-
spectively, and (ii) a 4.2X improvement in the vulnerability
locating precision. When applied to 200 files randomly
selected from three real-world software products (i.e., FFm-
peg 2.8.2, Wireshark 2.0.5, and Libav 9.10), VulDeeLocator
detects 18 confirmed vulnerabilities (i.e., true-positives).
Among them, 16 vulnerabilities correspond to known vul-
nerabilities; the other two are not reported in the National
Vulnerability Database (NVD) [26] but have been “silently”
patched by the vendor of Libav when releasing newer ver-
sions. The innovations behind VulDeeLocator are in three-
fold.

First, we identify one root cause of the aforementioned
inadequate detection capability of existing deep learning-
based vulnerability detectors, and address this inadequate
detection capability by linking multiple files through define-
use relations and leveraging intermediate code-based repre-
sentations. The insight behind this approach is that inter-
mediate code-based representations are in the Static Single
Assignment (SSA) form and therefore can assure that each
variable is defined-and-then-used and is assigned exactly
once [27].

Second, we propose the notion of granularity refinement
to locate the vulnerable lines of code. This principle guides
us to propose a specific granularity refinement method,
dubbed Bidirectional Recurrent Neural Network (BRNN) for

vulnerability detection and locating” (or BRNN-vdl for
short). Although this specific method is unlikely optimal, it
is effective by making VulDeeLcoator output vulnerabilities
about 3 lines of code; by contrast, the input program slices
to VulDeeLocator are for example 32 lines of code.

Third, we prepare a vulnerability dataset in the Lower
Level Virtual Machine (LLVM) intermediate code with ac-
companying program source code. This dataset is motivated
by the need of evaluating the effectiveness of VulDeeLo-
cator; it contains 157,692 vulnerability candidates in in-
termediate code, among which 40,450 are vulnerable and
117,242 are not vulnerable. It is not trivial to prepare this
dataset because we need user-defined and system header
files for generating intermediate code. In order for other
researchers to use the dataset, we have made the dataset
and the source code used in our experiments available at
https://github.com/VulDeeLocator/VulDeeLocator.

Paper organization. Section 2 discusses the basic ideas
underlying VulDeeLocator. Section 3 presents an overview
of VulDeeLocator. Section 4 describes how VulDeeLocator
leverages intermediate code and Section 5 describes how
VulDeeLocator pinpoints vulnerabilities. Section 6 presents
our experiments and results. Section 7 discusses limitations
of the present study. Section 8 reviews the related prior
work. Section 9 concludes the present paper.

2 BASIC IDEAS

The basic idea behind VulDeeLocator is to take advantage
the best of both program analysis and deep learning tech-
niques: generate vulnerability candidates by leveraging pro-
gram analysis techniques, and use deep learning techniques
to “eliminate” the false positives incurred by program anal-
ysis techniques. Specifically, VulDeeLocator extracts some
tokens (e.g., identifiers, operators, constants, and keywords)
from program source code according to a given set of
vulnerability syntax characteristics, and then leverage the
intermediate code of the same program to accommodate the
statements in the intermediate code that are semantically
related to those tokens. These statements are encoded into
vectors (which are then used to train a neural network) or
are the input to the trained neural network for vulnerability
detection. The output in the testing phase is finer-grained
(i.e., shorter or smaller) than the corresponding input. Fig.
1 illustrates these basic ideas, showing that in the testing
phase an input of d′ intermediate code statements leads to
a refined output of two source code statements indicating
where the vulnerability is.

sc1 -------
sc2 -------
sc3 -------

 ...

Source code

Vulnerability
syntax

characteristics

ic1 -------
ic2 -------
ic3 -------
ic4 -------
ic5 -------

 ...

Intermediate code

sc2 -------
 ...

ic1' -------
 ...

icd' -------

Intermediate code
statements of interest

Vectors

Neural
network

sc3 -------
sc4 -------

Output of
refined

granularity
indicating

exactly where
a vulnerability

is located

Tokens of interest
Tokens

Fig. 1. Illustration of VulDeeLocator, where a dashed line represents a
statement containing multiple tokens.

https://github.com/VulDeeLocator/VulDeeLocator

LI et al.: VulDeeLocator: A DEEP LEARNING-BASED FINE-GRAINED VULNERABILITY DETECTOR 3

Fig. 2 presents an example of buffer underflow vulner-
ability related to pointer “data” (Line 2). This vulnerability
may not be detected by any detector that cannot accommo-
date the control flow of conditional operator “N<m?N:99”
in statement “memset(dataBuffer, ’A’, N<m?N:99);” (Line 14),
because (i) the control flow is implicit in “N<m?N:99”
rather than expressed as two branches of comparison be-
tween N and m, and (ii) the macro definition identifier
N (highlighted with boxes) is not identified as 100. This
explains why VulDeeLocator transforms “memset(dataBuffer,
’A’, N<m?N:99);” to 4 statements (Lines 6-9 in Fig. 4(d)) in
the intermediate code-based vulnerability candidate, which
can recognize that N takes the value 100 and can generate
two branches by comparing N and m. Moreover, VulDee-
Locator uses BRNN-vdl, which will be presented later, to
pinpoint that the vulnerable line is in Line 25.

 Source program

A source code-based
vulnerability candidate related

to “data” (Line 2)

1 #define N 100
2 char *data;
3 void printLine()
4 {
5 if(data != "")
6 printf("%s\n", data);
7 }
8 int main()
9 {
10 char dataBuffer[N];
11 char source[N];
12 int m=99;
13 .. .
14 memset(dataBuffer, 'A', N<m?N:99);
15 dataBuffer[99] = '\0';
16 .. .
17 while(dataBuffer != "")
18 {
19 data = dataBuffer - 8;
20 break;
21 }
22 .. .
23 memset(source, 'C', 99);
24 source[99] = '\0';
25 memmove(data, source, N*sizeof(char));
26 data[99] = '\0';
27 printLine();
28 return 0;
29 }

2 char *data;
8 int main()
10 char dataBuffer[N];
11 char source[N];
12 int m=99;
14 memset(dataBuffer, 'A', N<m?N:99);
15 dataBuffer[99] = '\0';
17 while(dataBuffer != "")
19 data = dataBuffer - 8;
23 memset(source, 'C', 99);
24 source[99] = '\0';
25 memmove(data, source, N*sizeof(char));
26 data[99] = '\0';
27 printLine();
3 void printLine()
5 if(data != "")
6 printf("%s\n", data);

Fig. 2. An example showing that any detector that cannot accommodate
the semantic information related to “data” (Line 2 in the source program)
may not detect the vulnerability.

3 OVERVIEW OF VULDEELOCATOR

It is intuitive that vulnerabilities exhibit some syntax charac-
teristics that can be leveraged to identify some pieces of code
(i.e., program slices) as initial candidates for vulnerability
detection [16, 17]. Vulnerability syntax characteristics can
be represented in some appropriate data structures (e.g.,
Abstract Syntax Trees or ASTs), which allow one to extract
pieces of source code that match these characteristics. These
pieces of source code are the starting point for vulnerability
detection, leading to:

Definition 1. (source code- and Syntax-based Vulnerability
Candidate or sSyVC [17]) Given a source program P
and a set of vulnerability syntax characteristics H =
{h1, . . . , hη}, an sSyVC yi is one or multiple consec-
utive tokens (e.g., identifiers, operators, constants, and
keywords) in P that match some vulnerability syntax
characteristic hq (1 ≤ q ≤ η).

Given sSyVCs extracted from a source program, we
propose leveraging program intermediate code to capture
semantic information, leading to:

Definition 2. (intermediate code- and Semantics-based Vul-
nerability Candidate or iSeVC) Given a source program
P , its intermediate code P ′, and an sSyVC yi of P ,
denote by y′i the intermediate code of sSyVC yi. The
iSeVC corresponding to sSyVC yi, denoted by ei, is a
sequence of statements in intermediate code P ′; these
statements are data or control dependent [28] on y′i. That
is, the iSeVC corresponding to sSyVC yi is a program
slice of y′i in the intermediate code of program P .

Fig. 3 highlights the structure of VulDeeLocator, which
can be instantiated with specific intermediate code repre-
sentations and deep learning models. The input to VulDee-
Locator is the source code of training programs for learning
a neural network or target programs for vulnerability de-
tection. More specifically, the learning-phase input includes
source code of C programs, which may or may not be
vulnerable. The source code of C programs should satisfy
the following: (i) they can be compiled into (platform-
independent) intermediate code, such as the LLVM inter-
mediate code [29]; and (ii) the vulnerable programs are
accompanied by descriptions on the locations of their vul-
nerabilities, which will be leveraged to locate vulnerabilities
in target programs.

At a high level, VulDeeLocator has two components. The
first component leverages intermediate code representation
of training programs and target programs as follows:

• Step I: Extracting sSyVCs from the source code,
namely pieces of code that bear some vulnerability
syntax characteristic(s).

• Step II: Generating iSeVCs from the intermediate
code according to sSyVCs.

The second component uses the intermediate code-based
representation to detect and locate vulnerabilities as follows:

• Step III: Labeling iSeVCs extracted from training
programs as vulnerable or not and vulnerability lo-
cations.

• Step IV: Training a neural network model from the
vector representations of the iSeVCs and their labels.

• Step V: Using the trained neural network model to
detect and locate vulnerabilities in target programs.

The learning phase corresponds to Steps I-IV and the testing
(i.e., detection) phase corresponds to Steps I, II, and V.

4 INTERMEDIATE CODE-BASED VULNERABILITY
CANDIDATE REPRESENTATION

4.1 Guiding Principles for Vulnerability Candidate Rep-
resentation

It is intuitive that vulnerability detectors should accom-
modate program semantic information, highlighting the
importance of identifying effective vulnerability candidate
representations. For this purpose, we propose using the
following principles to guide the identification of effective
vulnerability candidate representation. This paradigm of
“problem → principles (as strategies to solve the problem)
→ technical means (whose discovery is guided by the prin-
ciples)” is both beautiful and useful.

4 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING

Output

Step I:
Extracting

sSyVCs from
the source

code

Step IV: Training a
neural network model

Step V: Detecting and
locating vulnerabilities

in target programs

Step II:
Generating

iSeVCs from the
intermediate

code

Step III: Labeling
iSeVCs extracted from

training programs

Source code
of training
programs

Source code
of target
programs

Input

Vulnerable lines
of source code in
target programs

Intermediate code-based vulnerability
candidate representation Fine-grained vulnerability detection

Fig. 3. Overview of VulDeeLocator with two components: intermediate code-based vulnerability candidate representation and fine-grained
vulnerability detection. The learning phase consists of Steps I-IV and the testing (i.e., detection) phase consists of Steps I, II, and V.

• Principle 1: Accommodating semantically-related
program statements across files. Some files may be
dependent on others because, for example, a variable
used or referred in one file may be defined in another
file. Effective vulnerability candidate representations
should accommodate this define-use relation.

• Principle 2: Accommodating semantically-related
program statements across functions. Semantically-
related statements may go beyond boundaries of
functions, meaning that effective vulnerability candi-
date representations should accommodate, and fur-
ther preserve the order of, those semantically-related
statements, even if they belong to different functions.

4.2 Extracting sSyVCs
As defined above, an sSyVC is a piece of code that is
extracted from a program according to some vulnerability
syntax characteristic(s). There may be many approaches to
obtaining vulnerability syntax characteristics for vulnerabil-
ity detection. As a concrete example, we leverage the syntax
characteristics of known vulnerabilities and represent these
characteristics via Abstract Syntax Trees (ASTs) of the pro-
gram source code (more precisely, attributes of the nodes on
ASTs). This will ease the extraction of sSyVCs according to
vulnerability syntax characteristics. We define the following
four kinds of vulnerability syntax characteristics, which
are mentioned here because they will be referred in our
examples.

• Library/API Function Call (FC): This vulnerability syn-
tax characteristic is that the type of a node on the
AST is function call, the function name matches a li-
brary/API function name, and at least one argument
of the function call is a variable.

• Array Definition (AD): This vulnerability syntax char-
acteristic is that the type of a node on the AST is
variable declaration and the code corresponding to
the node contains characters ‘[’ and ‘]’.

• Pointer Definition (PD): This vulnerability syntax
characteristic is that the type of a node on the AST is
variable declaration and the code corresponding to
the node contains character ‘∗’.

• Arithmetic Expression (AE): This vulnerability syntax
characteristic is that the type of a node on the AST
is assignment expression and the node has at least
one variable at the right-hand side of the assignment
expression.

Given the source code of a program, one can generate its
AST(s), from which sSyVCs can be extracted by identifying
the nodes whose type and code match some vulnerability
syntax characteristics. We reiterate that these syntax char-
acteristics themselves are far from adequate in detecting
vulnerabilities because they cannot accommodate the due
semantic information that is related to vulnerabilities.

Fig. 4(a) is an example showing the sSyVCs (highlighted
by boxes) in a program: sSyVCs related to the FC-kind
vulnerability syntax characteristics include “printf” (Line
6), “memset” (Lines 14 and 23), and “memmove” (Line 25);
sSyVCs related to the AD-kind vulnerability syntax char-
acteristics include “dataBuffer” (Line 10) and “source” (Line
11); sSyVCs related to the PD-kind vulnerability syntax
characteristics include “data” (Line 2); and sSyVCs related
to the AE-kind vulnerability syntax characteristics include
“data=dataBuffer-8” (Line 19).

4.3 Generating iSeVCs

Corresponding to the aforementioned principles, there are
three components for generating iSeVCs: generating linked
Intermediate Representation (IR) files; generating IR slices cor-
responding to sSyVCs; and generating iSeVCs. Algorithm 1
in Appendix provides the details on generating iSeVCs.

Generating linked IR files (enforcing Principle 1). This
component generates one or multiple linked IR files from
source programs as follows: (i) use a compiler (e.g., Clang)
to generate an IR file for each source file; (ii) link the IR files
according to their dependence relations, leading to one or
multiple linked IR files. Fig. 4(b) illustrates the idea for the
LLVM intermediate code using the example sSyVC “data”,
which belongs to Line 2 of the source program described
in Fig. 4(a). We use the LLVM intermediate code, or more
specifically LLVM IR [29] as an example, because it is widely
used for C programs. Specifically, we use the Clang compiler
to generate LLVM bitcode files, then link them according to
their dependence relations.

Generating IR slices corresponding to sSyVCs and gen-
erating iSeVCs (enforcing Principle 2). Given a sSyVC,
we can generate a corresponding IR slice as follows: (i)
generate a dependence graph by extracting the control and
data dependencies from the linked IR file; (ii) slice the
dependence graph according to each sSyVC, which can be
done by tools such as dg [30]. Fig. 4(c) depicts the LLVM
IR slice corresponding to the aforementioned sSyVC “data”.
Each local variable is represented as a numeric value with a
prefix %; for each function in the LLVM IR slice, the numeric

LI et al.: VulDeeLocator: A DEEP LEARNING-BASED FINE-GRAINED VULNERABILITY DETECTOR 5

(a) Source program

(c) Generating an IR slice corresponding
to each sSyVC; example is for sSyVC

“data” (Line 2)

1 #define N 100
2 char *data;
3 void printLine()
4 {
5 if(data != "")
6 printf("%s\n", data);
7 }
8 int main()
9 {
10 char dataBuffer[N];
11 char source[N];
12 int m=99;
13 ...
14 memset(dataBuffer, 'A', N<m?N:99);
15 dataBuffer[99] = '\0';
16 ...
17 while(dataBuffer != "")
18 {
19 data = dataBuffer - 8;
20 break;
21 }
22 ...
23 memset(source, 'C', 99);
24 source[99] = '\0';
25 memmove(data, source, N*sizeof(char));
26 data[99] = '\0';
27 printLine();
28 return 0;
29 }

 @data = common global i8* null, align 4
 ...
define void @printLine() #0 {
 %1 = load i8*, i8** @data, align 4
 %2 = icmp ne i8* %1, getelementptr inbounds ([1 x i8], [1
 x i8]* @.str, i32 0, i32 0)
 br i1 %2, label %3, label %safe_return

 %4 = load i8*, i8** @data, align 4
 %5 = call i32 (i8*, ...) @printf(i8* getelementptr inbounds
 ([4 x i8], [4 x i8]* @.str.1, i32 0, i32 0), i8* %4)
}

define i32 @main() #0 {
 …
 %4 = getelementptr inbounds [100 x i8], [100 x i8]* %1,
 i32 0, i32 0
 %5 = load i32, i32* %3, align 4
 %6 = icmp slt i32 100, %5
 %7 = select i1 %6, i32 100, i32 99
 call void @llvm.memset.p0i8.i32(i8* %4, i8 65, i32 %7, i32
 1, i1 false)
 %8 = getelementptr inbounds [100 x i8], [100 x i8]* %1,
 i32 0, i32 99
 store i8 0, i8* %8, align 1
 ...
 %10 = getelementptr inbounds [100 x i8], [100 x i8]* %1,
 i32 0, i32 0
 %11 = icmp ne i8* %10, getelementptr inbounds ([1 x i8],
 [1 x i8]* @.str, i32 0, i32 0)
 br i1 %11, label %12, label %15

 %13 = getelementptr inbounds [100 x i8], [100 x i8]* %1,
 i32 0, i32 0
 ...
 %18 = load i8*, i8** @data, align 4
 %19 = getelementptr inbounds [100 x i8], [100 x i8]* %2,
 i32 0, i32 0
 call void @llvm.memmove.p0i8.p0i8.i32(i8* %18, i8*
 %19, i32 100, i32 1, i1 false)
 …
 call void @printLine()
}

1 @data = common global i8* null, align 4
2 …
3 define i32 @main() #0 {
4 …
5 %4 = getelementptr inbounds [100 x i8], [100 x i8]* %1,
 i32 0, i32 0
6 %5 = load i32, i32* %3, align 4
7 %6 = icmp slt i32 100, %5
8 %7 = select i1 %6, i32 100, i32 99
9 call void @llvm.memset.p0i8.i32(i8* %4, i8 65, i32 %7, i32
 1, i1 false)
10 %8 = getelementptr inbounds [100 x i8], [100 x i8]* %1,
 i32 0, i32 99
11 store i8 0, i8* %8, align 1
12 …
13 %10 = getelementptr inbounds [100 x i8], [100 x i8]* %1,
 i32 0, i32 0
14 %11 = icmp ne i8* %10, getelementptr inbounds ([1 x i8],
 [1 x i8]* @.str, i32 0, i32 0)
15 br i1 %11, label %12, label %15
16
17 %13 = getelementptr inbounds [100 x i8], [100 x i8]* %1,
 i32 0, i32 0
18 …
19 %18 = load i8*, i8** @data, align 4
20 %19 = getelementptr inbounds [100 x i8], [100 x i8]* %2,
 i32 0, i32 0
21 call void @llvm.memmove.p0i8.p0i8.i32(i8* %18, i8*
 %19, i32 100, i32 1, i1 false)
22 …
23 call void @printLine()
24
25 define void @printLine() #0 {
26 %20 = load i8*, i8** @data, align 4
27 %21 = icmp ne i8* %20, getelementptr inbounds ([1 x i8],
 [1 x i8]* @.str, i32 0, i32 0)
28 br i1 %21, label %22, label %safe_return
29
30 %23 = load i8*, i8** @data, align 4
31 %24 = call i32 (i8*,...) @printf(i8* getelementptr inbounds
 ([4 x i8], [4 x i8]* @.str.1, i32 0, i32 0), i8* %23)
32 }
33 }

(d) Generating iSeVCs; the statements
belonging to printLine() in the IR slice

(indicated by a dashed box) are moved

An LLVM
bitcode file

(b) Generating a linked IR file

A linked LLVM
bitcode file

Fig. 4. (a): An example showing the sSyVCs (highlighted by boxes) that are extracted from the program in Fig. 2; (b)-(d): An example showing the
generation of iSeVCs from the sSyVC “data” (Line 2) using the LLVM intermediate code.

value is 1 for the first local variable and then increases by 1
for each subsequent local variable.

Given the IR slices, we generate iSeVCs as follows. For
each function fγ that is called by function fα, the statements
in the IR slice of function fγ are appended to the statement
(in function fα) that calls function fγ . This is to preserve
the order of statements that possibly belong to different
functions but are related to each other (according to a control
and/or data dependence). If there is a loop in the sequence
of function calls (e.g., fγ calls fα and then fα calls fγ , then
fγ calls fα and then fα calls fγ , and so on), we only consider
the first loop (i.e., fγ calls fα and then fα calls fγ but not
any further) so as to avoid an infinite loop. In order to avoid
assigning the same numeric value to different local variables
in the IR slices of different functions, each numeric value
of local variable in the appended statements is modified
to a new numeric value that has not been assigned. Fig.
4(d) illustrates that the statements in the LLVM IR slice of
function printLine, which is highlighted by the dashed box,
are appended to the statement “call void @printLine()” in the
calling function main. The local variable “%1” in the LLVM
IR slice of function printLine is modified to “%20” because
“19” is the last assigned numeric value in function main,
which is shown in Fig. 4(c).

5 FINE-GRAINED VULNERABILITY DETECTION

5.1 Requirements for Fine-grained Vulnerability Detec-
tors

We propose the following three requirements for neural
network models that aim to detect and locate vulnerabilities.

• Requirement 1: Granularity refinement. The granu-
larity of code determines the unit of source code for
analysis, which can range from the coarsest granu-
larity in component, to file, to function, to code frag-
ment, to statement, and to the finest granularity in
token. Granularity refinement is critical to pin down
vulnerabilities or precisely identify the vulnerable
lines of code, which corresponds to the granularity
in statement. This is so because the input to the vul-
nerability detector is an iSeVC, which corresponds
to the coarse granularity in code fragment, meaning
that the granularity of the output of the vulnerability
detector is finer than that of the input.

• Requirement 2: Easy mapping. It should be easy
to map the output of a neural network (at a re-
fined granularity) back to the iSeVCs to pinpoint
vulnerabilities. The output should be a sequence of
tokens, where one or multiple consecutive tokens
correspond to a same line of code in the intermediate
code. These lines of intermediate code can be easily
mapped back to iSeVCs, and therefore the vulnerable
lines of code in source programs.

• Requirement 3: Attention taking. The notion of
attention is borrowed from deep learning and corre-
sponds to the important parts of the input a learner
should focus on; technically, attention is achieved by
properly assigning weights in a neural network (i.e.,
more attention means a higher weight). For a vulner-
able iSeVC, it is likely that only one or few statements
are vulnerable while the others are not, which means
that the vulnerable statements are more “important”
than the non-vulnerable ones and therefore should

6 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING

be given a higher weight (i.e., more attention) by a
neural network.

5.2 Labeling iSeVCs

We label each iSeVC from training programs as follows: If an
iSeVC contains a known vulnerability, the iSeVC is labeled
with the line number(s) of the vulnerability in the iSeVC
(i.e. location of the vulnerability), denoted by x1, . . . , xζ
where xε (1 ≤ ε ≤ ζ) is a line number corresponding to
the vulnerability; otherwise, the iSeVC is labeled as “0” (i.e.,
containing no vulnerability). Since a vulnerability dataset
should provide the locations (e.g., line numbers) of vulner-
abilities in the intermediate code of a source program, these
line numbers of vulnerabilities in the source program need
to be mapped to the line numbers in the intermediate code,
which can be done simply by leveraging a textual LLVM file
that comes with debugging information.

5.3 Training a Neural Network Model

Each iSeVC needs to be encoded into a vector, which is used
as an input to a neural network. In order to make iSeVCs
independent of user-defined function names while captur-
ing program semantic information, this step maps user-
defined function names to symbolic names (e.g., “FUN1”,
“FUN2”) in a one-to-one fashion. It is worth mentioning
that iSeVCs are already independent of local variable names
because the latter are replaced with symbolic names in the
intermediate code. Then, a word embedding method can be
used to encode iSeVCs into vectors. Since the lengths of the
resulting vectors can be different and a neural network takes
input vectors of a fixed-length θ, these vectors may need to
be adjusted as follows: If a vector is shorter than θ, zeroes are
padded to the end of the vector; if a vector is longer than
θ, the vector is truncated to length θ to make the sSyVC
appear in the middle of the resulting vector [17]. Finally, the
vectors are used as input to a neural network that satisfies
the aforementioned Requirements 1-3, as shown in Sections
6.5-6.8. In what follows, we elaborate the neural network
BRNN-vdl we propose, which satisfies the aforementioned
Requirements 1-3.

5.3.1 BRNNs achieve easy mapping
One may suggest to use Recurrent Neural Networks (RNNs),
such as Long Short-Term Memory (LSTM) and Gated Recurrent
Unit (GRU), to achieve easy mapping. This seems reasonable
because RNNs are effective in coping with sequential data
and the output at each time step corresponds to a token in
an iSeVC, which makes it easy to map the output back to
iSeVCs. As shown in Fig. 5, each output of the activation
layer corresponds to a token of an input iSeVC at each time
step. The outputs of standard BRNN can be mapped back
to the vulnerable tokens, and therefore the vulnerable lines
of intermediate code (i.e., multiple continuous vulnerable
tokens). However, unidirectional RNNs are not sufficient
because a statement in a program may be affected by some
preceding and/or subsequent statements in the program. Nev-
ertheless, BRNNs, such as Bidirectional LSTM (BLSTM) and
Bidirectional GRU (BGRU) can indeed achieve easy mapping,
while accommodating preceding and subsequent statements.

BRNNs cannot achieve the other two properties because
their output granularity is the same as, rather than refining,
the input granularity because they treat every part of an
input equally. For vulnerability detection, some parts (i.e.,
vulnerable lines of code) of an iSeVC may be more impor-
tant than the other parts of the iSeVC and should be paid
more attention by neural networks.

5.3.2 BRNN-vdl: A novel variant of BRNN further achieving
attention taking and granularity refinement
Fig. 5 highlights the structure of BRNN-vdl, which extends
the standard BRNN with three extra layers that formulate
the “vdl” part to achieve granularity refinement and atten-
tion taking. The input to BRNN-vdl includes (i) the vectors
that represent the iSeVCs, and (ii) a vulnerability location
matrix that represents the locations of vulnerabilities in each
vector. The learning phase outputs a BRNN-vdl with fine-
tuned parameters. In what follows, we briefly review BRNN
and then describe the three extra layers in BRNN-vdl we
introduce.

BRNN
layers

Dense
layer

Activation
layer

...

...

...

...

...
.

Time 1 2 τ τ+1τ+wϵ-1 λ

Vectors
corresponding

to iSeVCs

κ-max
pooling layer

... Vulnerability
location matrix

Standard
BRNN

Average
pooling layer

... ...

Multiply
layer

...

Fig. 5. BRNN-vdl extends BRNN with three extra layers (i.e., the multiply,
κ-max pooling, and average pooling layers) that formulate the “vdl” part
to achieve three desired properties.

Overview of the BRNN component in BRNN-vdl. As
shown in Fig. 5, the standard BRNN has (i) a number of
BRNN layers, which connect the RNN cells (e.g., LSTM
and GRU) in both forward and backward directions, (ii) a
dense layer, which reduces the number of dimensions of the
vectors received from the BRNN layers, and (iii) an activa-
tion layer, which uses an activation function to generate the
output at a time step. In the context of the present paper, the
input is the vectors representing the labelled iSeVCs. Each
time step corresponds to a token in an iSeVC. At time step
τ , where 1 ≤ τ ≤ λ and λ is the number of tokens in each
iSeVC, the output of the BRNN layers for iSeVC ei, denoted
by gτ (ei), is

gτ (ei) = φ(gτ−1(ei), gτ+1(ei), ei,ω,β), (1)

where ω is a weight vector, β is a bias vector, gτ−1(ei) and
gτ+1(ei) are respectively the output of the BRNN layers at
time steps τ − 1 and τ + 1, and function φ indicates that
the output of BRNN layers is represented by its parameters
that include gτ−1(ei), gτ+1(ei), ei, ω, and β. How these
parameters exactly interact with each other depends on the

LI et al.: VulDeeLocator: A DEEP LEARNING-BASED FINE-GRAINED VULNERABILITY DETECTOR 7

RNN cells, such as LSTM and GRU. For iSeVC ei, the output
vector of the standard BRNN Ai (i.e., the output vector of
the activation layer) is denoted by

Ai = (g1(ei), . . . , gλ(ei)). (2)

The multiply layer achieves attention taking. In order to
enable the neural network to predict vulnerability locations,
the multiply layer needs to treat different iSeVCs differently
according to the locations of the tokens corresponding to the
vulnerable lines of code. (i) For the iSeVCs that are vulner-
able, the multiply layer is meant to select the outputs of the
tokens that correspond to the vulnerable lines of code. These
selected outputs will be used in the subsequent layers and
the back propagation process of BRNN-vdl because they
would help locate vulnerabilities with a higher precision
(than not using this multiply layer). (ii) For the iSeVCs that
are not vulnerable, the multiply layer is meant to select all
outputs of the tokens and use them in the subsequent layers
and the back propagation process of BRNN-vdl, because
these tokens are equally important as far as the learning
phase is concerned.

This design choice can be justified as follows: For each
iSeVC that is not vulnerable, all tokens are treated as equal
because no line of code is vulnerable. However, a vulner-
able iSeVC contains (i) one or multiple vulnerable lines of
code, which should be highlighted for vulnerability locating
purposes, and (ii) possibly a large number of lines of code
that are not vulnerable, which only provide the context for
vulnerability detection. If all tokens in a vulnerable iSeVC
are treated equal, a false-negative can occur because most
lines of code are not vulnerable.

Formally, for iSeVC ei, the multiply layer multiplies the
output vector of the activation layer Ai with the vulnera-
bility location matrix Li. The output vector of the multiply
layer Mi is denoted by

Mi = AiLi, (3)

where Li is a diagonal matrix with Li = diag(α1, α2, . . . ,
αλ). For a vulnerable iSeVC, let us denote by x′ε the location
of the first token in the vulnerable line xε for some 1 ≤ ε ≤
ζ , and by wε the number of tokens in xε. The value of αϕ
(1 ≤ ϕ ≤ λ) is determined as follows: For the iSeVCs that
are vulnerable, if ϕ ∈ {x′ε, . . . , x′ε + wε − 1}, then we set
αϕ = 1; otherwise, we set αϕ = 0. For the iSeVCs that are
not vulnerable, we set αϕ = 1 for 1 ≤ ϕ ≤ λ.

The κ-max pooling layer and the average pooling layer
together achieve granularity refinement. In order to use
back propagation to train the neural network, the κ-max
pooling layer and the average pooling layer need to select
and process the outputs of the multiply layer. The κ-max
pooling layer is meant to select the κ largest values among
the elements in the output vector of the multiply layer Mi.
The average pooling layer is meant to compute the average
of the outputs of the κ-max pooling layer. Intuitively, these
two layers together achieve granularity refinement because
(i) they further select the outputs of the multiply layer to
obtain the output corresponding to each iSeVC, which is
used for back propagation, and (ii) they take into account
both the maximum and the average.

Formally, for an iSeVC ei, the output of average pooling
layer oi is defined as

oi = ave(maxκ(Mi)), (4)

where function maxκ returns the κ largest elements in the
vector, and function ave returns the average of the κ largest
elements. After conducting iterative forward and backward
propagations, the training process converges to a BRNN-vdl
with fine-tuned parameters, which encodes vulnerability
patterns in the training data.

5.4 Detecting and Locating Vulnerabilities

Fig. 6 highlights using the learned BRNN-vdl to detect and
locate vulnerabilities in target programs. The input is the
vectors representing the iSeVCs extracted from the target
programs. We first obtain the outputs of the activation layer
corresponding to the tokens in iSeVCs, and compute the
average of the κ largest output values for the tokens in
each line. Then, we extract the lines of code whose output is
greater than the threshold ϑ, leading to vulnerable iSeVCs
and vulnerable lines of code. Finally, we map the vulnerable
iSeVCs and the vulnerable lines of code in them to source
code as the output of the detection phase.

Take the iSeVC in Fig. 4(d) as an example. The vector
corresponding to iSeVC is the input to the learned BRNN-
vdl neural network. After computing the average of the κ
largest output values for the tokens in each line, the iSeVC
is determined as vulnerable and the vulnerable lines of
intermediate code is in Lines 19-21 in Fig. 4(d). Finally, the
vulnerable lines in iSeVC are mapped to the vulnerable line
in the source code (i.e., Line 25 in Fig. 4(a)).

...

..
.

..
.

..
.

..
.

..
.

..
.

Time 1 2

Vectors
corresponding

to iSeVCs

The learned BRNN-vdl
neural network

...Output
corresponding to

each token

Output
corresponding to

each line of
intermediate code

Obtain vulnerable iSeVCs and
the vulnerable lines in them

... ...

Map vulnerable iSeVCs and the
vulnerable lines of code in them

to source code

λ ...

Fig. 6. Using the learned BRNN-vdl to detect vulnerabilities in target
programs, where the dashed box highlights the tokens extracted from a
line of code.

6 EXPERIMENTS AND RESULTS

We gear our experiments towards answering the following
four Research Questions (RQs):

• RQ1: Can intermediate code-based vulnerability can-
didate representation be leveraged to achieve a sub-
stantially higher vulnerability detection capability?

• RQ2: Can BRNN-vdl achieve a substantially higher
vulnerability locating precision than BRNN?

8 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING

• RQ3: How effective and precise is VulDeeLocator
in detecting and locating vulnerabilities of target
programs with known ground truth?

• RQ4: How effective and precise is VulDeeLocator
when applied to detect and locate vulnerabilities in
real-world software products?

Our experiments use a machine with a NVIDIA GeForce
GTX 1080 GPU and an Intel Xeon E5-1620 CPU operating at
3.50GHz.

6.1 Evaluation Metrics

We propose using five standard metrics [31] to measure
the detection capability of a vulnerability detector. Let TP
denote the number of vulnerable samples that are detected
as vulnerable (i.e., true-positives), FP denote the number
of samples that are not vulnerable but are detected as
vulnerable (i.e., false-positives), TN denote the number of
samples that are not vulnerable and are not detected as
vulnerable (i.e., true-negatives), FN denote the number of
vulnerable samples that are not detected as vulnerable (i.e.,
false-negatives). The five metrics are: (i) false-positive rate
FPR = FP

FP+TN ; (ii) false-negative rate FNR = FN
TP+FN ; (iii)

accuracy A = TP+TN
TP+FP+TN+FN ; (iv) precision P = TP

TP+FP ; (v)
F1-measure F1 = 2·P ·(1−FNR)

P+(1−FNR) , or the overall effectiveness.
In order to evaluate the locating precision of a vulner-

ability detector, we propose using the standard Intersection
over Union (IoU) metric with IoU = |U∩V|

|U∪V| , where U is the set
of truly vulnerable lines of code and V is the set of detected
vulnerable lines of code [32]. Fig. 7 illustrates the meaning
of IoU with respect to one iSeVC; as highlighted by boxes,
U contains 4 statements, V contains 3 statements, U ∩ V
contains 2 statements (i.e., |U ∩V | = 2), and U ∪V contains
5 statements (i.e., |U ∪ V | = 5), leading to IoU = 2/5.
Intuitively, IoU reflects the degree at which the detected
vulnerable statements overlap with the truly vulnerable
statements. The closer the IoU is to 1, the higher the locating
precision.

U

V

IoU=
#Lines of overlap

#Lines of union

= 2
5

...

Fig. 7. An example illustrating the meaning of IoU, where a dashed line
represents a program statement.

6.2 Preparing the Input to VulDeeLocator

We collect the source code of C programs from two vul-
nerability sources: the NVD [26] and the Software Assur-
ance Reference Dataset (SARD) [33]. The programs collected
from the NVD are accompanied by their diff files, which
describe the difference between the programs before and
after patching the vulnerabilities in question. The programs
collected from the SARD are accompanied by labels, which
indicate whether they are vulnerable or not. Note that SARD
contains production, synthetic, and academic programs (i.e.,

test cases). We filter out the programs that cannot be com-
piled into the LLVM intermediate code.

We collect 14,511 programs, including 2,182 real-world
programs and 12,329 synthetic and academic programs. The
real-world programs are from multiple versions of open
source software written in the C language (e.g., Linux ker-
nel, OpenSSL, FFmpeg, Wireshark, and Libtiff). We collect
(i) the vulnerable programs which are reported prior to 2017
and (ii) their corresponding patched programs. The reason
for collecting (i) is that we conduct experiments on real-
world software products to detect vulnerabilities that are
reported between 2017 and 2019, which are unknown vul-
nerabilities with respect to the training data. The synthetic
and academic programs are from the test cases in the SARD,
where each program is labeled as good (not vulnerable),
bad (vulnerable), or mixed (vulnerable functions and their
patched versions provided). We randomly choose 80% of
the synthetic or academic programs and 80% of the real-
world programs as training programs, and the remaining
20% of the synthetic and academic programs (dubbed “Test-
set-1”) and 20% of the real-world programs (dubbed “Test-
set-2”) as target programs. We consider these two sets of
target programs because we want to see the impact of data
sources.

6.3 Intermediate Code-based Vulnerability Candidate

Extracting sSyVCs. In order to extract sSyVCs from the
source code, we use Clang to generate ASTs from a source
program. Then, we traverse the ASTs to generate sSyVCs.
For obtaining vulnerability syntax characteristics, we lever-
age the C vulnerability rules of the commercial tool Check-
marx [6] because we found that the syntax characteristics
from these rules have a good coverage over known vul-
nerabilities. This leads to the four kinds of vulnerability
syntax characteristics mentioned above, namely Library/API
Function Call (FC), Array Definition (AD), Pointer Definition
(PD), and Arithmetic Expression (AE). These characteristics
cover 98.3% of the vulnerable programs collected from the
NVD and the SARD.

Note that we do not use the vulnerability detection
results of vulnerability detector Checkmarx (i.e., output of
Checkmarx) as the basis of VulDeeLocator. Instead, we only
leverage the vulnerability rules of Checkmarx to extract 4
kinds of vulnerability syntax characteristics (i.e., sSyVCs).
It is in this sense we generate vulnerability candidates by
leveraging program analysis techniques. We stress that the
number of vulnerability candidates that are used as input
to VulDeeLocator (including both vulnerable samples and
non-vulnerable samples) is much larger than the number
of vulnerabilities detected by Checkmarx (i.e., vulnerable
samples output by Checkmarx).

Take vulnerabilities of the FC-kind (i.e., Library/API
function call) as an example, the syntax characteristic is
that the type of a node on the AST in question is function
call, the function name matches a library/API function
name, and at least one argument of the function call is a
variable. Given the ASTs of a source program, the matching
algorithm proceeds as follows: (i) we first traverse the ASTs
to identify the nodes whose type is “CxCursor CallExpr”
(meaning a function call); (ii) identify the nodes whose

LI et al.: VulDeeLocator: A DEEP LEARNING-BASED FINE-GRAINED VULNERABILITY DETECTOR 9

token matches a library/API function name (e.g., memset);
(iii) traverse the children of the node corresponding to a
library/API function call to identify the nodes whose type
is “CxCursor DeclRefExpr” (meaning a variable argument);
and (iv) a library/API function call together with its variable
arguments is extracted as an sSyVC. In total, we extract
157,692 sSyVCs, including 40,430 sSyVCs of the FC-kind,
37,692 sSyVCs of the AD-kind, 50,266 sSyVCs of the PD-
kind, and 29,304 sSyVCs of the AE-kind.
Generating iSeVCs. We use tool dg [30] to generate LLVM-
based intermediate code slices corresponding to given
source code sSyVCs as follows. For each given source code
sSyVC, the corresponding iSeVC is a slice of intermediate
code statements consisting of: (i) the intermediate code
statements corresponding to the given source code sSyVC;
and (ii) any intermediate code statement that has a data-
dependence or control-dependence with any of the variables
that are used or defined in the given sSyVC. Note that
the statements in (ii) may belong to different functions or
files than the one to which the given sSyVC belongs. Take
the sSyVC “data” (Line 2) in Fig. 4(a) as an example, the
LLVM-based intermediate code slices (i.e., LLVM slices)
corresponding to “data” generated by dg is described in Fig.
4(c). In total, we extract 157,692 iSeVCs, including 40,450
vulnerable iSeVCs and 117,242 non-vulnerable iSeVCs. The
ratio of vulnerable to non-vulnerable iSeVCs is about 1:3.

6.4 Fine-grained Vulnerability Detection

Labeling iSeVCs. For the iSeVCs extracted from programs
collected from the NVD, we focus on the vulnerabilities that
are accompanied by diff files that involve line deletion or line
movement because they allow us to pin down the locations of
these vulnerabilities (i.e., statements prefixed by “-” in a diff
file). These iSeVCs are automatically labeled as follows: if (i)
an iSeVC contains some intermediate code that corresponds
to one or multiple statements prefixed by “-” in the diff file
and (ii) the program in question contains a vulnerability,
then the iSeVC is automatically labeled as the line number(s)
of the vulnerability in the intermediate code; otherwise, the
iSeVC is automatically labeled as “0” (i.e., not vulnerable).

For iSeVCs extracted from programs collected from
SARD, if an iSeVC contains some intermediate code that
corresponds to one or multiple vulnerable statements in the
source program from SARD, then the iSeVC is automatically
labeled as the line number(s) of the vulnerability in the
intermediate code; otherwise, the iSeVC is automatically
labeled as “0” (i.e., not vulnerable).
Training, detecting and locating. In order to use neural
networks, we need to encode iSeVCs into vectors. For this
purpose, we first divide each iSeVC into a sequence of
tokens via lexical analysis (e.g., “call”, “void”, “@”, “FUN1”,
“(”, and “)”), and then transform each token to a fixed-
length vector via word2vec tool [34]. Finally, a token-level
vector for each iSeVC is obtained by concatenating the
token-level vectors in sequence. Each token is encoded into
a vector of length 30, and each iSeVC is represented by a
vector of length θ=27,000, which means that the first 900
tokens of an iSeVC are considered.

We implement the BRNN-vdl in Python using Tensor-
Flow together with Keras. In order to prevent overfitting,

we use dropout to ignore some units in the neural network
which are chosen at random and a stratified 10-fold cross-
validation to train the BRNN-vdl, while considering the
trade-off between model training time and model general-
ization ability. We choose the hyper-parameter values that
lead to the highest F1-measure. When we adjust a hyper-
parameter, we set the other hyper-parameters to their de-
fault values when such default values are available, and to
the values that are widely used by the deep learning com-
munity otherwise. We implement two instances of BRNN:
one is BLSTM, which leads to “VulDeeLocator-BLSTM”;
the other is BGRU, which leads to “VulDeeLocator-BGRU”.
Take VulDeeLocator-BGRU as an example, the trained
hyper-parameters are: output dimension is 512; the number
of hidden layers is 2; the number of hidden nodes at each
layer is 900; batch size is 16; minibatch stochastic gradient
descent together with ADAMAX is used; learning rate is
0.002; dropout is 0.4; the number of epochs is 10; and κ = 1.

For detecting vulnerabilities in target programs, we first
compute the average of the κ largest values among the
tokens in each line of intermediate code. Then, we extract
the lines whose output is larger than threshold ϑ (e.g., 0.5).
These lines of code are the vulnerable ones, and are mapped
back to the vulnerable lines of source code as the output of
the test (i.e., detection) phase.

6.5 Experiments for Answering RQ1

In order to evaluate the advantages of intermediate code-
based vulnerability candidate representation over source
code-based one, we conduct experiments with the following
two vulnerability candidate representations:

• source code- and Semantics-based Vulnerability
Candidate (sSeVC): A sSeVC is a sequence of source
code statements that have some data-dependence
or control-dependence with an sSyVC (i.e., source
code- and Syntax-based Vulnerability Candidate, as
defined in Section 3) and can be obtained by using a
source code static analysis tool (e.g., Joern [35]).

• iSeVC: An iSeVC is a sequence of intermediate
code statements that have some data-dependence
or control-dependence with an sSyVC. Compared
with source code-based representation, iSeVC is in
the static single assignment (i.e., SSA) form, which
assures that each variable is defined-and-then-used
and is assigned exactly once.

We use the target programs in Test-set-1 to test
VulDeeLocator-BGRU, while noting that experimental re-
sults with VulDeeLocator-BLSTM are similar. Table 1 sum-
marizes the comparison. We observe that iSeVCs lead to
better results than sSeVCs, including a 4.6% improvement
in false-positive rate, a 7.4% improvement in false-negative
rate, a 6.5% improvement in accuracy, a 5.9% improve-
ment in precision, and a 6.7% improvement in F1-measure.
This can be attributed to the two advantages of interme-
diate code-based representation: (i) intermediate code is in
the SSA form, which can expose more information about
control-flows and the define-use relations between vari-
ables; (ii) intermediate code-based vulnerability candidates
can capture more semantic information (e.g. the relations

10 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING

between the definitions of types or macros and their uses),
which however may not be identified by sSeVCs. This is
justified by the following two examples.

TABLE 1
Vulnerability detection capability of VulDeeLocator-BGRU using two

different kinds of vulnerability candidate representations

Vulnerability
candidate Representation FPR

(%)
FNR
(%)

A
(%)

P
(%)

F1
(%)

sSeVC Source
code-based 5.1 11.7 92.2 92.3 90.2

iSeVC Intermediate
code-based 0.5 4.3 98.7 98.2 96.9

Fig. 8(a) describes an example macro, which contains
a command injection vulnerability because the input is
received from the console and is used without validation
(vulnerable Line 24). Consider the sSyVC “data” in Line 9.
A source code parser (e.g., Joern [35]) is not able to identify
this macro because it is used in a program file (i.e., .c)
but defined in a header file, while recalling that program
files and header files are linked after complication. That
is, “COMMAND ARG3” in Line 24 cannot be identified
as “data”. As a consequence, the corresponding sSeVC
fails to identify the vulnerable statement in Line 24. This
explains the false-negative. On the other hand, the iSeVCs
can identify the “COMMAND ARG3” in Line 24 as “data”
after compilation. This explains why the resulting model can
detect the vulnerability.

Fig. 8(b) presents another example of macro, which cor-
responds to vulnerability CVE-2011-3934 in FFmpeg 0.9.4.
This vulnerability is related to double free because the state-
ment in Line 12 can cause a double release of variable
“s → current frame”. Consider the sSyVC “s” in Line 4.
Although there are no relations between the semantically-
related statements across two files, a source code parser
(e.g., Joern [35]) is not able to identify the complicated macro
“copy fields(s, s1, golden frame, current frame)” in
Line 12 as “memcpy(&s → golden frame, &s1 →
golden frame, (char∗)&s → current frame - (char∗)&s
→ golden frame),” causing a detector not able to
identify the vulnerable statement in Line 12. On
the other hand, the iSeVC can convert the state-
ment in Line 12 to “memcpy(&s → golden frame,
&s1 → golden frame, (char∗)&s → current frame -
(char∗)&s → golden frame);”. This explains why a de-
tector leveraging intermediate code can detect this vulnera-
bility.

Fig. 8(c) shows an example using a global variable,
which contains a buffer under-read vulnerability because
the copy from a memory location may be located before
the source buffer (vulnerable Line 11). Consider sSyVC
“data” in Line 7. A source code parser (e.g. Joern [35])
is not able to identify the relationship between the
definition of a global variable in a header file and its
usages in different program files (e.g., .c), because
program files and header files are usually linked after
compilation. As a consequence, the sSeVC corresponding
to sSyVC “data” in Line 7 does not contain any
statement that is semantically related to sSyVC “data”
via global variable CWE127 Buffer Underread malloc char
memcpy 45 badData in function CWE127 Buffer Un-

derread malloc char memcpy 45 bad. The root cause of

testcase.h:
1 ...
2 #define COMMAND_ARG2 "ls "
3 #define COMMAND_ARG3 data
4 #define EXECL execl
5 ...
CWE78_OS_Command_Injection__char_console_execl_12.c:
6 ...
7 void CWE78_OS_Command_Injection__char_console_execl_12_bad()
8 {
9 char * data;
10 char dataBuffer[100] = COMMAND_ARG2;
11 data = dataBuffer;
12 …
13 size_t dataLen = strlen(data);
14 …
15 if (fgets(data+dataLen, (int)(100-dataLen), stdin) != NULL)
16 {
17 dataLen = strlen(data);
18 if (dataLen > 0 && data[dataLen-1] == '\n')
19 {
20 data[dataLen-1] = '\0';
21 }
22 }
23 …
24 EXECL(COMMAND_INT_PATH, COMMAND_INT_PATH, COMMAND_ARG1,
 COMMAND_ARG2, COMMAND_ARG3, NULL);
25 }
26 ...

testcase.h:
1 ...
2 static char * CWE127_Buffer_Underread__malloc_char_memcpy_45_badData;
3 …
CWE127_Buffer_Underread__malloc_char_memcpy_45.c:
4 ...
5 static void badSink()
6 {
7 char * data = CWE127_Buffer_Underread__malloc_char_memcpy_45_badData;
8 char dest[100];
9 memset(dest, 'C', 100-1);
10 dest[100-1] = '\0';
11 memcpy(dest, data, 100*sizeof(char));
12 dest[100-1] = '\0';
13 ...
14 }
15 void CWE127_Buffer_Underread__malloc_char_memcpy_45_bad()
16 {
17 char * data;
18 data = NULL;
19 char * dataBuffer = (char *)malloc(100*sizeof(char));
20 ...
21 memset(dataBuffer, 'A', 100-1);
22 dataBuffer[100-1] = '\0';
23 data = dataBuffer - 8;
24 CWE127_Buffer_Underread__malloc_char_memcpy_45_badData = data;
25 badSink();
26 }
27 ...

(a) A program file uses macros defined in a header file.

(c) A program file uses a global variable defined in a header file.

libavcodec/vp3.c:
1 ...
2 static int vp3_update_thread_context(AVCodecContext *dst, const
 AVCodecContext *src)
3 {
4 Vp3DecodeContext *s = dst->priv_data, *s1 = src->priv_data;
5 ...
6 #define copy_fields(to, from, start_field, end_field) memcpy(&to->start_field,
 &from->start_field, (char*)&to->end_field - (char*)&to->start_field)
7
8 if (!s1->current_frame.data[0]
9 ||s->width != s1->width
10 ||s->height!= s1->height) {
11 if (s != s1)
12 copy_fields(s, s1, golden_frame, current_frame);
13 return -1;
14 }
15 if (s != s1) {
16 // init tables if the first frame hasn't been decoded
17 if (!s->current_frame.data[0]) {
18 ...
19 }
20 ...
21 #undef copy_fields
22 }
23 update_frames(dst);
24 return 0;
25 }
26 ...

(b) A program file uses a macro defined in it.

Fig. 8. Three vulnerabilities that are missed by VulDeeLocator-BGRU
trained from sSeVCs.

LI et al.: VulDeeLocator: A DEEP LEARNING-BASED FINE-GRAINED VULNERABILITY DETECTOR 11

the vulnerability is that the data pointer points to a
memory address that is different from the allocated
memory buffer (Line 23), which is defined in function
CWE127 Buffer Underread malloc char memcpy 45 bad.
This explains why the vulnerability is missed. However, the
model learned from iSeVCs can identify and accommodate
these statements because they are semantically related to
the global variable.
Impact of imbalanced data processing. Because of the 1:3
imbalance of vulnerable to non-vulnerable iSeVCs, we use
the under-sampling method NearMiss-2 [36] and the over-
sampling method SMOTE [37] to evaluate the impact of
imbalanced data processing. For this purpose, we need to
extend the five metrics defined in Section 6.1 for vulnerable
class to non-vulnerable class, denoted by FPR’, FNR’, A’, P’,
and F1’, respectively.

TABLE 2
The effectiveness of VulDeeLocator-BGRU with and without

imbalanced data processing for vulnerable and non-vulnerable classes

Imbalanced data
processing method None NearMiss-2 SMOTE

Vulnerable
class

FPR (%) 0.5 30.3 0.5
FNR (%) 4.3 15.7 3.8

A (%) 98.7 72.9 98.8
P (%) 98.2 43.6 98.2
F1 (%) 96.9 57.5 97.2

Non-vulnerable
class

FPR’ (%) 4.3 15.7 3.8
FNR’ (%) 0.5 30.3 0.5

A’ (%) 98.7 72.9 98.8
P’ (%) 98.8 94.1 98.9
F1’ (%) 99.2 80.1 99.2

Table 2 shows the effectiveness of VulDeeLocator-BGRU
(using iSeVC) with and without imbalanced data processing
for vulnerable and non-vulnerable classes. For the vulnera-
ble class, we observe that under-sampling incurs (for exam-
ple) a 39.4% lower F1-measure when compared with no im-
balanced data processing (“None”). This means that under-
sampling non-vulnerable iSeVCs substantially decreases the
detector’s effectiveness because of the reduction in data.
Over-sampling the vulnerable class incurs (for example) a
0.3% higher F1-measure when compared with no imbal-
anced data processing, at the price of a higher training time
(83,216.2 vs. 51,602.8 seconds). For the non-vulnerable class,
we observe a similar phenomenon. The non-vulnerable class
does not achieve a significantly higher F1-measure than the
vulnerable class in the absence of imbalanced data process-
ing, meaning that the model is not obviously biased towards
the non-vulnerable class despite that it has more iSeVCs.
In summary, the imbalanced data processing techniques we
experimented with are not significant in this specific setting,
perhaps because the ratio 1:3 is not severe enough.
Impact of selecting training set. In order to determine
whether different selections of training set would impact
the evaluation result, we randomly select 80% of the syn-
thetic and academic programs and 80% of the real-world
programs as training programs for 5 times, and perform
a stratified 10-fold cross-validation to train VulDeeLocator-
BGRU (using iSeVC). In each 10-fold cross-validation, we
obtain 10 values of FPR, FNR, accuracy, precision, and
F1 corresponding to the 10 validation sets. We perform
a statistical significance test using the t-test [38] to deter-
mine whether or not the differences among the 5 random
10-fold cross validations are statistically significant. Recall

that differences are considered statistically significant if the
significance level (i.e., the p-value) is less than or equal
to 0.05 (the 95% confidence level). Consider the overall
effectiveness F1-measure as an example, Table 3 shows the
means and standard deviations of the F1-measures for 5
random 10-fold cross-validations. Using the first 10-fold
cross-validation as the baseline, the p-value column shows
the results of the statistical significance test. We observe
that all p-values are greater than 0.05, meaning that the
differences among the 5 random 10-fold cross-validations
are not considered statistically significant. Therefore, we
use one stratified 10-fold cross-validation in the subsequent
experiments.

TABLE 3
F1-measures of VulDeeLocator-BGRU for different training sets

#training sets Mean Standard deviation p-value
1 91.50 1.00 -
2 90.59 1.25 0.09
3 90.89 0.82 0.15
4 90.55 1.21 0.07
5 91.93 0.88 0.32

Insight 1. VulDeeLocator leveraging intermediate code-
based representation is substantially more effective than
VulDeeLocator using source code-based representation,
owing to the aforementioned two advantages of inter-
mediate code-based representation.

6.6 Experiments for Answering RQ2
In order to see the capability of BRNN-vdl in locating
vulnerabilities, we conduct experiments to compare BRNN-
vdl and BRNN while using two types of vulnerability
candidates (i.e., source code-based sSeVCs vs. intermediate
code-based iSeVCs as specified in Section 6.5) and the
target programs in Test-set-1 for test. In what follows, we
report the experimental results of using BGRU to instantiate
BRNN, while noting that similar results are observed when
using BLSTM to instantiate BRNN.

TABLE 4
Comparing BRNN-vdl with BRNN (more specifically, BGRU-vdl vs.

BGRU), where IoU is averaged over the IoUs measured between the
detected vulnerable code and the ground-truth vulnerable code in the
test data and |V| is the average number of detected vulnerable lines of

source code.

Vulnerability
candidate Model FPR

(%)
FNR
(%)

A
(%)

P
(%)

F1
(%)

IoU
(%) |V|

sSeVC
BRNN

-vdl 5.1 11.7 92.2 92.3 90.2 25.1 2.5

BRNN 10.1 12.2 89.0 84.2 86.0 8.4 17.7

iSeVC
BRNN

-vdl 0.5 3.8 98.8 98.2 97.2 36.3 2.6

BRNN 2.3 5.4 97.0 92.0 93.3 10.1 19.9

Table 4 presents the comparison. (i) The BRNN model
with sSeVC is the vulnerability detector known as SySeVR
[17]; (ii) the BRNN-vdl model with sSeVC is a variant of
our proposed VulDeeLocator by adapting it to deal with
source code; (iii) the BRNN model with iSeVC is a variant
of SySeVR by adapting it to deal with intermediate code; (iv)
the BRNN-vdl model with iSeVC is our proposed VulDee-
Locator. For locating vulnerabilities, BRNN-vdl achieves,
on average, a 21.5% higher IoU than BRNN because the
number of detected vulnerable lines of code is 2.6 for BRNN-
vdl and 18.8 for BRNN on average. This can be explained

12 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING

by the fact that BRNN preserves the input granularity in its
output, while BRNN-vdl reduces the input lines of code to
much smaller lines of code in its output. This “granularity
refinement” is accomplished by the “vdl” part. In terms of
vulnerability detection capability, BRNN-vdl is better than
BRNN, with a 5.0% lower false-positive rate, a 0.5% higher
false-negative rate, and a 4.2% higher F1-measure when
using sSeVCs as vulnerability candidates, and with a 1.8%
lower false-positive rate, a 1.6% false-negative rate, and a
3.9% higher F1-measure when using iSeVCs as vulnerability
candidates. This means that “vdl” can somewhat improve
the vulnerability detection capability. This leads to:
Insight 2. BRNN-vdl achieves a substantially higher vul-

nerability locating precision and a somewhat higher
vulnerability detection capability than BRNN.

6.7 Experiments for Answering RQ3
In order to evaluate the effectiveness and preciseness of
VulDeeLocator in detecting vulnerabilities with known
ground truth, we compare two instances of VulDeeLocator
and some state-of-the-art vulnerability detectors in terms of
their capabilities in detecting and locating vulnerabilities in
target programs with known ground truth.

We use the target programs in Test-set-1 and Test-
set-2 for test. Table 5 summarizes the experimental re-
sults. We observe that on average, VulDeeLocator-BGRU
simultaneously achieves a 4.0% lower false-negative rate,
a 2.3% higher F1-measure, and an 8.3% higher IoU, than
VulDeeLocator-BLSTM. The higher locating precision may
be attributed to the fact that BGRU uses fewer parame-
ters, possibly making it easier to “refine” the output. We
observe that the false-negative rates are higher than the
false-positive rates, where the higher false-negative rates
may be caused by the inadequate coverage of vulnera-
bility syntax characteristics and vulnerability types in the
training data. When compared with Test-set-1, Test-set-2
makes VulDeeLocator achieve an 11.5% higher false-positive
rate, a 20.2% higher false-negative rate, an 18.3% lower F1-
measure, and a 2.8% lower IoU on average. This is caused
by the fact that there are more different features between
the training set and Test-set-2. For source code- and rule-
based vulnerability detectors, we consider the open source
tool Flawfinder [5] and the commercial product Checkmarx
[6]. For intermediate code- and rule-based vulnerability
detectors, we consider the commercial product Fortify [7].
For binary code- and rule-based vulnerability detectors, we
consider the open source taint-style vulnerability detector
Saluki [39]. For deep learning-based vulnerability detectors,
we consider VulDeePecker [16], which is designed to detect
vulnerabilities related to library/API function calls, and
SySeVR [17], which is designed to detect multiple types of
vulnerabilities. The implementations of these two tools are
obtained from their authors (via private communications).
We choose these systems for comparison because they are
the state-of-the-art and/or available to us.

Table 5 summarizes the comparison with state-of-the-art
pattern-based vulnerability detectors. We make the follow-
ing observations. (i) Source code- and rule-based vulner-
ability detector Flawfinder incurs prohibitively high false-
negative rate, which can be attributed to the inadequacy of

its parser and patterns [40]. (ii) Source code- and rule-based
vulnerability detector Checkmarx incurs prohibitively high
false-positive rate and false-negative rate despite its use of
data-flow analysis; this ineffectiveness can be attributed to
the inadequacy of human-written rules. This justifies why
we only use the Checkmarx rules to extract sSyVCs as a
starting point for vulnerability detection. (iii) Intermediate
code- and rule-based vulnerability detector Fortify, which
uses a data-flow analysis, incurs very high false-positive
rate and false-negative rate, but is better than Checkmarx,
suggesting that rules based on intermediate code can indeed
accommodate more useful information than rules based on
source code. (iv) Binary code- and rule-based vulnerability
detector Saluki is more effective than the other rule-based
vulnerability detectors because it uses a taint analysis, but
is still less effective than deep learning-based detectors.
Its false negatives and false positives are caused by the
incomplete vulnerability rules it used. (v) Deep learning-
based detector VulDeePecker is much less effective than
deep learning-based SySeVR because the former can only
cope with the class of vulnerabilities related to library/API
function calls [16], but SySeVR can cope with multiple
classes of vulnerabilities [17]. (vi) VulDeeLocator-BGRU
achieves respectively a 9.8%, 7.9%, and 8.2% improvement
over SySeVR in F1-measure, false-positive rate, and false-
negative rate on average, because it can accommodate more
semantic information conveyed by intermediate code. (vii)
Rule-based vulnerability detectors (i.e., Flawfinder, Check-
marx, Fortify, and Saluki) achieve an IoU of 28.5% on aver-
age, but their low overall effectiveness (F1-measure) hinders
their usefulness. (viii) The IoUs of VulDeeLocator-BLSTM
and VulDeeLocator-BGRU are much higher than that of
VulDeePecker and SySeVR, because the average number of
detected vulnerable lines of code is 2.8 for VulDeeLocator-
BLSTM and 3.1 for VulDeeLocator-BGRU, while noting that
their counterparts are 56.7 for VulDeePecker and 56.6 for
SySeVR. The high vulnerability locating precision can be
attributed to the vdl-part of BRNN-vdl. (ix) The effective-
ness of VulDeePecker and SySeVR when applied to Test-set-
2 are much lower than their counterparts when applied to
Test-set-1, because the training set has more synthetic and
academic programs than real-world programs.

User study. In order to help assess the usability of VulDee-
Locator, we perform a user study on VulDeeLocator vs. Sy-
SeVR [17] (i.e., the best state-of-the-art vulnerability detector
in Table 5), according to the following 4 attributes.

• Self-containment: This means that the output code
fragment of the vulnerability detector is self-
contained, meaning that the code fragment itself is
sufficient for a user to understand the vulnerability.

• Localizability: The vulnerable lines of code can be
identified from the output of the vulnerability de-
tector.

• Explainability: This is the extent at which a user can
explain why the detected vulnerability is indeed a
vulnerability.

• Reparability: This is the extent at which a user can
come up with a patch to the detected vulnerability.

The scale of each attribute score is defined as {1, 2, 3, 4, 5}.

LI et al.: VulDeeLocator: A DEEP LEARNING-BASED FINE-GRAINED VULNERABILITY DETECTOR 13

TABLE 5
Effectiveness of VulDeeLocator-BLSTM, VulDeeLocator-BGRU, and state-of-the-art vulnerability detectors, where IoU is averaged over the IoUs
measured between the detected vulnerable code and the ground-truth vulnerable code in the test data and |V| is the average number of detected

vulnerable lines of source code.

Method Test set FPR (%) FNR (%) A (%) P (%) F1 (%) IoU (%) |V|
VulDeeLocator with two instances of BRNN

VulDeeLocator
-BLSTM

Test-set-1 0.5 7.8 97.7 98.5 95.2 27.1 2.1
Test-set-2 12.0 28.0 81.0 81.8 76.6 25.2 3.4

VulDeeLocator
-BGRU

Test-set-1 0.5 3.8 98.8 98.2 97.2 36.3 2.6
Test-set-2 12.0 24.0 82.8 82.6 79.2 32.6 3.5

State-of-the-art vulnerability detectors

Flawfinder Test-set-1 10.5 83.7 61.6 48.9 24.5 38.4 5.0
Test-set-2 24.2 78.2 53.6 38.5 27.8 35.7 5.4

Checkmarx Test-set-1 72.8 54.4 39.1 27.9 34.6 26.5 4.1
Test-set-2 66.7 56.5 37.5 31.2 36.4 18.1 6.3

Fortify Test-set-1 37.0 54.0 56.5 43.4 44.6 30.9 2.4
Test-set-2 42.4 47.8 55.4 46.2 49.0 30.5 2.9

Saluki Test-set-1 10.3 31.3 85.1 64.9 66.8 23.7 2.4
Test-set-2 18.2 39.1 73.2 70.0 65.1 24.0 2.6

VulDeePecker Test-set-1 7.9 49.4 51.0 91.9 65.2 9.0 14.5
Test-set-2 21.2 48.0 67.2 65.0 57.8 8.5 98.8

SySeVR Test-set-1 10.1 12.2 89.0 84.2 86.0 8.4 17.7
Test-set-2 18.2 32.0 75.9 73.9 70.8 8.0 95.4

The overall score of an output code fragment is the average
of the 4 attribute scores. The higher the overall score, the
better the vulnerability detector. We randomly select 20
vulnerabilities that are correctly detected by VulDeeLocator
and 20 vulnerabilities that are correctly detected by SySeVR
(i.e., they are all true-positives); and we ask 6 computer
science students, including 3 senior undergraduate and 3
graduate students, to score each of them according to the
aforementioned 4 attributes. Fig. 9 presents the boxplots
of the 4 attributes score and the overall score. We observe
that the median scores of most attributes for VulDeeLo-
cator are higher (≥ 2.0) than those for SySeVR, except
for self-containment (which is similar in both cases). We
also observe that the mean scores of most attributes for
VulDeeLocator are higher than those for SySeVR, except for
self-containment (which is similar in both cases). The mean
overall score for VulDeeLocator (i.e., 4.1) is much higher
than that for SySeVR (i.e., 2.3), indicating that VulDee-
Locator is better in helping users locate, understand, and
fix vulnerabilities. This can be explained by the fact that
VulDeeLocator can produce a more focused set of code that
contains a vulnerability. In summary, we draw:
Insight 3. VulDeeLocator is more effective than the

state-of-the-art pattern-based vulnerability detectors in
detecting and locating vulnerabilities. In particular,
VulDeeLocator-BGRU achieves a 4.2X higher locating
precision than vulnerability detector SySeVR on average.

6.8 Experiments for Answering RQ4

In order to show the effectiveness and preciseness of
VulDeeLocator in detecting and locating vulnerabilities in
real-world software products, we apply VulDeeLocator-
BGRU, which is the most effective instance of VulDeeLoca-
tor, to detect vulnerabilities reported in the NVD between
2017 and 2019, in 3 real-world software products (i.e.,
FFmpeg 2.8.2, Wireshark 2.0.5, and Libav 9.10), which are
unknown vulnerabilities with respect to the vulnerabilities
contained in the training set. Since we need to manually
identify false positives and false negatives for vulnerability

S e l f - c o n t a i n m e n t
L o c a l i z a b i l i t y

E x p l a i n a b i l i t y
R e p a r a b i l i t y

O v e r a l l
1

2

3

4

5

Sc
ore

(a) Scores for VulDeeLocator

S e l f - c o n t a i n m e n t
L o c a l i z a b i l i t y

E x p l a i n a b i l i t y
R e p a r a b i l i t y

O v e r a l l
1

2

3

4

5

Sc
ore

(b) Scores for SySeVR

Fig. 9. Boxplots of the attribute score and the overall score for VulDee-
Locator vs. SySeVR, where the solid red line indicates the median and
the dashed blue line indicates the mean.

detectors, which is a time- and labor-consuming process,
we randomly select 200 (out of the 14,299) program files
from the main modules of the aforementioned 3 software
products, and apply the 5 representative vulnerability de-
tectors (with higher effectiveness as shown in Section 6.7)
to those program files. We collect all of the vulnerabilities
detected by the 5 detectors from the 200 program files and
use them as the “overall set”. We then manually examine
them to identify false positives and further remove the

14 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING

vulnerabilities reported in the NVD prior to 2017. The exper-
imental results are presented in Table 6. Among the 5 detec-
tors, VulDeeLocator-BGRU is the most effective. Specifically,
VulDeeLocator-BGRU detects 22 vulnerabilities from the 200
program files, including 18 confirmed vulnerabilities (i.e.,
trust positives) and 4 false positives, while missing 5 vulner-
abilities. Among the other 4 detectors, SySeVR achieves the
highest F1 but the lowest IoU. The low precise location of
SySeVR is caused by the large average number of detected
vulnerable lines of code (i.e., on average, 76.2 lines of code
per detected vulnerability), which is in sharp contrast to
VulDeeLocator’s average number of detected vulnerable
lines of code (i.e., on average, 3.8 lines of code per detected
vulnerability).

Table 7 describes the vulnerabilities that are confirmed
or missed by VulDeeLocator-BGRU. Among 18 confirmed
one, 2 belong to Libav 9.10 and are not reported in the
NVD but have been “silently” patched by the vendor when
releasing newer versions. For example, the vulnerability
in matroskadec.c is a use-after-free vulnerability related to
pointer “tracks;” this vulnerability is not reported in the
NVD but has been “silently” patched by the vendor when
releasing Libav 9.18 and later versions.

Insight 4. VulDeeLocator can detect and pinpoint vulnera-
bilities in real-world software products.

TABLE 6
Effectiveness of vulnerability detectors when applied to the 200

program files that are selected from the 3 real-world software products,
where |V| is the average number of detected vulnerable lines of code.

Method FPR
(%)

FNR
(%)

A
(%)

P
(%)

F1
(%)

IoU
(%) |V|

VulDeeLocator
-BGRU 12.1 21.7 83.9 81.8 80.0 30.2 3.8

Checkmarx 60.6 56.5 41.1 33.3 37.7 24.2 6.0
Fortify 45.5 47.8 53.6 44.4 48.0 28.1 2.7
Saluki 21.2 39.1 71.4 66.7 63.6 25.2 3.2

SySeVR 18.1 34.8 77.0 71.4 68.2 8.5 76.2

TABLE 7
The 18 vulnerabilities that are correctly detected and the 5

vulnerabilities that are missed by VulDeeLocator-BGRU (from the 200
program files)

Target
product CVE ID Vulnerable file Status

FFmpeg
2.8.2

CVE-2017-9608 .../dnxhd parser.c Confirmed
CVE-2018-14394 .../movenc.c Confirmed
CVE-2018-14395 .../movenc.c Confirmed

CVE-2018-1999010 .../mms.c Confirmed
CVE-2019-12730 .../aadec.c Confirmed
CVE-2017-9996 .../cdxl.c Missed

Wireshark
2.0.5

CVE-2017-6467 .../rmap.c Confirmed
CVE-2017-6468 .../netscaler.c Confirmed
CVE-2017-6470 .../packet-iax2.c Confirmed
CVE-2017-6474 .../netscaler.c Confirmed
CVE-2017-7700 .../netscaler.c Confirmed
CVE-2017-9345 .../packet-dns.c Confirmed
CVE-2017-11410 .../packet-wbxml.c Confirmed
CVE-2017-11411 .../packet-opensafety.c Confirmed
CVE-2017-13767 .../packet-msdp.c Confirmed
CVE-2017-9344 .../packet-btl2cap.c Missed
CVE-2017-13766 .../packet-dcerpc-pn-io.c Missed

Libav 9.10

- .../matroska-dec.c Confirmed
- .../pngdsp.c Confirmed

CVE-2018-5766 .../avpacket.c Confirmed
CVE-2018-5684 .../mov.c Confirmed
CVE-2017-16803 .../smacker.c Missed
CVE-2017-9051 .../nsvdec.c Missed

7 LIMITATIONS

This study has several limitations. First, the design of
VulDeeLocator focuses on detecting vulnerabilities in C
source programs because (i) we want to demonstrate the fea-
sibility of VulDeeLocator and (ii) the tools we leverage hap-
pen to support C. Extending VulDeeLocator to accommo-
date other programming languages is an interesting future
work. Second, VulDeeLocator requires to compile program
source code into intermediate code, and cannot be used
when a program source code cannot be compiled. Third,
the four kinds of vulnerability syntax characteristics used
by VulDeeLocator can cover 98.3% of vulnerable programs
collected from NVD and SARD. This 98.3% coverage should
be used with caution because (i) for the NVD data, we only
use the lines of code that are deleted or moved in a diff file as
the location of a vulnerability (i.e., we did not consider those
vulnerabilities whose diff files only involve line additions),
and (ii) the SARD data may not be representative of real-
world software products. It is an open problem to identify
more complete vulnerability syntax characteristics. Fourth,
our case study uses BRNN-vdl to instantiate VulDeeLocator
to demonstrate feasibility. Tailored neural networks need
to be designed for vulnerability detection purposes. Fifth,
VulDeeLocator, as a static vulnerability detector, cannot
accurately detect vulnerabilities that depend on dynamic
information during program running. Sixth, we can partly
explain the effectiveness of VulDeeLocator, but much more
research needs to be done in this direction of explainability.

8 RELATED WORK

Prior work on static vulnerability detection. The present
study belongs to static vulnerability detection, which in-
cludes code similarity-based methods and pattern-based meth-
ods. Code similarity-based methods [2–4] can achieve a high
locating precision when they indeed detect vulnerabilities,
but have a high false-negative rate because many vulnera-
bilities are not caused by code cloning [16]. Pattern-based
vulnerability detection methods can be further divided into
rule-based ones and machine learning-based ones. Rule-based
methods use analyst-generated rules to detect vulnerabil-
ities, including (i) open source tools (e.g., Flawfinder [5])
and commercial tools (e.g., Checkmarx [6]), which operate
on program source code, and (ii) Fortify and Coverity [7, 8],
which operate on intermediate code. These tools have high
false-positives or false-negatives [40]. Machine learning-
based methods aim to detect vulnerabilities using patterns
learned from analyst-defined feature representations of vul-
nerabilities [11–15, 25] or “raw” feature representations via
deep learning [16–23]. These methods detect vulnerabilities
at coarse granularities (e.g., program [13], component [12],
function [11, 14, 19–23], and program slice [16–18]). In addi-
tion, there are some loosely related work, such as DeepSim
[41] in the sense of using intermediate representation but for
Java code similarity and Instruction2vec [42] in the sense
of detecting vulnerabilities in binary code by modeling
assembly code.

Among the detectors mentioned above, VulDeePecker
[16], SySeVR [17], and µVulDeePecker [18] are closely re-
lated to ours because they are also based on program

LI et al.: VulDeeLocator: A DEEP LEARNING-BASED FINE-GRAINED VULNERABILITY DETECTOR 15

slices. However, these detectors have little capability in ac-
commodating semantic information (e.g., relations between
the definitions of types and macros and their uses across
files, and control flows and variable define-use relations).
Moreover, they cannot precisely pin down the locations
of vulnerabilities. Nevertheless, µVulDeePecker [18] aims
to detect specific types of vulnerabilities in source code.
VulDeeLocater moves a significant step forward by tackling
the newly articulated requirements of achieving high detec-
tion capability and high locating precision in vulnerability
detection.
Prior work on dynamic vulnerability detection. Dynamic
vulnerability detection, including dynamic symbolic execu-
tion [43] and fuzzing [44], is complementary to static vulner-
ability detection and is often used to detect vulnerabilities
in binary code. These methods explore program execution
paths to identify the inputs that make the program exhibit
unsafe operations (e.g., crashing). These methods leverage
some finite sets of execution traces to determine whether or
not a program is buggy or vulnerable, meaning that they
may miss many vulnerabilities. In contrast, VulDeeLocator
can scan various paths in the program and can possibly
detect more vulnerabilities.

Prior work on bug detection. Since vulnerabilities can be
seen as a special kind of bugs [45], we briefly review prior
studies on bug detectors. Similar to vulnerability detection,
there are two detection methods: static vs. dynamic. Static
methods often use information retrieval techniques together
with bug reports to detect bugs in source code (e.g., [46]).
Dynamic methods include: spectrum-based methods [47],
which examine pass-and-fail execution traces to determine
whether or not a line of source code has a bug; mutation-
based methods [48], which consider whether or not the
execution of a line of code affects the result of a test case.
However, bug detection methods cannot be used to detect
vulnerabilities because (i) bugs are not necessarily vulner-
abilities and (ii) bug detection methods often rely on bug
reports or test cases.

9 CONCLUSION

We explicitly articulated two requirements for vulnerability
detectors: simultaneously achieving high locating precision
and high detection capability. We presented VulDeeLoca-
tor as the first deep learning-based vulnerability detector
that can satisfy these two requirements when detecting
vulnerabilities in C programs. We overcame two technical
challenges — capturing semantic information in programs
(e.g. relations between the definitions of types and macros
and their uses across files, and control flows and variable
define-use relations) — by introducing the idea of gran-
ularity refinement and leveraging the intermediate code-
based representations. As one application, VulDeeLocator
detected four vulnerabilities that were not reported in the
NVD. The limitations of the present study offer interesting
open problems for future research.

ACKNOWLEDGMENT

We thank the reviewers for their constructive comments,
which have guided us in improving the paper. We thank

Jing Tang for collecting the real-world vulnerable programs
and their patches. The authors from Huazhong University
of Science and Technology and Hebei University were sup-
ported in part by the National Natural Science Foundation
of China under Grant No. 61802106 and in part by the
Natural Science Foundation of Hebei Province under Grant
No. F2020201016. S. Xu was supported in part by ARO Grant
#W911NF-17-1-0566 as well as NSF Grants #2122631 (pre-
viously #1814825) and #1736209. Any opinions, findings,
conclusions or recommendations expressed in this work are
those of the authors and do not reflect the views of the
funding agencies in any sense.

REFERENCES

[1] CVE, http://cve.mitre.org/.
[2] S. Kim, S. Woo, H. Lee, and H. Oh, “VUDDY: A

scalable approach for vulnerable code clone discovery,”
in Proceedings of 2017 IEEE Symposium on Security and
Privacy, San Jose, CA, USA, 2017, pp. 595–614.

[3] J. Jang, A. Agrawal, and D. Brumley, “ReDeBug: Find-
ing unpatched code clones in entire OS distributions,”
in Proceedings of 2012 IEEE Symposium on Security and
Privacy, San Francisco, California, USA, 2012, pp. 48–62.

[4] Z. Li, D. Zou, S. Xu, H. Jin, H. Qi, and J. Hu, “VulPecker:
An automated vulnerability detection system based
on code similarity analysis,” in Proceedings of the 32nd
Annual Conference on Computer Security Applications, Los
Angeles, CA, USA, 2016, pp. 201–213.

[5] Flawfinder, https://dwheeler.com/flawfinder/.
[6] Checkmarx, https://www.checkmarx.com/.
[7] Fortify, https://www.microfocus.com/en-us/

portfolio/application-security.
[8] Coverity, https://scan.coverity.com/.
[9] H. Liang, L. Wang, D. Wu, and J. Xu, “MLSA: a static

bugs analysis tool based on LLVM IR,” in Proceedings of
the 17th IEEE/ACIS International Conference on Software
Engineering, Artificial Intelligence, Networking and Par-
allel/Distributed Computing, Shanghai, China, 2016, pp.
407–412.

[10] Z. Fang, Q. Liu, Y. Zhang, K. Wang, Z. Wang, and
Q. Wu, “A static technique for detecting input val-
idation vulnerabilities in Android apps,” SCIENCE
CHINA Information Sciences, vol. 60, no. 5, pp. 052 111:1–
052 111:16, 2017.

[11] F. Yamaguchi, M. Lottmann, and K. Rieck, “General-
ized vulnerability extrapolation using abstract syntax
trees,” in Proceedings of the 28th Annual Computer Secu-
rity Applications Conference, Orlando, FL, USA, 2012, pp.
359–368.

[12] S. Neuhaus, T. Zimmermann, C. Holler, and A. Zeller,
“Predicting vulnerable software components,” in Pro-
ceedings of 2007 ACM Conference on Computer and Com-
munications Security, Alexandria, Virginia, USA, 2007, pp.
529–540.

[13] G. Grieco, G. L. Grinblat, L. C. Uzal, S. Rawat, J. Feist,
and L. Mounier, “Toward large-scale vulnerability dis-
covery using machine learning,” in Proceedings of the
6th ACM on Conference on Data and Application Security
and Privacy, New Orleans, LA, USA, 2016, pp. 85–96.

http://cve.mitre.org/
https://dwheeler.com/flawfinder/
https://www.checkmarx.com/
https://www.microfocus.com/en-us/portfolio/application-security
https://www.microfocus.com/en-us/portfolio/application-security
https://scan.coverity.com/

16 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING

[14] F. Yamaguchi, C. Wressnegger, H. Gascon, and K. Rieck,
“Chucky: Exposing missing checks in source code for
vulnerability discovery,” in Proceedings of 2013 ACM
SIGSAC Conference on Computer and Communications
Security, Berlin, Germany, 2013, pp. 499–510.

[15] F. Yamaguchi, A. Maier, H. Gascon, and K. Rieck,
“Automatic inference of search patterns for taint-style
vulnerabilities,” in Proceedings of 2015 IEEE Symposium
on Security and Privacy, San Jose, CA, USA, 2015, pp.
797–812.

[16] Z. Li, D. Zou, S. Xu, X. Ou, H. Jin, S. Wang, Z. Deng,
and Y. Zhong, “VulDeePecker: A deep learning-based
system for vulnerability detection,” in Proceedings of
the 25th Annual Network and Distributed System Security
Symposium, San Diego, California, USA, 2018.

[17] Z. Li, D. Zou, S. Xu, H. Jin, Y. Zhu, and Z. Chen,
“SySeVR: A framework for using deep learning to
detect software vulnerabilities,” IEEE Trans. Dependable
Sec. Comput., vol. PP, pp. 1–1, 2021.

[18] D. Zou, S. Wang, S. Xu, Z. Li, and H. Jin,
“µVulDeePecker: A deep learning-based system for
multiclass vulnerability detection,” IEEE Trans. Depend-
able Sec. Comput., vol. PP, pp. 1–1, 2019.

[19] G. Lin, J. Zhang, W. Luo, L. Pan, and Y. Xiang,
“POSTER: Vulnerability discovery with function rep-
resentation learning from unlabeled projects,” in Pro-
ceedings of 2017 ACM SIGSAC Conference on Computer
and Communications Security, Dallas, TX, USA, 2017, pp.
2539–2541.

[20] R. L. Russell, L. Y. Kim, L. H. Hamilton, T. La-
zovich, J. A. Harer, O. Ozdemir, P. M. Ellingwood, and
M. W. McConley, “Automated vulnerability detection
in source code using deep representation learning,” in
Proceedings of the 17th IEEE International Conference on
Machine Learning and Applications, Orlando, FL, USA,
2018, pp. 757–762.

[21] G. Lin, J. Zhang, W. Luo, L. Pan, Y. Xiang, O. Y. de Vel,
and P. Montague, “Cross-project transfer representa-
tion learning for vulnerable function discovery,” IEEE
Trans. Industrial Informatics, vol. 14, no. 7, pp. 3289–
3297, 2018.

[22] X. Duan, J. Wu, S. Ji, Z. Rui, T. Luo, M. Yang, and Y. Wu,
“VulSniper: Focus your attention to shoot fine-grained
vulnerabilities,” in Proceedings of the 28th International
Joint Conference on Artificial Intelligence, Macao, China,
2019, pp. 4665–4671.

[23] Y. Zhou, S. Liu, J. Siow, X. Du, and Y. Liu, “Devign:
Effective vulnerability identification by learning com-
prehensive program semantics via graph neural net-
works,” in Proceedings of Annual Conference on Neural
Information Processing Systems, 2019, pp. 10 197–10 207.

[24] M. Chalupa, “Slicing of LLVM bitcode,” Master’s the-
sis, Masaryk University, 2016.

[25] X. Du, B. Chen, Y. Li, J. Guo, Y. Zhou, Y. Liu, and
Y. Jiang, “Leopard: Identifying vulnerable code for
vulnerability assessment through program metrics,” in
Proceedings of the 41st International Conference on Software
Engineering, Montreal, QC, Canada, 2019, pp. 60–71.

[26] NVD, https://nvd.nist.gov/.
[27] S. S. Muchnick, Advanced compiler design and implemen-

tation. Morgan Kaufmann, 1997.

[28] F. Tip, “A survey of program slicing techniques,” Jour-
nal of Programming Languages, vol. 3, no. 3, 1995.

[29] C. Lattner and V. S. Adve, “LLVM: A compilation
framework for lifelong program analysis & transforma-
tion,” in Proceedings of the 2nd IEEE/ACM International
Symposium on Code Generation and Optimization, San Jose,
CA, USA, 2004, pp. 75–88.

[30] dg, https://github.com/mchalupa/dg.
[31] M. Pendleton, R. Garcia-Lebron, J. Cho, and S. Xu,

“A survey on systems security metrics,” ACM Comput.
Surv., vol. 49, no. 4, pp. 62:1–62:35, 2017.

[32] Intersection over Union, https://en.wikipedia.org/
wiki/Jaccard index?tdsourcetag=s pctim aiomsg.

[33] Software Assurance Reference Dataset, https://samate.
nist.gov/SRD/index.php.

[34] word2vec, http://radimrehurek.com/gensim/models/
word2vec.html.

[35] F. Yamaguchi, N. Golde, D. Arp, and K. Rieck, “Model-
ing and discovering vulnerabilities with code property
graphs,” in Proceedings of 2014 IEEE Symposium on
Security and Privacy, Berkeley, USA, 2014, pp. 590–604.

[36] I. Mani and I. Zhang, “KNN approach to unbalanced
data distributions: A case study involving information
extraction,” in Proceedings of ICML Workshop on Learning
from Imbalanced Datasets, 2003, pp. 42–48.

[37] N. V. Chawla, K. W. Bowyer, L. O. Hall, and
W. P. Kegelmeyer, “SMOTE: Synthetic minority over-
sampling technique,” J. Artif. Intell. Res., vol. 16, pp.
321–357, 2002.

[38] J. Cohen, Statistical Power Analysis for the Behavioral
Sciences. Academic press, 2013.

[39] I. Gotovchits, R. Van Tonder, and D. Brumley, “Saluki:
Finding taint-style vulnerabilities with static property
checking,” in Proceedings of the NDSS Workshop on Bi-
nary Analysis Research, San Diego, CA, USA, 2018.

[40] F. Yamaguchi, “Pattern-based vulnerability discovery,”
Ph.D. dissertation, University of Göttingen, 2015.

[41] G. Zhao and J. Huang, “DeepSim: Deep learning code
functional similarity,” in Proceedings of 2018 ACM Joint
Meeting on European Software Engineering Conference and
Symposium on the Foundations of Software Engineering,
Lake Buena Vista, FL, USA, 2018, pp. 141–151.

[42] Y. Lee, H. Kwon, S.-H. Choi, S.-H. Lim, S. H. Baek,
and K.-W. Park, “Instruction2vec: Efficient preproces-
sor of assembly code to detect software weakness with
CNN,” Applied Sciences, vol. 9, no. 19, p. 4086, 2019.

[43] E. Alatawi, H. Søndergaard, and T. Miller, “Leveraging
abstract interpretation for efficient dynamic symbolic
execution,” in Proceedings of the 32nd IEEE/ACM Inter-
national Conference on Automated Software Engineering,
Urbana, IL, USA, 2017, pp. 619–624.

[44] S. Gan, C. Zhang, X. Qin, X. Tu, K. Li, Z. Pei, and
Z. Chen, “CollAFL: Path sensitive fuzzing,” in Proceed-
ings of 2018 IEEE Symposium on Security and Privacy, San
Francisco, California, USA, 2018, pp. 679–696.

[45] X. Sun, X. Peng, K. Zhang, Y. Liu, and Y. Cai, “How
security bugs are fixed and what can be improved:
an empirical study with mozilla,” SCIENCE CHINA
Information Sciences, vol. 62, no. 1, pp. 19 102:1–19 102:3,
2019.

[46] Y. Xiao, J. Keung, Q. Mi, and K. E. Bennin, “Bug

https://nvd.nist.gov/
https://github.com/mchalupa/dg
https://en.wikipedia.org/wiki/Jaccard_index?tdsourcetag=s_pctim_aiomsg
https://en.wikipedia.org/wiki/Jaccard_index?tdsourcetag=s_pctim_aiomsg
https://samate.nist.gov/SRD/index.php
https://samate.nist.gov/SRD/index.php
http://radimrehurek.com/gensim/models/word2vec.html
http://radimrehurek.com/gensim/models/word2vec.html

LI et al.: VulDeeLocator: A DEEP LEARNING-BASED FINE-GRAINED VULNERABILITY DETECTOR 17

localization with semantic and structural features using
convolutional neural network and cascade forest,” in
Proceedings of the 22nd International Conference on Evalua-
tion and Assessment in Software Engineering, Christchurch,
New Zealand, 2018, pp. 101–111.

[47] X. Xie, T. Y. Chen, F. Kuo, and B. Xu, “A theoretical
analysis of the risk evaluation formulas for spectrum-
based fault localization,” ACM Transactions on Software
Engineering and Methodology, vol. 22, no. 4, pp. 31:1–
31:40, 2013.

[48] M. Papadakis and Y. L. Traon, “Metallaxis-FL:
mutation-based fault localization,” Software Testing,
Verification & Reliability, vol. 25, no. 5-7, pp. 605–628,
2015.

APPENDIX

We propose Algorithm 1 to automatically generate iSeVCs
from sSyVCs and the intermediate code. The algorithm has
three components: generating linked IR files (Lines 4-12),
generating IR slices corresponding to sSyVCs (Lines 13-20),
and generating iSeVCs (Lines 21-26).

Algorithm 1 Generating iSeVCs from the intermediate code
Input: A source program P = {p1, . . . , pn}, where pj (1 ≤ j ≤

n) is a source program file; a set Y = {yi} of sSyVCs
Output: The set of iSeVCs E
1: E ← ∅; {the set of iSeVCs}
2: P ′ ← ∅; {the set of IR files corresponding to source program files

in P}
3: B ← ∅; {the set of linked IR files} for P
4: for each pj ∈ P do
5: Compile pj to an IR file p′j ;
6: P ′ ← P ′ ∪ {p′j};
7: end for
8: Group the IR files in P ′ by dependency relationships;
9: for each group Gµ do

10: Link the IR files in Gµ to an IR file b′µ;
11: B ← B ∪ {b′µ};
12: end for
13: for each yi ∈ Y do
14: for each b′µ ∈ B do
15: if the IR file corresponding to pj is linked to b′µ then
16: Generate the IR slice ei corresponding to yi from b′µ;
17: E ← E ∪ {ei};
18: end if
19: end for
20: end for
21: for each ei ∈ E do
22: for each function fγ called by function fα do
23: The statements in ei of fγ are appended to the statement (in

fα) calling function fγ ;
24: Modify each numeric value of local variable in the appended

statements to a new numeric value that has not been used in
fα;

25: end for
26: end for
27: return E;

