Future changes of global potential evapotranspiration simulated from CMIP5 to CMIP6 models

LIU Xinlei^a, LI Chunxiang^b, ZHAO Tianbao^b and HAN Lin^a

^aSchool of Atmospheric Sciences, Chengdu University of Information Technology, Chengdu, China; ^bKey Laboratory of Regional Climate-Environment Research for East Asia, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, China

Model	Resolution (lon×lat)	Research institute and country
ACCESS1-3	1.875°×1.241°	Commonwealth Scientific Industrial Research Organization and
		Bureau of Meteorology, Australia
CanESM2	2.813°×2.813°	Canadian Centre for Climate Modelling and Analysis, Canada
CNRM-CM5	1.406°×1.406°	Centre National de Recherches Météorologiques/Centre
		Européen de Recherche et Formation Avancées en Calcul
		Scientifique, France
CSIRO-Mk3-6-0	1.875°×1.875°	Queensland Climate Change Centre of Excellence and
		Commonwealth Scientific and Industrial Research
		Organization, Australia
GFDL-CM3	2.500°×2.000°	Geophysical Fluid Dynamics Laboratory, USA
GFDL-ESM2G	2.500°×2.000°	Geophysical Fluid Dynamics Laboratory, USA
GISS-E2-H	2.500°×2.000°	NASA Goddard Institute for Space Studies, USA
GISS-E2-R	2.500°×2.000°	NASA Goddard Institute for Space Studies, USA
HadGEM2-CC	1.875°×1.241°	Meteorological Office Hadley Centre, UK
HadGEM2-ES	1.875°×1.241°	Meteorological Office Hadley Centre, UK
inmcm4	1.875°×1.241°	Institute for Numerical Mathematics, Russia
IPSL-CM5A-LR	3.750°×1.895°	Institute Pierre-Simon Laplace, France
MIROC5	1.406°×1.406°	University of Tokyo, National Institute for Environmental
		Studies/Japan Agency for Marine-Earth Science and
		Technology, Japan
MIROC-ESM	2.813°×2.813°	University of Tokyo, National Institute for Environmental
		Studies/Japan Agency for Marine-Earth Science and
		Technology, Japan
MIROC-ESM-	2.813°×2.813°	University of Tokyo, National Institute for Environmental
CHEM		Studies/Japan Agency for Marine-Earth Science and
		Technology, Japan
MRI-CGCM3	1.125°×1.125°	Meteorological Research Institute, Japan

Table S1. CMIP5 modes used in this study.

Model	Resolution (lon×lat).	Research institute and country
CanESM5	2.813°×2.813°	Canadian Centre for Climate Modelling and
		Analysis, Canada
CESM2	1.250°×0.938°	National Center for Atmospheric Research, Climate
		and Global Dynamics Laboratory, USA
CESM2-WACCM	1.250°×0.938°	National Center for Atmospheric Research, Climate
		and Global Dynamics Laboratory, USA
EC-Earth3-Veg	$2.500^{\circ} \times 2.000^{\circ}$	NASA Goddard Institute for Space Studies, USA
IPSL-CM6A-LR	2.500°×1.259°	Institute Pierre-Simon Laplace, France
MIROC6	1.406°×1.406°	University of Tokyo, National Institute for
		Environmental Studies/Japan Agency for Marine-
		Earth Science and Technology, Japan
MRI-ESM2-0	1.125°×1.125°	Meteorological Research Institute, Japan

Table S2. CMIP6 modes used in this study.

Figure.S1 Spatial distribution of long-term changes in the annual PET (units: mm day⁻¹) from 1979–99 to 2079–99 over land areas. (a) CMIP5 ensemble mean under the RCP4.5 scenario, (b) CMIP5 under the RCP8.5 scenario, (c) CMIP6 under the SSP2.45 scenario and (d) CMIP6 under the SSP5.85 scenario. The shading indicates that at least 80% of the models agree on the sign of the change.

Figure.S2 Time series of interannual changes in the contribution of the multi-model ensemble mean driving factors for each PET over global land areas ($60^{\circ}S-75^{\circ}N$) (units: mm day⁻¹). (a) CMIP5 under the RCP4.5 scenario, (b) CMIP5 under the RCP8.5 scenario, (c) CMIP6 under the SSP2.45 scenario and (d) CMIP6 under the SSP5.85 scenario. Changes corresponding to the actual changes in PET (black) and PET caused by the vapor pressure deficit (*VPD*, red), shortwave radiation (*Rns*, blue), longwave radiation (*Rnl*, magenta), surface wind speed (*sfcWind*, green) and surface pressure (*Ps*, turquoise).