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Abstract
The focus of the present work is to present an analytical approach for buckling and free vibrations analysis of thick function-
ally graded nanoplates embedded in a Winkler-Pasternak medium. The equations of motion are derived according to both 
the third-order shear deformation theory, proposed by Reddy, and the nonlocal elasticity Eringen’s model. For the first time, 
the equations are solved analytically for plates with two simply supported opposite edges, the solutions also turning helpful 
as shape functions in the analysis of structures with more complex geometries and boundary conditions. Sensitivity analyses 
are finally performed to highlight the role of nonlocal parameters, aspect and side-to-thickness ratios, boundary conditions, 
and functionally graded material properties in the overall response of plates and cylindrical shells. It is felt that the proposed 
strategy could be usefully adopted as benchmark solutions in numerical routines as well as for predicting some unexpected 
behaviors, for instance, in terms of buckling load, in thick nanoplates on elastic foundations.

1 Introduction

In the last years, a new class of composites known as Func-
tionally Graded Materials (FGMs) has been subjected to 
extensive research activities. In a FGM the microstruc-
tural variation of the material composition is intentionally 
designed to build up new composites with optimal physical 
performance under specific functional requirements. Their 
superior properties make them applicable in a wide range of 
engineering fields. Examples are micro- and nano- electro-
mechanical systems, thin films, cutting tools and machine 
parts, which are all extensively discussed in the literature 
[1–3]. Recently, functionally graded models have been suc-
cessfully employed to describe the mechanical behavior 
and scale effects in nanoplates, by enriching the classical 
continuum mechanics with size-dependent continuum theo-
ries, such as nonlocal elasticity [4–7], to overcome the draw-
backs of standard (local) approaches [8–10]. In particular, in 

Reddy [11] the author applied Eringen’s theory of elasticity 
to formulate a nonlocal version for bending, buckling and 
vibration of different beam theories, including Bernoulli, 
Timoshenko, Levinson and Reddy ones. The same author 
in [12] developed a microstructure-dependent nonlinear 
Euler–Bernoulli and Timoshenko beam theory accounting 
for though-thickness power-law variation of a two-constitu-
ent material. Remarkable attention is also paid to the buck-
ling and vibration analysis of nonlocal FG nano-plates. For 
instance, in [13] the authors adopted a nonlocal strain gradi-
ent model to study the buckling of nanoplates in the context 
of Classical Plate Theory (CPT) and, in the same framework, 
Pradhan and Murmu [14] studied the stability of single-layer 
graphene sheets using a Levy approach to solve the govern-
ing equations, while Ansari et al. [15] developed a nonlocal 
finite element plate model to analyze vibration of multilay-
ered graphene sheets embedded in an elastic medium.

The first-order shear deformation theory extends the 
kinematics of the Kirchhoff plate by relaxing the normality 
restriction that allows an arbitrary constant rotation across 
the plate thickness. Hosseini-Hashemi and Samaei [16] 
derived an analytical solution for the buckling analysis of 
rectangular nanoplates resting on a Pasternak elastic founda-
tion. The formulation is based on an updated Mindlin plate 
theory, which includes nonlocal elasticity, first-order shear 
deformation, and plate-foundation interaction. This model 
was then adopted in further works [17, 18] to analyze the 
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effect of geometric imperfections on the buckling and vibra-
tion of micro- and nanoplates. In higher-order shear defor-
mation theories, the shear deformation effects are taken into 
account and do not need a shear correction factor.

The third-order shear deformation theory proposed by 
Reddy [19, 20] assumes a displacement field that is cubic 
through the plate thickness. Since it provides results that are 
close to 3D elasticity solutions [21], its use ensures accu-
rate results in studying the mechanical behavior of thick 
plates [22, 23]. In [24], Daneshmehr et al., investigated the 
free vibration of FG nano-plates considering a higher-order 
theory and by solving the corresponding equations through 
the generalized differential quadrature method. Furthermore, 
in [25], the authors studied the small-scale effects on the 
buckling and vibration of rectangular nanoplates based on 
the Reddy plate theory.

In the present work, the nonlocal Eringen model is 
employed to examine buckling and vibration behavior of 
nanoplates obeying the Reddy theory, exhibiting material 
properties changing gradually through the thickness. The 
governing equations are derived by starting from Hamil-
ton’s principle and, to the best of the authors knowledge, for 
the first time solved analytically in the case of rectangular 
plates simply supported on two opposite edges. To extend 
the approach to nano-structures with relatively complex 
geometries, the obtained analytical solutions are exploited 
to gain insights into the mechanical response of thick cylin-
drical shells and also used as shape functions in a finite-strip 
method. At the end, the influence of different parameters 
such as aspect ratio, boundary conditions, and power-law 

index of FGMs on buckling and vibration is investigated 
and discussed, by highlighting how the comparison of the 
obtained outcomes with results available in the literature 
suggests effectiveness and robustness of the proposed 
strategy.

2  Remarks on the nonlocal functionally 
graded plate theory

Consider a FG nanoplate of length a, width b and thickness 
h with applied in-plane loads in x- and y-direction. Despite 
what follows, we approach the problems in a general way, 
the plate is thought as composed of two different phases, 
pure ceramic on the top surface and pure metal at the bot-
tom surface. Poisson’s ratio � is assumed constant, whereas 
the Young modulus E = E(h) and the mass density � = �(h) 
are instead considered continuously variable along with the 
thickness (Fig. 1) with the following power-law distribution:

where z is the distance from the neutral plane of the FG 
nanoplate, (c,m) indicate ceramic and metal, and n is the 
power-law index of material distribution, assumed to be 
positive.
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Fig. 1  Coordinate system, geometry and applied loads of FGM nanoplate



143Annals of Solid and Structural Mechanics (2020) 12:141–154 

1 3

According to Eq. (1), as the power-law index approaches 
zero or infinity, the plate is isotropic, composed of fully 
ceramic or metal, respectively (Fig. 2).

Typical values for metal and ceramic properties usually 
adopted in the FG nanoplates are listed in Table 1. The plate 
model is continuously supported in its plane by a two-layer 
Winkler-Pasternak medium, playing the role of an elastic 
foundation, whose properties depend on both its normal and 
shear elastic moduli.

By indicating with ∇2 the Laplace operator in (x, y) , the 
load–displacement relationship of the foundation can be 
written as:

where the terms 
(
Kw,Ks

)
 represent the Winkler and Pas-

ternak parameters, respectively, and the out-of-plane dis-
placement is defined as:

As it is well-known, the nonlocal models call into play 
a length scale parameter in order to account for the size 
effects. By assuming that the stress at a point in a continuum 
body is a function of the strain at the neighboring points, 
Eringen [6] proposed the following nonlocal constitutive 
model:

In Eq.  (4) the nonlocal kernel function K
(|�� − �|, �) 

depends on the Euclidean distance |�� − �| and on the mate-
rial constants � determined by internal and external charac-
teristic lengths, whereas:

(2)q =
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)
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(5)�(�) = �(�) ∶ �(�)

represents, concerning the 2D problems addressed in the 
present work, the classical (local) macroscopic stress tensor 
at a point � = (x, y) of the middle plane of the plate.

In a later publication, Eringen [7] proposed a Green func-
tion of a linear differential operator differential to describe 
the kernel K

(|�� − �|, �) , in order to represent Eq. (4) in the 
simplified, equivalent differential form:

in which ∇2 a is the internal length and e0 represents a 
material constant to be determined experimentally.

3  Mathematical modeling for plane stress 
problems in nonlocal Reddy nano‑plates

In plane-stress analyses, the relation (6) can be written in 
terms of Young modulus distribution as follows:

with E related to the proposed power-law distribution (1) 
as:
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Fig. 2  Effect of power-law 
parameter n on FGM

Table 1  Material properties used in the numerical analysis

Materials Properties

E (GPa) ρ (Kg/m3) ν

Si3N4—Silicon nitride 348.46 2370 0.32
SUS 304—Austenite stain-

less steel
201.04 8166 0.32
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and:

The strain components, under the von Karman hypoth-
esis, can be split into the sum of the linear and nonlinear 
contributes as:

the comma denoting differentiation with respect space 
variables, whereas, in what follows, the dot is used to indi-
cate differentiation with respect to the time t.

In presence of body Xi and inertia forces, the equilibrium 
requires:

from which the substitution of Eq. (6) in (11) gives

According to Reddy plate theory, the displace-
ment field 

(
sx, sy, sz

)
 at an arbitrary point within the 

plate can be entirely expressed in terms of both rota-
tions �x = �x(x, y, t), �y = �y(x, y, t) and displacements 
(u, v,w) = (u(x, y, t), v(x, y, t),w(x, y, t)) of the middle plate 
surface as follows:

with c1 = 4
/
3h2 . Accordingly, the strain components can 

be obtained by substituting Eqs. (13) into (10):

The governing equilibrium equations and the corre-
sponding boundary conditions of the FG nanoplates can be 
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derived minimizing the total energy, sum of the elastic and 
the kinetic contributions, that is

in which

By substituting Eqs. (14) into (16), the strain energy per 
unit area can be written as:

where the generalized Reddy strain are collected in the 
form:

and

are the corresponding dual stress, obtained as integrals of 
the nonlocal stress components defined in Eq. (7). Analo-
gously, by integrating along the thickness, the kinetic energy 
one has:
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and

the vectors containing the generalized displacement field 
rate.

By substituting Eqs. (17) and (20) into Eq. (15) and 
invoking the fundamental lemma of calculus of variations, 
we then obtain the following in-plane and out-of-plane equi-
librium equations respectively as

and

where q is defined in Eq. (2) while:
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ü,x +v̈,y

)
+ m4

(
�̈�x,x + �̈�y,y

)))
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Ü
)

Nxy,x + Ny,y = L
(
V̈
)

Tx,x + Ty,y + L(N) + L(q) = L
(
Ẅ
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from which, by recalling the constitutive Eqs. (7), one has 
the first two equations in the form:

and the others have rewritten as follows:
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the in-plane and out-of-plane Reddy stress being given by
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and

4  Explicit solutions and computational 
approach

In the present study, we assume harmonic motion and simply 
supported conditions at x = ± a∕2:
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u,y +v,x

⎤
⎥⎥⎥⎦

� =

⎡⎢⎢⎢⎣

Px

Py

Pxy

⎤⎥⎥⎥⎦
=

⎡⎢⎢⎣

F11 F12 0

F22 0

sym F66

⎤⎥⎥⎦

⎡⎢⎢⎢⎣

�x,x

�y,y

�x,y + �y,x

⎤⎥⎥⎥⎦
−

⎡⎢⎢⎣

H11 H12 0

H22 0

sym H66

⎤⎥⎥⎦

⎡⎢⎢⎢⎣

w,xx

w,xy

2w,yx

⎤⎥⎥⎥⎦
−

⎡⎢⎢⎣

C11 C12 0

C22 0

sym C66

⎤⎥⎥⎦

⎡⎢⎢⎢⎣

u,x

v,y

u,y +v,x

⎤⎥⎥⎥⎦

� =

�
Qx

Qy

�
=

�
A55 0

0 A44

���
w,x +�x

�
�
w,y +�y

�
�
.

(32)

u(x, y, t) = u(y) sin
(
�mx

)
ei�t

v(x, y, t) = v(y) cos
(
�mx

)
ei�t

w(x, y, t) = w(y) cos
(
�mx

)
ei�t

�x(x, y, t) = �x(y) sin
(
�mx

)
ei�t

�y(x, y, t) = �y(y) cos
(
�mx

)
ei�t

�m = m�a−1

in this way automatically satisfying the boundary 
conditions

By substituting Eqs.  (32) in (27) and (28) we obtain the 
following system of five one-dimensional linear and homo-
geneous fourth-order differential equations, split as

and

where the functions 
(
u(y), v(y),w(y),�x(y),�y(y)

)
 repre-

sent the unknowns of the problem and aij = aij
(
Nx,Ny,�

)
 are 

real-valued coefficients explicitly reported in the Appendix.
After some algebraic manipulations, Eqs. (34) and (35) 

can be collected and written in the compact form

where

(33)v = Nxy = w = Mx = Px = 0 at x = ±
a

2
, t = 0

(34)

a11w,yy +a12w + a13�x,yy + a14�x + a15�y,y

+ b11v,y +b12u,yy +b13u = 0a21w,yyy

+ a22w,y +a23�x,y + a24�y,yy

+ a25�y + b21v,yy +b22v + b23u,y = 0

(35)

a31w,yyyy +a32w,yy +a33w + a34�x,yy + a35�x

+ a36�y,yyy + a37�y,y + b31v,yyy +b32v,y +b33u,yy

+ b34ua41w,yy +a42w + a43�x,yy + a44�x + a45�y,y

+ b41v,y +b42u,yy +b43u = 0a51w,yyy +a52w,y +a53�x,y

+ a54�y,yy + a55�y + b51v,yy +b52v + b53u,y = 0

(36)�� = � ⋅ �

(37)
�� =

[
w,yyyy w,yyy w,yy w,y �x,yy �x,y �y,yy �y,y u,yy u,y v,yy v,y

]T

� =
[
w,yyy w,yy w,y w �x,y �x �y,y �y u,y u v,y v

]T
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are vectors containing the generalized displacements, 
and A is a matrix whose coefficients are explicitly reported 
in Appendix. As a consequence, the general solution of 
Eq. (36) is

depending on eigenvalues and eigenvectors of the matrix 
coefficients in A, collected in (�,�) , c being a 12 × 1 con-
stant vector whose values have to be determined by impos-
ing proper boundary conditions. In Eqn. (38) � indicates 
a nonsingular linear transformation matrix containing the 
generalized eigenvectors of � , �−1 the corresponding inverse 
matrix and � = �−1�� is the Jordan normal form for the 
given matrix � . In order to finalize the process in a Matlab 
code, both (�,�) matrices has been obtained numerically.

Finally, by collecting the nodal displacement �N and the 
corresponding dual forces �N , evaluated on the boundary 
points (A,B) of coordinates y = ±b∕2 , as:

it is possible to derive, for any plate characterizing the 
investigated structure, a local stiffness matrix �loc and, with 
a proper matrix rotation � , the global stiffness matrix �glob , 
thus obtaining:

Because �−1
N

 is a 12 × 12 non-singular square matrix, the 
inverse can be easily obtained.

Finally, adopting as shape functions the displacement 
field represented in Eq. (32), a standard finite strip assem-
bly procedure provides the stiffness matrix � of the whole 
structure, whose eigenvalues and eigenvectors, obtained with 
a trial and error approach, represent respectively the critical 
buckling loads—or, equivalently, the frequencies of oscil-
lations—and the corresponding shape modes, the analytical 
nature of the adopted shape functions also ensuring reliable 
results with the minimum number of elements.

5  Numerical results and discussion

In the following examples, unless otherwise stated, it is 
assumed that the nanoplate is characterized by the material 
properties listed in Table 1 and a length a = 10 �m.

Capital letters F, S, G, C indicate respectively free, sim-
ply supported, guided and clamped boundary conditions, so 

(38)� =
(
� ⋅ e�⋅y ⋅ �−1

)
�

(39)

�N =

[
ūA v̄A ūB v̄B �̄�A

y
�̄�A

x
w̄,A

y
w̄A �̄�B

y
�̄�B

x
w̄,B

y
w̄B

]T

�N =

[
N̄A

xy
N̄A

y
N̄B

xy
N̄B

y
M̄A

y
M̄A

xy
P̄A

y
T̄A

y

+P̄A

xy,x
M̄B

y
M̄B

xy
P̄B

y
T̄B

y
+ P̄B

xy,x

]T

(40)�loc = �N ⋅ �−1
N
, �glob = �T�loc� that, for instance, SCSF stays for a plate simply supported at 

x = ±a∕2 , clamped at y = b∕2 and free at y = −b∕2.
For convenience, the results are represented in terms of 

the following dimensionless frequency parameter and buck-
ling load

and expressed in terms of the ceramic in-plane and bend-
ing stiffness

Also, by indicating with �L and N
L
 the local values 

obtained by posing � = 0 , the frequency and buckling ratios

are evaluated and compared with their counterparts avail-
able in the literature.

(41)� = �h

√
�c

Gc

, N =
Ncra

2

�2Dc

(42)Gc =
Ec

2(1 + �)
, Dc =

Ech
3

12
(
1 − �2

)

(43)Ω =
�

�
L
, � =

N

N
L

Table 2  Non-dimensional first mode frequency of SSSS plate

a/b a/h μ [11] Present Diff (%)

1 0.1 0 0.0935 0.0930 0.5062
1 0.0854 0.0850 0.4397
2 0.0791 0.0788 0.3974
3 0.0741 0.0737 0.4797
4 0.0699 0.0696 0.4833
5 0.0663 0.0660 0.4231

0.05 0 0.0239 0.0239 0.1519
1 0.0218 0.0218 0.0409
2 0.0202 0.0202 0.0362
3 0.0189 0.0189 0.0718
4 0.0179 0.0178 0.3349
5 0.0170 0.0169 0.4070

1 0.1 0 0.0589 0.0591 0.3667
1 0.0556 0.0557 0.2554
2 0.0527 0.0529 0.3049
3 0.0503 0.0505 0.3775
4 0.0482 0.0483 0.2328
5 0.0463 0.0464 0.1867

0.05 0 0.0150 0.0150 0.2343
1 0.0141 0.0141 0.1372
2 0.0134 0.0134 0.0199
3 0.0128 0.0128 0.1165
4 0.0122 0.0123 0.4414
5 0.0118 0.0118 0.2603
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5.1  Benchmarks and comparative analyses

In order to assess the accuracy and robustness of the pro-
posed approach, natural frequencies and buckling loads were 
numerically evaluated and compared with those obtained in 
the literature [9, 25] for local and nonlocal isotropic plate 
models, with or without elastic foundation. Besides, the ana-
lytical solutions for Reddy nano-plates with all the edges 
simply supported reported in [11], here enriched with the 
new terms due to the presence of Winkler-Pasternak foun-
dation, were used as a benchmark for sensitivity analyses.

Table 2 shows the dimensionless mode frequency � 
of a SSSS square plate, compared with those reported by 
Aghababaey and Reddy [9] assuming a sinusoidal displace-
ment field in both x and y directions. The results are in excel-
lent agreement for any nonlocal parameter � and geometrical 
ratios (a∕b, a∕h) considered, with low discrepancies ranging 
between 0.02 and 0.5%.

The first three dimensionless fundamental natural fre-
quencies, obtained for different numbers of half-waves m 
in x-direction, are reported in Table 3 for rectangular plates 
with four different boundary conditions (namely SCSC, 
SCSS, SCSF and SSSF plates) and compared with those 
obtained in [25] by Hosseini et al.

The results show that, by increasing the nonlocal param-
eter, the reduction of the frequency ratios is more pro-
nounced for higher frequencies. For instance, the range 
0.7315 ≤ Ω(1,1) ≤ 0.3356 of the first frequency obtained for 
SCSC plates by considering 0.6 ≤ √

�∕a ≤ 0.2 , becomes 
0.4479 ≤ Ω(3,1) ≤ 0.1647 for the highest frequency con-
sidered, with a reduction of about 85% if compared with 
the corresponding value of the local model, an analogous 
behavior being observed for the other considered boundary 
conditions.

Table 4 represents a comparison of the critical buckling 
load ratios with those obtained by Hosseini et al. [25] for 
square nanoplates with different values of the length a and of 
the nonlocal parameter � , the agreement among the results 
being very good indeed, with percentage differences always 
lower than 0.2%.

Finally, Table 5 compares the dimensionless buckling 
load � for a FGM nanoplate achieved with the proposed 
procedure with the one derived for a simply supported plate 
by employing the Navier approach, that is by considering, 
instead of the more general displacement field reported in 
Eq. (32), the following one:

Table 3  Non-dimensional 
higher mode frequencies of 
plates with different boundary 
conditions

radq(mu)/a 0.2 0.4 0.6

B.C. (m,n) Present [Hosseini] Present [Hosseini] Present [Hosseini]

SCSC (1,1) 0.7318 0.7315 0.4721 0.4718 0.3359 0.3356
(2,1) 0.5750 0.5746 0.3313 0.3310 0.2279 0.2277
(3,1) 0.4482 0.4479 0.2431 0.2429 0.1648 0.1647

SCSS (1,1) 0.7376 0.7375 0.4787 0.4784 0.3414 0.3411
(2,1) 0.5773 0.5768 0.3331 0.3328 0.2292 0.2290
(3,1) 0.4490 0.4486 0.2437 0.2434 0.1652 0.1650

SCSF (1,1) 0.8616 0.8614 0.6458 0.6456 0.4905 0.4903
(2,1) 0.6340 0.6338 0.3776 0.3777 0.2620 0.2620
(3,1) 0.4754 0.4744 0.2601 0.2600 0.1767 0.1766

SSSF (1,1) 0.8548 0.8527 0.6331 0.6293 0.4773 0.4743
(2,1) 0.6321 0.6318 0.3759 0.3757 0.2607 0.2606
(3,1) 0.4747 0.4744 0.2597 0.2595 0.1764 0.1762

Table 4  Non-dimensional critical buckling load and buckling load 
ratio of SSSS nanoplates

Present [Hosseini]
a μ ηcr ηcr/ηcr (μ = 0)

5 0 3.2653 1.0000 1.0000
0.25 2.7270 0.8351 0.8350
1 1.8247 0.5588 0.5590
2.25 1.1761 0.3602 0.3600
4 0.7853 0.2405 0.2410

10 0 3.7866 1.0000 1.0000
0.25 3.6085 0.9530 0.953
1 3.1624 0.8351 0.835
2.25 2.6221 0.6925 0.692
4 2.1159 0.5588 0.559

15 0 3.9642 1.0000 1.0000
0.25 3.9332 0.9922 0.992
1 3.8429 0.9694 0.969
2.25 3.7012 0.9337 0.931
4 3.5196 0.8878 0.888
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(44)

u(x, y, t) = Upm cos
(
�py

)
sin

(
�mx

)
ei�t

v(x, y, t) = Vpm sin
(
�py

)
cos

(
�mx

)
ei�t

w(x, y, t) = Wpm cos
(
�py

)
cos

(
�mx

)
ei�t

�x(x, y, t) = Xpm

(
cos �py

)
sin

(
�mx

)
ei�t

�y(x, y, t) = Ypm
(
sin �py

)
cos

(
�mx

)
ei�t

with �m = m�a−1, �p = p�b−1 . By substituting Eqs. (44) 
into (27) and (28), and solving the corresponding eigenvalue 
problem, the required critical load for different half-waves 
(m,p) in x- and y- direction is finally obtained.

Furthermore, the results obtained for different values of 
the power-law parameter n and the nonlocal parameter � 
are still in excellent agreement, with percentage differences 
never greater than 2% and Levy-type results always slightly 
higher than Navier ones. It is worth to highlight that a strin-
gent proof of the robustness and accuracy of the proposed 

Table 5  Non-dimensional buckling load η for a SSSS nanoplate on a Pasternak-Winkler foundation

Pasternak/Winkler 
stiffnesses

μ Navier Solution Levy-type solution

Power law-index n:

0 1 2 5 10 0 1 2 5 10

ks = kw = 0 0 1.0000 0.7705 0.7242 0.6823 0.6514 1.0001 0.7742 0.7290 0.6862 0.6535
0.1 0.3363 0.2591 0.2435 0.2294 0.2190 0.3363 0.2603 0.2451 0.2307 0.2198
0.2 0.2021 0.1557 0.1464 0.1379 0.1317 0.2021 0.1565 0.1473 0.1387 0.1321
0.3 0.1445 0.1113 0.1046 0.0986 0.0941 0.1445 0.1118 0.1053 0.0991 0.0944
0.4 0.1124 0.0866 0.0814 0.7670 0.0732 0.1124 0.0870 0.0819 0.0771 0.0735
0.5 0.0920 0.0709 0.0666 0.0628 0.0599 0.0920 0.0712 0.0671 0.0631 0.0601

ks = 0, kw = 0.1 0 1.1677 0.9382 0.8919 0.8500 0.8191 1.1678 0.9419 0.8967 0.8958 0.8212
0.1 0.5040 0.4268 0.4112 0.3971 0.3868 0.5097 0.4337 0.4269 0.4125 0.4016
0.2 0.3698 0.3234 0.3141 0.3056 0.2994 0.3783 0.3327 0.3235 0.3149 0.3083
0.3 0.3122 0.2790 0.2723 0.2663 0.2618 0.3182 0.2856 0.2791 0.2729 0.2682
0.4 0.2801 0.2543 0.2491 0.2444 0.2409 0.2848 0.2595 0.2544 0.2496 0.2459
0.5 0.2597 0.2386 0.2343 0.2305 0.2276 0.2636 0.2428 0.2386 0.2431 0.2317

ks = 0.1, kw = 0 0 0.9915 0.7620 0.7325 0.6906 0.6522 0.9805 0.7743 0.7375 0.6863 0.6620
0.1 0.3278 0.2506 0.2518 0.2377 0.2273 0.3308 0.2548 0.2480 0.2252 0.2310
0.2 0.1936 0.1472 0.1546 0.1462 0.1399 0.1955 0.1498 0.1490 0.1320 0.1422
0.3 0.1360 0.1028 0.1129 0.1069 0.1024 0.1373 0.1466 0.1065 0.0920 0.1124
0.4 0.1039 0.0781 0.0830 0.0774 0.0815 0.1050 0.0796 0.0829 0.0697 0.0828
0.5 0.0835 0.0624 0.0748 0.0635 0.0607 0.0844 0.0636 0.0586 0.0555 0.0693

Fig. 3  Parametric example: 
geometry and applied loads
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model for thick nonlocal FGM nanoplates should be made 
by comparing results with outcomes from numerical codes 
implementing nonlocal three-dimensional elasticity. How-
ever, in absence of commercial software dealing with these 
nonlocal model, the authors assumed that an enrichment of 
the kinematical description of the field of interest across the 
thickness can lead to improved results.

5.2  Parametric analyses on functionally graded 
plates

The analyses are performed on the curved nano-beam repre-
sented in Fig. 3 for different boundary conditions and values 
of both geometrical ratio h = h∕t and nonlocal parameter �.

Figure 4 shows the influence of 
(
h,�

)
 on the critical load 

of a SSSS, FGM nanoplate with dimensions a × a , t = 0.1a 

Fig. 4  Dimensionless critical load for different value of geometrical and nonlocal parameter on SSSS microplate

Fig. 5  Dimensionless critical load for different value of geometrical and nonlocal parameter on SFSF microplate
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and power-law coefficient n = 2 , highlighting the beneficial 
effects of increasing curvatures on the buckling behavior of 
simply supported structures.

Also, it is worth noting that for local plates (i.e. � = 0 ) 
the critical load increases with h up to � = 1.8 when h = t , 
essentially doubling the critical load obtained for a flat plate. 
However, such effects decrease by increasing the nonlocal 
parameter � = 0 , giving � = 0.65 with 

(
� = 2, h = 0

)
 and 

� = 0.71 for 
(
� = 2, h = 1

)
.

A different behavior can be instead observed by varying 
the boundary conditions, as illustrated in Fig. 5, where the 
results obtained for a SFSF plate exhibit a reduced depend-
ence on the nonlocal parameter and a constant growth of � 
with h.

6  Conclusions

In the present study, buckling and vibration of thick FGM 
nano-plates embedded in elastic Winkler-Pasternak media 
were studied. To take into account size effects typically 
encountered when dealing with the mechanical behavior of 
structures at the nanoscale, the governing equations of the 
problem were written by incorporating the nonlocal theory 
of elasticity by Eringen, also employing the third-order 
Reddy plate model in order to gain accuracy and faithfully 
describe stress fields, shear deformation regimes, buckling 
and vibrations of nanoplates and cylindrical nano-shells 
with varying elastic properties along their thickness. In this 
framework, some explicit analytical solutions were given for 
simple geometry and selected boundary conditions. Levy-
type method and numerical procedures, ad hoc rewrote 
to include the above-mentioned modeling features, were 
employed to determine buckling and vibrations of nano-
structure. Finally, a number of sensitivity analyses on flat 
and curved FGM systems under different boundary condi-
tions to assess the robustness and effectiveness of the pro-
posed approach were proposed. As in detail shown in Sect. 5 
Numerical results and discussion, the presence of scale 
effects at the nanoscale, combined with possible variations 

of the material properties along with the thickness of two-
dimensional structures, can influence—in some cases also 
significantly—their mechanical response, with significant 
qualitative and quantitative effects on both the elastic sta-
bility and the dynamics of nanoplates eventually interacting 
with elastic substrates.
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Appendix

The coefficients occurring in Eqs. (34) and (35) are:
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In the present form the system of Eqs. (34), (35) does not 
admit a closed form solution. It does if rewritten as:

that requires a reformulation of the Eq. (34) for the pres-
ence of �x,yy and �y,yy , and of Eq. (35) for the presence of 
v,yyy , v,yy , uyy,�x,yy,�y,yyy.

By solving Eqs. (33) and (34(2), 34(3)) we obtain:

So that Eqs. (33) and (34(2), 34(3)) can be rewritten as:

Equation (48) replace Eqs. (33) and (34(2), 34(3)). By Eqs. 
(48(2), 48(4)) it is possible to obtain a suitable form of v,yyy 
and �y,yyy . Replacing such expressions in (34(1)) returns a 
system in the desired form (46).

(46)

u,yy −a11u,y −a12u − a13v,y −a14v − b11w,yyy −b12w,yy −b13w,y −b14w − b15�x,y − b16�x − b17�y,y − b18�y = 0

v,yy −a21u,y −a22u − a23v,y −a24v − b21w,yyy −b22w,yy −b23w,y −b24w − b25�x,y − b26�x − b27�y,y − b28�y = 0

w,yyyy −a31u,y −a32u − a33v,y −a34v − b31w,yyy −b32w,yy −b33w,y −b34w − b35�x,y − b36�x − b37�y,y − b38�y = 0

�x,yy −a41u,y −a42u − a43v,y −a44v − b41w,yyy −b42w,yy −b43w,y −b44w − b45�x,y − b46�x − b47�y,y − b48�y = 0

�y,yy −a51u,y −a52u − a53v,y −a54v − b51w,yyy −b52w,yy −b53w,y −b54w − b55�x,y − b56�x − b57�y,y − b58�y = 0

(47)

�x,yy = A11w,yy +A12w + A14�x + A15�y,y + B11v,y +A17u

u,yy = A41w,yy +A42w + A43�x + A45�y,y + B41v,y +B42u

�y,yy = A21w,yyy +A22w,y +A23�x,y + A24�y + A25v + A26u,y

v,yy = A51w,yyy +A52w,y +A53�x,y + A54�y + A55v + A56u,y

(48)

u,yy −Ã11w,yy −Ã12w − Ã14𝜑x − Ã15𝜑y,y − B̃11v,y −B̃13u = 0((
Ãij, B̃ij

)
= −

aij + a13
(
Aij,Bij

)
b12

)

v,yy −Â21w,yyy −Â22w,y −Â23𝜑x,y − Â25𝜑y − B̂22v − B̂23u,y = 0((
Âij, B̂ij

)
= −

aij + a24
(
Aij,Bij

)
b21

)

𝜑x,yy −
⌢

A41w,yy −
⌢

A42w −
⌢

A44𝜑x −
⌢

A45𝜑y,y −
⌢

B41v,y −
⌢

B43u = 0((
⌢

Aij,
⌢

Bij

)
= −

aij + b42
(
Aij,Bij

)
a43

)

𝜑y,yy −
⌣

A51w,yyy −
⌣

A52w,y −
⌣

A53𝜑x,y − a
⌣

A55𝜑y −
⌣

B52v −
⌣

B53u,y = 0,((
⌣

Aij,
⌣

Bij

)
= −

aij + b51
(
Aij,Bij

)
a54

)
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