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Abstract

For many complex diseases, prognosis is of essential importance. It has been shown that, beyond 

the main effects of genetic (G) and environmental (E) risk factors, gene-environment (G × E) 

interactions also play a critical role. In practical data analysis, part of the prognosis outcome data 

can have a distribution different from that of the rest of the data because of contamination or a 

mixture of subtypes. Literature has shown that data contamination as well as a mixture of 

distributions, if not properly accounted for, can lead to severely biased model estimation. In this 

study, we describe prognosis using an accelerated failure time (AFT) model. An exponential 

squared loss is proposed to accommodate data contamination or a mixture of distributions. A 

penalization approach is adopted for regularized estimation and marker selection. The proposed 

method is realized using an effective coordinate descent (CD) and minorization maximization 

(MM) algorithm. The estimation and identification consistency properties are rigorously 

established. Simulation shows that without contamination or mixture, the proposed method has 

performance comparable to or better than the nonrobust alternative. However, with contamination 

or mixture, it outperforms the nonrobust alternative and, under certain scenarios, is superior to the 

robust method based on quantile regression. The proposed method is applied to the analysis of 

TCGA (The Cancer Genome Atlas) lung cancer data. It identifies interactions different from those 

using the alternatives. The identified markers have important implications and satisfactory 

stability.
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1. Introduction

For cancer, diabetes, cardiovascular diseases, and many other diseases, prognosis is of 

essential interest. Profiling studies have been extensively conducted, searching for genetic 

markers associated with prognosis. It has been suggested that, beyond the main effects of 

genetic (G) and environmental (E) risk factors, gene-environment (G × E) interactions also 

have important implications. Multiple statistical methods have been developed for G × E 

interaction analysis. For reviews, see Caspi and Moffitt (2006), Cordell (2009), Thomas 

(2010), and others.

Denote T as the prognosis time of interest, X = (X1, …, Xq)′ as the q environmental/clinical 

variables, and Z = (Z1, … , Zp)′ as the p genetic variables. Assume n independent subjects. 

In a typical profiling study, q < <n, while p can be comparable to or even much larger than n. 

Regression-based interaction analysis, with its broad applicability, has been extensively 

adopted and proceeds as follows. (a) For gene j(= 1, …, p), consider the model 

T ϕ(α j, 0 + ∑k = 1
q Xkα j, k + Z jβ j + Z j∑k = 1

q Xkγ j, k), where the form of ϕ(·) is known, and 

αj, 0, αj, k, βj, γj, k are the unknown regression coefficients. With q < <n, this is a low-

dimensional model and can be fitted using standard, usually likelihood-based, techniques. 

Denote pj, k as the p-value for γj, k. (b) With {pj,k: j = 1, …, p; k = 1, …, q}, conduct 

multiple comparison adjustment using the Bonferroini or FDR (false discovery rate) 

approach, and identify important interactions.

A limitation of the above approach is its lack of robustness. Usually it is assumed that all 

subjects satisfy the same prognosis models. In practice, most genetic studies cannot afford 

conducting rigorous subject selection. Seemingly homogeneous subjects can have different 

disease subtypes (Burgess, 2011; Haibe-Kains et al., 2012), leading to a mixture of survival 

distributions. Cause of death can be misclassified, leading to contamination in disease-

specific survival (Fall et al., 2008). The survival times extracted from medical records are 

not always reliable (Bowman, 2011; Rampatige et al., 2013). To simplify terminology, we 

use “contamination” for both data contamination and a mixture of survival distributions. 

With non-robust – for example likelihood-based – estimation, even a single contaminated 

observation can lead to severely biased estimates (Huber and Ronchetti, 2009) and so false 

marker identification. Another limitation is that, significance level-based identification, 

although asymptotically valid, may generate unreliable results when sample sizes are small 

to moderate, as in typical profiling studies. Recent studies suggest that regularized 

estimation can lead to more reliable estimation and hence more accurate marker 

identification (Shi et al., 2014).

With low-dimensional data, robust methods have demonstrated great power. As suggested in 

a recent review (Wu and Ma, 2015), with high-dimensional genetic data, the development is 

limited and unsystematic. In the literature, relevant studies include (Gui et al., 2011), which 

identifies important interactions using the multifactor dimensionality reduction (MDR) 

technique. However, this method is limited to categorical data (such as SNPs) and not 

broadly applicable. Shi et al., 2014 developed a rank-based method, which is robust to 

model mis-specification but not data contamination. The most relevant study is Wang et al. 

(2015), which developed a quantile-regression based method. With that method, the quantile 
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needs to be specified, which is not trivial in data analysis. The objective function is not 

differentiable, causing difficulty in computation. In addition, as to be shown in this article, 

its numerical performance can be less satisfactory under certain data settings. With low-

dimensional data, it has been shown that no robust method dominates the others. It is thus of 

interest to develop alternative robust methods.

Consider data with a prognosis outcome and both G and E measurements. The goal is to 

develop a new method for identifying important G × E interactions. Significantly advancing 

from the existing studies, the proposed method is robust to contamination in the prognosis 

data. In addition, under certain scenarios, its numerical performance can be better than 

quantile regression, which is perhaps the most popular robust method for genetic data (Wu 

and Ma, 2015). A penalization approach is adopted for marker identification, which differs 

from the significance level-based approach and can have better numerical performance when 

the sample size is small to moderate. We rigorously establish consistency properties, which 

provide a solid ground for the proposed method and also have independent value, 

considering that statistical properties for robust methods are very limitedly studied (Wu and 

Ma, 2015).

2. Robust identification of G × E interactions

2.1. Data and model settings

For describing prognosis, we adopt the accelerated failure time (AFT) model. Compared to 

alternatives such as the Cox model, this model has more intuitive interpretations and lower 

computational cost, both of which are especially desirable with high-dimensional genetic 

data. With a slight abuse of notation, still use T to denote the logarithm of prognosis time. 

For gene j, the AFT model postulates that

T = α j, 0 +
k = 1

q
Xkα j, k + Z jβ j + Z jk = 1

q
Xkγ j, k + ϵ,

where ϵ is the random error.

Consider the scenario where a small subset of the random errors are contaminated or have a 

distribution different from that of the rest, leading to contamination in the prognosis times. 

For subject i (= 1, …, n), denote Ci as the logarithm of censoring time and xi and zi as the 

observed X and Z values, respectively. Under right censoring, we observe (yi = min(Ti, Ci), 

δi = I(Ti ≤ Ci), xi, zi). Further denote ui, j = (1, xi′, zi, j, zi, jxi, 1, …, zi, jxi, q)′, ζj = (αj,0, αj,1, …, 

αj,q, βj, γj,1, …, γj,q)′, and Uj = (u1, j, …,un, j)′ which is a n × (2q + 2) matrix. Denote the 

kth element of ui, j by u(i, j)k
, k = 1, …, 2q + 2. For gene j and subject i, the AFT model can 

now be written as T i = ui, j
⊤ ζ j + ϵi, j. Without loss of generality, assume that {(yi, δi, xi, zi), i = 

1, …, n} have been sorted according to yi’s from the smallest to the largest.

2.2. Penalized robust identification

A penalized marker identification method is defined by its loss function and penalty.
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Loss function—First consider the scenario without contamination. When the distribution 

of ϵ is not specified, likelihood-based estimation is not applicable. A popular approach, 

especially for high-dimensional data, is the weighted least squared estimation developed in 

Stute (1993) and proceeds as follows. First compute the Kaplan–Meier weights as

ω1 =
δ1
n , ωi =

δi
n − i + 1 j = 1

i − 1
n − j

n − j + 1

δ j
, i = 2, … , n .

For gene j(= 1, …, p), the weighted least squared objective function is defined as

i = 1

n
ωi(yi − ui, j

⊤ ζ j)
2 . (1)

Here to accommodate censoring, a weight function is used to re-weigh different observations 

according to their observed times and event status. Since the loss function has a quadratic 

form, it is not robust to data contamination. If subject i is not censored, then ωi ≠ 0, and an 

arbitrarily large/small yi results in arbitrarily large estimates. Biased estimation often 

happens with data contamination, leading to false marker identification.

To accommodate contamination, for gene j(= 1, …, p), consider the exponential squared loss 

function

Q(ζ j | y, U j, ω) =
i = 1

n
ωiexp(−(yi − ui, j

⊤ ζ j)
2/θ) . (2)

Here y and ω denote the vectors composed of yi’s and ωi’s, respectively, and θ > 0 is a 

tuning parameter. The rationale of this approach is as follows. For a contaminated subject 

with yi deviating from ui, j
⊤ ζ j (the predicted value based on the model), (yi − ui, j

⊤ ζ j)
2
 has a 

large value. The exponential function down-weighs such a contaminated observation. The 

degree of down-weighing is adjusted by θ : when θ gets smaller, contaminated observations 

have a smaller influence. To accommodate censoring, ωi’s are imposed in a similar manner 

as in the original Stute’s approach. For low-dimensional linear regression models without 

censoring, the exponential squared loss has been examined in Wang et al. (2013). Advancing 

from the existing studies, here we consider the more challenging high-dimensional genetic 

data with interactions. In addition, the Kaplan–Meier weights are introduced to 

accommodate censoring. As to be shown in the Appendix, such differences lead to 

significant differences in statistical development.

Penalized estimation—For gene j(= 1, …, p), consider the penalized objective function

Lλ, θ(ζ j y, U j, ω) = Q(ζ j y, U j, ω) − λ ζ j 1 . (3)
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λ > 0 is the data-dependent tuning parameter, and ⋅
1
 is the ℓ1 norm. Denote ζ j as the 

maximizer of Lλ, θ (ζj|y, Uj, ω). Interactions (and main effects) corresponding to the 

nonzero components of ζ j are identified as important.

Note that we apply the same λ to all p genes, which ensures that they are analyzed on the 

same ground. This is different from analyzing the p genes separately, which may lead to 

different levels of regularization.

Multiple penalties can take the place of Lasso. In some recent studies (Bien et al., 2013; Liu 

et al., 2013), penalties have been developed to respect the “main effects, interactions” 

hierarchy, which reinforces that the main effects corresponding to the identified interactions 

must be identified. In studies such as Zimmermann et al. (2011) and Caspi and Moffitt 

(2006), it has been observed that genes can have important G × E interactions but no main 

effects. In addition, if the hierarchy has to be reinforced, one can identify important 

interactions first and then add back corresponding main effects. Computationally, Lasso is 

much simpler than the existing alternatives. Our limited experience suggests that with the 

complex robust loss function, more complicated penalties may have a higher probability of 

running into convergence problems. With the above considerations, the Lasso penalty is 

adopted.

2.3. Computation

We develop a coordinate-wise updating procedure to compute the solution to (3). For low-

dimensional data under simpler settings, an iterative approach is suggested in Wang et al. 

(2013) to select the robust tuning parameter θ. However, under the present high-dimensional 

settings and with the coordinate-wise updating procedure, such an approach is 

computationally infeasible. Alternatively, we propose computing, for each (λ, θ) pair, the 

solution to each marginal model. This way, we generate a solution surface over the two-

dimensional tuning parameter grid. The solution set can be comprehensively examined to 

identify appropriate tunings. Computation is conducted for each gene separately and can be 

realized in a highly parallel manner to reduce computer time. Consider gene j. Let 

ri(ζ j) = yi − ui, j
⊤ ζ j. The first and second order derivatives of Q(ζj) are

Q̇k(ζ j) =
∂Q(ζ j)
∂ζ j, k

= 2∑i = 1
n ωiu(i, j)k

ri(ζ j)exp(−ri
2(ζ j)/θ)/θ,

Q̈kl(ζ j) =
∂2Q(ζ j)

∂ζ j, k ∂ζ j, l
= 2∑i = 1

n ωiu(i, j)k
u(i, j)l

exp(−ri
2(ζ j)/θ)(2ri

2(ζ j)/θ − 1)/θ .
(4)

For ζ j
m in a small neighborhood of ζj, Q(ζj) can be locally approximated by

Q(ζ j) ≈ Q(ζ j
m) + Q̇(ζ j

m)⊤(ζ j − ζ j
m) + 1

2(ζ j − ζ j
m)⊤Q̈(ζ j

m)(ζ j − ζ j
m) . (5)
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Replacing Q(ζj) in (3) with this approximation and taking the first order derivative of L(ζj) 

with respect to the kth element ζj, k give us

ζ j, k
m + 1 =

ζ j, k
m − Q̈kk

−1 ζ j
m Q̇k ζ j

m + Q̈kk
−1 ζ j

m λ, if ζ j, k
m − Q̈kk

−1 ζ j
m Q̇k ζ j

m + Q̈kk
−1 ζ j

m λ > 0;

ζ j, k
m − Q̈kk

−1 ζ j
m Q̇k ζ j

m − Q̈kk
−1 ζ j

m λ, if ζ j, k
m − Q̈kk

−1 ζ j
m Q̇k ζ j

m − Q̈kk
−1 ζ j

m λ < 0;
0, otherwise.

(6)

Note that when 2ri
2 ζ /θ > 1, Q̈kk ζ ≥ 0. Then (3) can be maximized at infinity, and the 

algorithm may fail to converge. To tackle this problem, first note that

Q̈kk ζ j ≥ − 2
i = 1

n
ωiu i, j k

2 exp −ri
2 ζ j /θ /θ,

for ωi ≥ 0. The right hand side is non-positive. We re-define

Q̈kk ζ j ≡ − 2
i = 1

n
ωiu i, j k

2 exp −ri
2 ζ /θ /θ

and use the minorization–maximization (MM) algorithm to compute the solution. The 

algorithm that combines coordinate descent and MM is summarized in Algorithm 1.

As mentioned above, we examine a two-dimensional grid of (λ, θ) values. The range of λ is 

determined as follows. First, its upper bound λmax is selected such that ζ j = 0 for all j. With 

the nonrobust weighted least squared loss, λmax = max j = 1
p {‖U j

⊤Wy‖∞}, where W is the 

diagonal matrix composed of ωis. With the robust method, the derivatives in (4) can be 

viewed as a weighted sum of u i, j k
ri ζ j s. Because the weight for each subject changes with 

ζj, the previously defined λmax may not guarantee that ζ j = 0 for all j. After some trials, we 

find that λmax = 20max j = 1
p {‖U j

⊤Wy‖∞} is in general a “safe” upper bound for λ. The lower 
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bound is chosen as λmin = λmax/1000. For θ, we examine a relatively wide range to be 

cautious. Specifically, after centralization, we consider θ ∈ mini = 1
n yi

2/100, maxi = 1
n yi

2 × 100 .

With the specific form of the loss function, the existing techniques are not directly 

applicable to establish convergence of the proposed algorithm. We conjecture that the 

convergence properties are similar to those of the “classic” Lasso problems, but postpone 

rigorous investigation to future research. In all of our numerical studies, convergence is 

successfully achieved (for most datasets, within twenty iterations). The proposed algorithm 

is computationally affordable. For a simulated dataset, the analysis takes a few minutes on a 

regular desktop.

2.4. Consistency properties

Here we rigorously prove that the proposed method can consistently identify important 

interactions under ultrahigh-dimensional settings. For high-dimensional robust methods, 

theoretical development has been limited in the literature. With the consistency properties, 

the proposed method can be preferred over those alternatives whose statistical properties 

have not been well established. Our theoretical development not only provides a solid 

ground for the proposed method but also sheds insights upon other robust methods.

For each j ∈ {1, 2, …, p}, define the population version of the marginal estimate as

ζ j
M = argmaxζ j

E{exp − T − Uj
⊤ζ j

2/θ)},

where E denotes expectation under the true model. Denote the kth element of ζj as ζj, k. The 

corresponding important covariate effect index set in ζ j
M is labeled as 

S j = {k ∈ {1, …, 2q + 2}:ζ j, k
M ≠ 0}. Denote 𝒜X =

j = 1
p t: t ∈ S j, 2 ≤ t ≤ q + 1  as the 

important set with its corresponding environmental variables important in at least one 

marginal model. If q + 2 ∈ S j, then the jth gene is associated with prognosis in a marginal 

sense. The set {t : t ∈ Sj, q + 3 ≤ t ≤ 2q + 2} contains important interactions between the jth 

gene and environmental variables. Then we have the important gene set 

𝒜G =
j = 1
p j:q + 2 ∈ S j  and interaction set 

𝒜I =
j = 1
p j − 1 p + t − q − 2: t ∈ S j, q + 3 ≤ t ≤ 2q + 2 . Denote Sc and |S| as the 

complement and cardinality of set S, respectively. If the truly important effects were known, 

then we would be able to compute the oracle estimator ζ j with ζ
S j

c = 0 and

ζS j
= argmax ∑

i = 1

n
ωiexp(−(yi − u i, j)S j

⊤ ζ j, S j
)2/θ) − λ ∑

k ∈ S j

|ζ j, k| . (7)
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Theorem 1. Consider the estimator defined in (7). Under conditions C1–C5 (Appendix) and 

6 n−κ + 12ρ∗
−1 q + 1 λ V < ρ∗, we have

Pr max
1 ≤ j ≤ p

max
s ∈ S j

ζ j, s − ζ j, s
M ≥ n−κ + 12qρ∗

−1λ

≤ pexp −
ρ∗

2n1 − 2κ + 144q2nλ2

36ρ∗ + 4p q + 1 exp −
nρ∗

2

36J q + 1 2 ,

where κ < 1/2.

If λ → 0 and log p = o(n1−2κ + nλ2), we have that n−κ + 12qρ∗
−1λ 0 and the probability 

bound in Theorem 1 goes to zero. That is, the proposed method enjoys estimation 

consistency and is able to accommodate ultrahigh-dimensional data.

Recall that ζ j = argmax
ζ ∈ ℝ2q + 2L ζ j , where

L(ζ j) =
i = 1

n
ωiexp(−(yi − ui, j

⊤ ζ j)
2/θ) − λ ζ j 1 . (8)

Since L(ζj) is concave, if we can show that the oracle estimator ζ j satisfies the Karush–

Kuhn–Tucher (KKT) condition, then ζ j = ζ j. Define 𝒜I =
j = 1
p j:ζ j, q + 2 ≠ 0  and 

𝒜I =
j = 1
p j − 1 p + t − q − 2:ζ j, t ≠ 0, q + 3 ≤ t ≤ 2q + 2 . The following theorem 

establishes that the proposed method has the selection consistency properties.

Theorem 2. Assume that the conditions in Theorem 1 hold. If min jminS j
ζ j, s

M ≫ n−κ + λ and 

max j IS jcS j
ζ j

M IS jS j
ζ j

M −1

∞
≤ K < 1, then we have

Pr 𝒜G = 𝒜G and 𝒜I = 𝒜I ≥ 1 − O pexp −
ρ∗

2n1 − 2κ + 144q2nλ2

36ρ∗ + pexp − nλ2 1 − K 2

2ρ∗ 1 + K 2 .

With the probability bounds established in Theorems 1 and 2, we can derive the following 

result, which provides an easier way to comprehend the proposed method.

Corollary 1. Suppose that conditions C1–C5 hold. If λ → 0, nλ2 → ∞, log p = o(n1−2κ + 

nλ2) with κ < 1/2, min jminS j
ζ j, s

M ≫ n−κ + λ and max j IS jcS j
ζ j

M IS jS j
ζ j

M −1

∞
≤ K < 1, then 

with probability approaching one, the proposed method can identify the true sparsity 
structure and enjoy estimation consistency with an order of n−κ + λ.
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Remark 1. Under simpler settings, it has been shown that the selection consistency of Lasso 

demands some variants of the irrepresentable condition. The above result shows that, under 

comparable conditions, the proposed robust method enjoys similar consistency.

3. Simulation

In simulation, we set n = 300, q = 3, and p = 500 and 1000. There are a total of 18 nonzero 

effects: 3 main E effects, 5 main G effects, and 10 interactions. The positions of nonzero 

main G effects and interactions are uniformly placed. The nonzero regression coefficients 

are randomly generated from uniform(0.5, 1.5). The E and G factors are generated from 

multivariate normal distributions with marginal means zero, marginal variances one, and the 

following variance matrix structures: Independent, AR(0.2), AR(0.8), Band(0.3), and 

Band(0.6). Under the AR(ρ) correlation structure, for the ith and jth factors, corr = ρ|i− j|. 

Under the Band(ρ) correlation structure, for the ith and jth factors, corr = ρI(|i – j| ≤ 2), 
where I( · ) is the indicator function. Under each correlation structure, consider seven 

different distributions for the random error ϵ: N(0,1), 0.95N(0,1) + 0.05Cauchy, 0.85N(0,1) 

+ 0.15Cauchy, 0.7N(0,1) + 0.3Cauchy, 0.95N(0,1) + 0.05t(3), 0.85N(0,1) + 0.15t(3), and 

0.7N(0,1) + 0.3t(3). That is, we consider the scenarios with no contamination and three 

different levels of contamination. Two contamination distributions are considered with 

different thickness of tails. The event times are generated from the AFT models. Cis are first 

generated independently from an exponential distribution and then log transformed. The 

parameter for the exponential distribution is adjusted so that the censoring rate is about 25%.

Beyond the proposed method (referred to as Robust), we also consider the following three 

alternatives: (1) the Nonrobust method, which adopts the weighted least squared loss 

function and applies the Lasso penalization for selecting important effects; (2) the Stute 

method, which adopts the weighted least squared loss function, does not apply any 

penalization, and uses significance level (p-value) as the criterion for quantifying the 

importance of effects; and (3) the Quantile method, which adopts the quantile regression-

based robust loss function and applies Lasso penalization. More specifically, this method 

proceeds as follows. Let F t = 1 − ∏i = 1
n 1 − 1

∑l = 1
n 1 yl ≥ yi

ηi t

, with ηi(t) = I(yi ≤ t, δi = 

1), be the nonparametric Kaplan–Meier estimate of the cumulative distribution function of 

survival time T. Define

wi =

1, F Ci > τ or Ti ≤ Ci;

τ − F Ci
1 − F Ci

, F Ci < τ and Ti > Ci .

Then for j(= 1, …, p), the penalized objective function is

Ln ζ j = 1
n i = 1

n
{wiρτ(yi − ui, j

⊤ ζ j) + (1 − wi)ρτ(Y+∞ − ui, j
⊤ ζ j)} + λ‖ζ j‖1,
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where Y+∞ is a value large enough to exceed all ui, j
⊤ ζ js. The intuition behind the weights has 

been described in Zou (2006). Both the Nonrobust and Stute methods, along with the 

proposed, are built on the weighted least squared estimation. Comparing them can establish 

the advantage of robust loss and penalization-based identification, respectively. The Quantile 

method is also robust and has been recently developed. Comparing with it can establish the 

advantage of the weighted exponential squared loss. We acknowledge that some other 

methods are also applicable to the simulated data. The three alternatives have frameworks 

closest to that of the proposed and are hence considered.

With the Robust, Nonrobust, and Quantile methods, the number of selected interactions 

depends on the tuning parameter values. With the Stute method, the number depends on the 

p-value cutoff. To compare different methods on a fair ground, we examine a sequence of 

tuning parameter values, evaluate identification performance at each value, and use the ROC 

(receiver operating characteristics) curve to evaluate the interaction identification accuracy 

of different methods. A representative ROC plot is shown in Fig. 1. In this plot, the proposed 

method has dominatingly better accuracy.

Summary AUCs based on 100 replicates are shown in Tables 1 ( p = 500) and 2 ( p = 1000). 

When there is no contamination, performance of the proposed method is comparable to or 

slightly worse than that of the nonrobust method. For example with p = 500 and independent 

G measurements, the Robust and Nonrobust methods have mean AUCs 0.861 and 0.889, 

respectively. And with the AR(0.2) correlation, the mean AUCs area 0.901 and 0.881, 

respectively. With contamination, the Robust method outperforms the Nonrobust method. 

For example, with p = 500, the AR(0.2) correlation structure, and 0.7N(0,1) + 0.3Cauchy 

error, the Robust and Nonrobust methods have mean AUCs 0.886 and 0.751, respectively. 

Under all simulation scenarios, the Stute method, which adopts the robust loss function but 

significance level-based identification, has inferior identification accuracy. As has been 

suggested in the literature, with a moderate sample size, the unregularized estimates can be 

less reliable, leading to inaccurate identification. When comparing the proposed method 

with the quantile regression-based, we see that under the majority of the settings, the 

proposed method has superior performance. For example with p = 500, AR(0.2) correlation, 

and 0.85N(0,1) + 0.15Cauchy error, the proposed and Quantile methods have mean AUCs 

0.892 and 0.842, respectively. However, under a small number of settings, the Quantile 

method excels. For example with p = 500, AR(0.8) correlation, and 0.7N(0,1) + 0.3t(3) 

error, the two methods have mean AUCs 0.863 and 0.933, respectively. Such observations 

are also reasonable. No robust approach is expected to be able to dominate all others. The 

proposed method outperforms the quantile regression-based method under most scenarios 

and provides a useful alternative.

Remark 2. Simulation may also suggest characteristics of the proposed method not fully 

described by the theoretical properties. It can be observed that the AUCs of the proposed 

method may have larger variances compared to the Stute and Quantile methods. In addition, 

the AUCs may not be “monotone” as a function of contamination rate. A closer examination 

of the consistency properties/proofs, computational algorithm, and computer code does not 

suggest obvious causes of these observations. It is suspected that they may be caused by the 
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“interplay” of the parameter θ with data settings. That is, the impact of θ on identification 

may not be a monotone function of contamination. More investigation will be conducted in 

the future.

4. Analysis of the lung squamous cell carcinoma data

Lung squamous cell carcinoma is the second most common lung cancer and causes around 

400,000 deaths each year worldwide (The Cancer Genome Atlas Research Network, 2012). 

Profiling studies have been extensively conducted, searching for its prognostic factors. In 

this section, we analyze the TCGA (The Cancer Genome Atlas) data on the prognosis of 

lung squamous cell carcinoma. The TCGA data were recently collected and published by 

NCI and have a high quality. The dataset we analyze was downloaded in April of 2015.

The prognosis outcome of interest is overall survival. Multiple environmental and clinical 

variables have been collected. We select the following for analysis: age, gender (female is 

coded as baseline), smoking level (pack years), and smoking status (non-smoker, reformed 

smoker for more than 15 years, reformed smoker for less than or equal to 15 years, current 

smoker; coded as 0, 1, 2 and 3). These variables have been suggested in the literature (Miller 

et al., 2004; Nakachi et al., 1991). A total of 422 samples have clinical and environmental 

measurements available.

For G factors, a total of 18,969 gene expression measurements are available for 502 samples. 

When matching the clinical/environmental data with genetic data, complete records are 

available for 404 samples. Among them, 129 died during followup, and their median 

followup was 30 months. The rest 275 were censored, and the median followup was 18 

months.

In the literature, multiple approaches (especially cross validation-based) have been applied 

for selecting tuning parameters. However, most of the commonly used methods are based on 

the notion of prediction. In this study, we conduct marginal analysis, with the goal of 

identifying markers top-ranked in a marginal sense, not prediction. Thus, as opposed to 

applying cross validation and other prediction-based approaches, we follow published 

studies and vary the values of λ and θ so that a predetermined number of interactions are 

selected. In particular, we examine a wide range of θ values and focus on those with which 

the estimates are stable. A closer examination suggests that the estimates are not very 

sensitive to θ values for fixed λ. In Table 3, we provide results on the 33 top-ranked 

interactions. Longer or shorter lists of identified interactions are available from the authors. 

After the interactions are identified, we refit the marginal models without penalization and 

include the main effects to satisfy the “main effects, interactions” hierarchy. Beyond the 

proposed method, we also apply the three alternatives considered in simulation. Table 4 in 

Appendix suggests that different methods identify significantly different genes and 

interactions. Results under the proposed method are provided in Table 3. Those under the 

alternative methods are provided in Appendix.

To assess the stability of our findings, we apply the following approach. One sample is first 

removed from data, and then the proposed method is applied. This step is repeated over all 

Chai et al. Page 11

Econom Stat. Author manuscript; available in PMC 2019 May 29.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



samples. For each identified interaction in Table 3, we compute its probability of being 

identified in the reduced datasets. It can be seen that three interactions have small stability 

measures, while all other interactions have stability measures close to 1. We have also 

examined those interactions not identified and found that their stability measures are all 

close to 0. This analysis suggests satisfactory stability of the proposed method.

Literature search suggests that the identified interactions and corresponding genes have 

important implications. Specifically, previous studies have shown that the major G × E 

interactions occur between genes and smoking status (Shi et al., 2014). Among the gene-

smoking interactions identified in our study, the CEBPB (CCAAT/enhancer-binding proteins 

beta) protein is a transcription factor that works with other CCAAT/enhancer-binding 

protein family members in the regulation of cell cycle progress, differentiation, and pro-

inflammatory gene expression. CEBPB has been found to be upregulated by tobacco smoke 

in both human lung fibroblast (Miglino et al., 2012) and mice emphysema. Another gene 

that interacts with smoking is EFNA1 (a.k.a. ephrin-A1). A recent in vitro study found that 

ephrin-A1 is overexpressed in tobacco smoke-treated bronchial airway epithelial cells 

compared to control cells (Nasreen et al., 2014). In addition, the elevated expressions of 

ephrin-A1 are positively associated with tumor proliferative capacity in non-small cell lung 

carcinoma patients. The gene that has a strong main effect as well as an interaction with 

duration of smoking is TERF1 (telomeric repeat binding factor 1). The TERF1 expression 

levels have been found to be decreased in lung cancer (Jian et al., 2009) as well as other 

types of cancer in several studies (Miyachi et al., 2002). It functions as an inhibitor of 

telomerase and is identified as a prognostic marker for overall survival in non-small cell lung 

cancer (Jian et al., 2009). The molecular mechanism of why and how TERF1 decreases in 

the process of cancer is not clear. Our results suggest that smoking can be one of the factors. 

Other than smoking duration, we also find that several genes interact with smoking intensity 

as well. The gene that interacts with both gender and smoking intensity is KATNB1. 

KATNB1 encodes protein katanin p80 subunit B1, which has been found to participate in 

cytokinesis by interacting with tumor suppressor gene LAPSER1. The disruption of the 

cytokinesis process may potentially cause genetic instability and cancer (Sudo and Maru, 

2007). In addition to smoking, we find that eight genes interact with gender. Among these, 

STRADB and CA5BP1 draw our attention. STRADB is an important gene in lung cancer 

progression and metastasis through the activation of LKB1. LKB1 is essential for G1 cell 

cycle arrest, cell polarity and stress, cell detachment, and adhesion. The STRADB encoded 

protein also interacts with the X chromosome-linked inhibitor of apoptosis protein by 

enhancing its anti-apoptotic activity. In addition, gene CA5BP1 is located on the X 

chromosome and found to be gender-associated.

5. Discussion

G × E interactions have important implications for the prognosis of a large number of 

complex diseases. In this study, we have developed a new interaction analysis method. It can 

accommodate contamination and a mixture of distributions of the prognosis outcome, which 

are not uncommon in practice. In addition, we adopt penalization for identifying important 

interactions. This strategy differs from the commonly adopted significance level-based 

identification and may have improved marker identification accuracy for certain datasets. 
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Significantly advancing from many of the existing interaction studies, the consistency 

properties have been rigorously established under the ultrahigh-dimensional setting, making 

the proposed method one of the few with strong theoretical basis. An effective 

computational algorithm has been developed. In simulation study, the proposed method is 

observed to have satisfactory performance. It is interesting to note that it outperforms the 

quantile regression-based method under a variety of settings. In the analysis of lung cancer 

data, it identifies meaningful genes and interactions, which differ from those using the 

alternatives and have satisfactory stability.

In the literature, two types of interaction analysis have been conducted: marginal analysis 

and joint analysis. Both types of analysis have been popular, and neither can replace the 

other. In this study, we have focused on marginal analysis, where the importance of an 

interaction (or a main effect) is defined in a marginal sense. It is of interest to extend the 

proposed technique to joint analysis. However, that is highly nontrivial and will be pursued 

separately. It is noted that the proposed marginal analysis can be applied in joint analysis as 

a screening step. We refer to literature on sure independence screening for related 

discussions.
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Appendix.

Proof of Theorems 1 and 2

For each j ∈ {1, 2, …, p}, define

Dn(ζ j) = ∑
i = 1

n
ωiexp(−(yi − ui, j

⊤ ζ j)
2/θ)

2(yi − ui, j
⊤ ζ j)

θ ui, j,

In(ζ j) = 2
θ ∑

i = 1

n
ωiexp(−(yi − ui, j

⊤ ζ)2/θ)
2(yi − ui, j

⊤ ζ j)
2

θ − 1 ui, jui, j
⊤ .

Let τY, τT, and τC be the end points of the support of Y, T, and C, respectively.

Assume the following regularity conditions. [C1] The observations {(yi, δi, xi, zi), 1 ≤ i ≤ n} 

are independent; [C2] T and C are independent and P(T ≤ C|T, X, Z) = P(T≤C|T); [C3] τT 

<τC or τT = τC = ∞; [C4] q is finite. For each j ∈ {1, 2, …, p}, nDn(ζ j
M) d N(0, Σ j), where 

Σj is a positive definite matrix. In(ζ j
M) converges to a negative-definite matrix In(ζ j

M) in 

probability. Moreover, the smallest eigenvalue ρ∗ = min jρmin(−I(ζ j
M)) and the largest 

eigenvalue ρ∗ = maxj ρmax(Σj) are bounded away from zero and infinity. [C5] (i) Let Nj 
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denote a sufficiently small neighborhood centered around ζ j
M. For ζ j

1, ζ j
2 ∈ N j, there exists a 

bounded constant V such that ζ j
⊤[I(ζ j

1) − I(ζ j
2)]ζ j ≤ V‖ζ j

1 − ζ j
2‖2 for any ||ζj||2 = 1. (ii) For any 

k1, k2 ∈ {1, …, 2q + 2}, E(exp(−(yi − ui, j
⊤ ζ j

∗)2/θ)
2(yi − ui, j

⊤ ζ j
∗)2

θ − 1)u(i, j)k1
u(i, j)k2

2

≤ J, where 

J is finite and ζ j
∗ ∈ N j.

Remark 3. Conditions C1–C3 have been commonly assumed in studies with random right 

censoring. Condition C4 is mild and has been proved under weak regularity conditions in 

Stute (1993) and Huang et al. (2007). Here, for simplicity, it is directly assumed. The 

constant V in Condition C5 (i) is introduced to ensure the stability of I(ζj) with respect to ζj. 

Since maxt exp(−t)(2t − 1) < ½, a sufficient condition that can lead to Condition C5 (ii) is 

that E(u(i, j)k1
u(i, j)k2

)2 ≤ 4J. Such a finite second moment condition has been common in the 

literature.

Partition I(ζ j
M) according to Sj as

I ζ j
M =

IS jS j
ζ j
M I

S jS j
c ζ j

M

I
S j

cS j
ζ j
m I

S j
cS j

c ζ j
M

.

Below we provide proofs for the two theorems.

Proof of Theorem 1.

Recall that

ζ j, S j
= argmax ∑

i = 1

n
ωiexp(−(yi − u(i, j)S j

⊤ ζ j, S j
)2/θ) − λ ∑

k ∈ S j

|ζ j, k| . (9)

Denote the above objective function as Rn(ζ j, S j
).

First, let r j = n−κ + 12ρ∗
−1(q + 1)λ and η = ∑ j = 1

p exp(−
ρ∗

2n1 − 2κ + 144(q + 1)2n−1λ2

36ρ∗ ), where κ < 

1/2. To prove

Pr ζ j, S j
− ζ j, S j

M

2
< r j, j = 1, …, p ≥ 1 − η,

it suffices to show that
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Pr sup
ζ j, S j

∈ ℐ
Rn(ζ j, S j

) < Rn(ζ j, S j
M ), j = 1, …, p ≥ 1 − η, (10)

where ℐ = ζ j, S j
: ζ j, S j

− ζ j, S j
M

2
= r j, j = 1, …, p . This implies that with probability at least 

1 − η, Rn(ζj, Sj) has a global maximizer ζ j, S j
 that satisfies ζ j, S j

− ζ j, S j
M

2
< r j, for j = 1, …, 

p.

Recall the definitions of Dn(ζj) and In(ζj). Partition them according to Sj as

Dn(ζ j) =

Dn, S j
(ζ j)

D
n, S j

c(ζ j)
, In(ζ j) =

In, S jS j
(ζ j) I

n, S jS j
c(ζ j)

I
n, S j

cS j
(ζ j) I

n, S j
cS j

c(ζ j)
.

Obviously,

Dn, S j
(ζ j) = ∑

i = 1

n
ωiexp(−(yi − u(i, j)S j

⊤ ζ j, S j
)2/θ)

2(yi − u(i, j)S j

⊤ ζ j, S j
)

θ u(i, j)S j

and

In, S jS j
(ζ j) = 2

θ ∑
i = 1

n
ωiexp(−(yi − u(i, j)S j

⊤ ζ j, S j
)2/θ)

2(yi − u(i, j)S j

⊤ ζ j, S j
)2

θ − 1 u(i, j)S j
u(i, j)S j

⊤ .

With Taylor’s expansion we have

Chai et al. Page 15

Econom Stat. Author manuscript; available in PMC 2019 May 29.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Rn(ζ j, S j
) − Rn(ζ j, S j

M )

= ∑
i = 1

n
ωi exp(−(yi − u(i, j)S j

⊤ ζ j, S j
)2/θ) − exp(−(yi − u(i, j)S j

⊤ ζ j, S j
M )2/θ)

− λ ∑
k ∈ S j

(|ζ j, k| − |ζ j, k
M |)

= Dn, S j
(ζ j

M)⊤(ζ j, S j
− ζ j, S j

M ) + 1
2(ζ j, S j

− ζ j, S j
M )⊤In, S jS j

(ζ j)(ζ j, S j
− ζ j, S j

M )

+ λ ∑
k ∈ S j

(|ζ j, k
M | − |ζ j, k| ,

(11)

where ζ j lies between ζ j
M and ζ j.

It is easy to see that

(ζ j, S j
− ζ j, S j

M )⊤In, S jS j
(ζ j)(ζ j, S j

− ζ j, S j
M )

= (ζ j, S j
− ζ j, S j

M )⊤IS jS j
(ζ j

M)(ζ j, S j
− ζ j, S j

M ) + (ζ j, S j
− ζ j, S j

M )⊤ IS jS j
(ζ j) − IS jS j

(ζ j
M)

(ζ j, S j
− ζ j, S j

M ) + (ζ j, S j
− ζ j, S j

M )⊤ In, S jS j
(ζ j)_IS jS j

(ζ j) (ζ j, S j
− ζ j, S j

M )

= Q1 + Q2 + Q3 .

(12)

By C4, Q1 ≤ − ζ j, S j
− ζ j, S j

M

2

2
ρ∗. Moreover, Q2 ≤ V ζ j, S j

− ζ j, S j
M

2

3
 under C5. Bernstein 

inequality and C5 yield

Pr( In, S jS j
(ζ j) − IS jS j

(ζ j)
F

2 ≥
ρ∗

2

9 ) ≤ 2 S j exp(−
nρ∗

2

9J S j
2),

where ||·||F denotes the Frobenius norm. Since 

λmax(In, S jS j
(ζ j) − IS jS j

(ζ)) ≤ In, S jS j
(ζ j) − IS jS j

(ζ j)F , we have Q3 ≤ 1
3 ρ∗r j

2. Therefore, the 

second term in (11) is controlled by

1
2(ζ j, S j

− ζ j, S j
M )⊤In, S jS j

(ζ j
M)(ζ j, S j

− ζ j, S j
M ) < − 1

3 ρ∗r j
2 + 1

2Vr j
3, (13)
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with probability at least 1 − 4(q + 1)exp(−
nρ∗

2

36J(q + 1)2
) due to (12) and |Sj| ≤ 2q + 2.

Partition Σj according to Sj as 

ΣS jS j
Σ

S jS j
c

Σ
S j

cS j
Σ

S j
cS j

c
. For Dn, S j

(ζ j
M), by the definition of ζ j, S j

M  and C2 

and C4, we have

nDn, S j
(ζ j

M) d N(0, ΣS jS j
) .

Then for any given t, an application of Bernstein’s inequality yields

Pr(|Dn, S j
(ζ j

M)⊤(ζ j, S j
− ζ j, S j

M )| > t) ≤ 2exp − nt2

2(ζ j, S j
− ζ j, S j

M )⊤ΣS jS j
(ζ j, S j

− ζ j, S j
M )

.

Recall that r j = n−κ + 12ρ∗
−1(q + 1)λ. Let t = 1

6 ρ∗r j
2, then we have

Pr(Dn, S j
(ζ j

M)⊤(ζ j, S j
− ζ j, S j

M ) > 1
6 ρ∗r j

2) ≤ exp −
ρ∗

2n1 − 2κ + 144(q + 1)2nλ2

36ρ∗ . (14)

By the Triangle inequality and ( i = 1
d vi )2 ≤ d

i = 1
d

vi
2 for any sequence vi, we have

λ ∑
k ∈ S j

(|ζ j, k
M | − |ζ j, k| ≤ λ ∑

k ∈ S j

|ζ j, k
M − ζ j, k| ≤ λ |S j| ζ j, S j

− ζ j, S2
M

2
. (15)

Combining (11), (13), (14), (15), and 6(n−κ + 12ρ∗
−1(q + 1)λ)V < ρ∗, we have

Rn(ζ j, S j
) − Rn(ζ j, S j

M ) < − 1
6 ρ∗r j

2 + λ S j r j + 1
2Vr j

3 < 0 (16)

with probability at least 1 − exp −
ρ∗

2n1 − 2κ + 144(q + 1)2nλ2

36ρ∗ − 4(q + 1)exp −
nρ∗

2

36J(q + 1)2
. With 

the Bonferroni’s inequality, this theorem is proved. □

Proof of Theorem 2.

Recall that ζ j = argmax
ζ ∈ ℝ2q + 2L(ζ j), where
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L(ζ j) =
i = 1

n
ωiexp(−(yi − ui, j

⊤ ζ j)
2/θ) − λ ζ j 1 . (17)

Consider the oracle estimator ζ j with ζ
S j

c = 0 and

ζ j, S j
= argmax ∑

i = 1

n
ωiexp(−(yi − u(i, j)S j

⊤ ζ j, S j
)2/θ) − λ ∑

k ∈ S j

|ζ j, k| . (18)

Denote the above objective function as Rn, S j
(ζ j). Since L(ζj) in (8) is concave, if we can 

show that ζ j satisfies the Karush–Kuhn–Tucher (KKT) condition, then ζ j = ζ j.

Next we want to show that

Ωn(S j
c) ∞ < λ, j = 1, 2, …, p, (19)

where v ∞ = maxi vi  for any vector v = (v1, ⋯, v
S j

c ) and

Ωn(S j
c) = ∑

i = 1

n
ωiexp(−

(yi − u(i, j)S j

⊤ ζ j, S j
)2

θ )

2(yi − u(i, j)S j

⊤ ζ j, S j
)

θ u(i, j)
S j

c
.

Applying Taylor’s expansion, we have
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Ωn(S j
c) = ∑

i = 1

n
ωiexp −

(yi − u(i, j)S j

⊤ ζ j, S j
M )2

θ

2(yi − u(i, j)S j

⊤ ζ j, S j
M )

θ u(i, j)
S j

c

+ 2
θ ∑

i = 1

n
ωiexp −

(yi − u(i, j)S j

⊤ ζ j, S j
)2

θ

2(yi − u(i, j)S j

⊤ ζ j, S j
)2

θ − 1

× u(i, j)
S j

c
u(i, j)S j

⊤ (ζ j, S j
− ζ j, S j

M )

: = Γn + Δn,

(20)

where ζ j lies between ζ j
M and ζ j. From the proof of Theorem 1, we have

ζ j, S j
− ζ j, S j

M = In, S jS j
(ζ j

M)−1 −Dn, S j
(ζ j

M) + λsgn(ζ j
M) . (21)

Substituting (21) into (20), we have

Δn = 2
θ i = 1

n
ωiexp −

(yi − u(i, j)S j

⊤ ζ j, S j
)2

θ

2(yi − u(i, j)S j

⊤ ζ j, S j
)2

θ − 1

× u(i, j)
S j

c
u(i, j)S j

⊤ In, S j
(ζ j

M)−1{−Dn, S j
(ζ j

M) + λsgn(ζ j
M)}

= − I
n, S j

cS j
(ζ j)In, S jS j

(ζ j
M)−1Dn, S j

(ζ j
M) + λI

n, S j
cS j

(ζ j)In, S j
(ζ j

M)−1sgn(ζ j
M) .

(22)

Define

Δn
∗ = − I

S j
cS j

ζ j
M IS jS j

ζ j
M −1

Dn, S j
ζ j
M + λI

S j
cS j

ζ j
M IS jS j

ζ j
M −1sgn ζ j

M ,
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and Ωn
∗(S j

c) = Γn + Δn
∗. From the proof of Theorem 1, we see that the tail probability for In(ζj) 

is dominated by that for Dn(ζj). Thus

Pr( Ωn(S j
c) ∞ > λ) ≍ Pr( Ωn

∗(S j
c) ∞ > λ) .

Therefore, combining the above arguments, we only need to focus on Ωn
∗(S j

c). In fact,

|Ωn
∗ S j

c |∞ ≤ |Γn|∞ + |Δn
∗|∞

≤ |D
n, S j

c ζ j
M |

∞
+ |I

S j
cS j

ζ j
M IS jS j

ζ j
M −1Dn, S j

ζ j
M |

∞

+ λ|I
S j

cS j
ζ j

M IS jS j
ζ j

M −1Dn, S j
ζ j

M sgn ζ j
M |

∞

≤ |Dn ζ j
M |∞ + ‖I

S j
cS j

ζ j
M IS jS j

ζ j
M −1‖

∞
|Dn ζ j

M |∞ + λ‖I
S j

cS j
ζ j

M IS jS j
ζ j

M −1‖
∞

(23)

With the condition Φ j = I
S j

cS j
(ζ j

M)IS jS j
(ζ j

M)−1

∞
≤ K < 1, if

Dn
∗(ζ j

M) ∞ < λ
1 − Φ j
1 + Φ j

, (24)

then from (23), it follows that

|Ωn
∗(S j

c)|∞ ≤ |Dn(ζ j
M)|∞(1 + Φ j) + λΦ j < λ(1 − Φ j) + λΦ j = λ,

which proves (19). We now derive the probability bound for the event in (24). Similarly to 

the derivation of (14),

Pr |Dn(ζ j
M)|∞ ≥ λ

1 − Φ j
1 + Φ j

≤ 2exp −
nλ2(1 − Φ j)

2

2ρ∗(1 + Φ j)
2 . (25)

By the Bonferroni’s inequality, we obtain

Pr |Dn(ζ j
M)|∞ < λ

1 − Φ j
1 + Φ j

, j = 1, 2, …, p ≥ 1 − 2 ∑
j = 1

p
exp −

nλ2(1 − Φ j)
2

2ρ∗(1 + Φ j)
2 . (26)

This theorem is proved with the above results. □
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Fig. 1. 
An illustration of the ROC curves for the proposed and alternative methods.
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Table 1

Simulation: AUC × 100 (sd) based on 100 replicates, p = 500.

Error Method Independent AR(0.2) AR(0.8) Band(0.3) Band(0.6)

N(0,1) Robust 86.1(7.7) 90.1(6.6) 86.7(6.9) 89.2(5.7) 94.3(5.8)

Nonrobust 88.9(6.6) 88.1(5.7) 86.8(6.1) 83.6(6.3) 91.0(8.2)

Stute 65.7(4.4) 63.3(3.3) 61.6(4.6) 64.7(3.5) 61.0(2.3)

Quantile 82.9(3.3) 86.3(1.2) 93.5(2.1) 88.9(2.5) 76.5(5.1)

0.95N(0,1)+0.05Cauchy Robust 91.1(7.8) 87.1(6.9) 88.7(5.1) 87.7(6.6) 88.1(6.5)

Nonrobust 82.8(8.6) 85.9(10) 88.7(8.5) 81.9(12.6) 78.5(10.2)

Stute 68.0(4.7) 60.1(4.6) 70.6(4.8) 64.7(3.5) 73.3(4.7)

Quantile 82.7(3.1) 83.4(3.4) 92.4(2.9) 87.4(2.5) 71.9(3.9)

0.85N(0,1)+0.15Cauchy Robust 86.6(8.2) 89.2(7.0) 93.9(6.9) 86.8(6.9) 83.5(5.8)

Nonrobust 77.1(9.4) 85.0(10.2) 87.1(12.7) 72.8(10.3) 76.2(11.6)

Stute 64.2(6.3) 63.7(5.5) 67.5(6.9) 64.7(3.5) 67.8(6.4)

Quantile 81.9(3.1) 84.2(1.7) 93.6(2.7) 89.4(2.4) 69.1(5.1)

0.7N(0,1)+0.3Cauchy Robust 84.8(6.9) 88.6(6.6) 87.9(5.9) 89.2(5.7) 90.1(5.9)

Nonrobust 71.7(11.8) 75.1(13.3) 77.8(12.8) 80.8(6.5) 86.3(8.2)

Stute 64.5(8.2) 59.4(5.8) 65.7(8.5) 64.7(3.5) 64.4(6.6)

Quantile 80.1(2.7) 85.8(2.3) 92.5(2.4) 88.2(2.9) 68.1(8.3)

0.95N(0,1)+0.05t(3) Robust 80.8(7.3) 89.4(6.1) 93.4(5.0) 69.9(5.4) 88.8(6.7)

Nonrobust 76.7(9.1) 84.7(8.4) 89.6(9.0) 82.1(11.6) 85.4(10.1)

Stute 60.8(4.5) 66.7(4.9) 68.6(5.0) 64.7(3.5) 73.8(4.9)

Quantile 82.6(2.1) 85.4(2.6) 89.7(2.5) 87.8(2.2) 73.4(6.6)

0.85N(0,1)+0.15t(3) Robust 87.5(7.5) 85.6(6.6) 90.6(6.0) 87.9(6.5) 79.8(5.8)

Nonrobust 82.3(11.7) 79.4(10.6) 83.5(11.8) 75.5(13.9) 75.5(12.2)

Stute 67.4(5.4) 61.4(5.1) 68.6(5.0) 64.7(3.5) 68.2(4.4)

Quantile 83.1(3.4) 85.3(3.1) 92.4(1.6) 87.7(3.6) 72.7(4.1)

0.7N(0,1)+0.3t(3) Robust 84.4(7.2) 88.6(6.8) 86.3(6.7) 88.4(5.3) 85.4(5.3)

Nonrobust 71.9(11.7) 71.5(12.3) 76.0(13.1) 80.7(6.4) 80.0(4.8)

Stute 62.3(8.4) 62.0(7.4) 68.6(5.0) 64.7(3.5) 60.6(6.9)

Quantile 79.8(4.1) 83.9(2.6) 93.3(1.9) 87.1(3.1) 68.5(6.3)
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Table 2

Simulation: AUC × 100 (sd) based on 100 replicates, p = 1, 000.

Error Method Independent AR(0.2) AR(0.8) Band(0.3) Band(0.6)

N(0,1) Robust 89.2(6.8) 87.4(6.7) 94.0(5.0) 92.8(7.2) 85.4(5.3)

Nonrobust 84.4(6.1) 87.9(6.3) 91.7(4.5) 86.8(7.3) 80.0(4.8)

Stute 64.7(6.0) 66.7(4.2) 68.6(5.0) 76.5(4.9) 73.4(4.0)

Quantile 82.4(2.2) 85.1(3.1) 92.8(4.2) 88.7(2.7) 71.1(3.9)

0.95N(0,1)+0.05Cauchy Robust 86.0(7.4) 76.4(6.1) 87.4(5.1) 89.3(6.2) 94.5(5.7)

Nonrobust 82.0(8.9) 83.9(10.6) 88.4(5.5) 80.0(11.6) 91.2(7.2)

Stute 62.2(4.6) 64.6(5.9) 68.6(5.0) 65.4(4.1) 71.5(4.6)

Quantile 82.3(3.4) 85.9(2.3) 90.6(2.1) 88.4(1.9) 70.9(6.6)

0.85N(0,1)+0.15Cauchy Robust 85.4(6.8) 93.4(7.2) 88.3(7.2) 88.1(5.5) 92.4(6.2)

Nonrobust 78.4(10.5) 83.1(11.4) 84.8(8.2) 75.5(10.8) 83.0(12.5)

Stute 65.8(7.0) 72.2(6.2) 67.5(6.7) 61.2(5.1) 70.4(7.3)

Quantile 82.1(3.1) 85.7(1.9) 92.5(2.3) 87.6(3.1) 69.3(5.8)

0.7N(0,1)+0.3Cauchy Robust 88.0(7.4) 87.5(7.5) 90.7(5.5) 92.8(6.1) 82.7(6.4)

Nonrobust 72.7(10.4) 74.4(14) 89.3(7.5) 92.5(8.9) 74.4(10.5)

Stute 58.2(6.2) 64.9(7.8) 68.6(5.0) 63.0(4.9) 62.4(6.6)

Quantile 82.3(2.6) 86.3(2.7) 92.4(3.1) 88.6(2.1) 70.6(3.4)

0.95N(0,1)+0.05t(3) Robust 73.4(5.8) 87.7(6.5) 92.5(5.1) 78.8(5.6) 90.6(6.3)

Nonrobust 78.9(7.5) 85.8(9.9) 87.6(10.0) 80.7(9.4) 89.0(8.4)

Stute 66.2(4.8) 68.9(5.5) 68.6(5.0) 68.3(5.1) 68.9(4.2)

Quantile 80.4(3.1) 83.1(4.1) 89.9(2.4) 86.6(4.1) 69.4(7.0)

0.85N(0,1)+0.15t(3) Robust 83.0(7.5) 84.7(8.2) 82.6(5.8) 79.4(7.0) 86.4(6.2)

Nonrobust 74.5(9.8) 76.6(11.2) 74.7(12.5) 76.4(13.6) 77.5(10.0)

Stute 57.2(5.3) 64.6(6.2) 68.6(5.0) 67.6(5.4) 65.8(6.1)

Quantile 81.6(3.8) 83.9(3.3) 82.3(2.4) 86.6(2.2) 69.1(4.9)

0.7N(0,1)+0.3t(3) Robust 85.2(7.3) 90.0(6.7) 85.8(5.6) 94.8(5.3) 81.5(5.9)

Nonrobust 75.6(11.4) 75.2(10.3) 81.8(6.4) 83.0(5.3) 74.7(11.3)

Stute 57.2(6.2) 64.8(6.6) 68.6(5.0) 63.3(7.4) 62.0(5.9)

Quantile 79.7(2.7) 83.6(1.6) 91.9(2.3) 87.9(1.9) 68.3(6.1)
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Table 3

Analysis of the lung cancer data using the proposed method: estimates × 100. For interactions, values in “()” 

are the stability results.

Main effects Interactions

Age Gender Intensity Status Gene Age Gender Intensity Status

AP1S2 −1.0 −22.6 −0.1 37.4 20.8 −0.2(0.998)

BTD 0.8 −8.6 0.2 5.1 −56.7 15.9(1.000)

C10ORF54 0.7 2.7 0.2 6.2 3.2 −0.5(0.998)

CA5BP1 −1.2 −6.3 0.1 29.0 7.5 14.8(1.000)

CAPN1 −3.5 −8.9 0.3 −8.6 −50.0 −24.7(0.000)

CEBPB −1.0 −15.5 0.0 29.4 −41.6 8.1(0.998)

EFNA1 −0.7 5.9 1.0 4.0 −65.3 12.7(1.000)

FAM107B −1.2 −19.3 −0.1 16.2 29.2 −0.8(1.000)

FLRT3 −1.2 24.6 0.8 6.1 33.4 −1.5(0.998)

KATNB1 −0.0 0.5 0.2 26.6 −76.2 39.8(0.995) 30.6(0.059)

LRRC1 −3.6 −13.6 −0.3 64.5 25.5 −24.3(0.995)

LYRM5 0.8 −10.2 0.1 4.4 −12.0 −6.8(1.000)

AP1S2.1 −1.0 −22.6 −0.1 37.4 20.8 −0.2(0.998)

MYO18A 1.5 −15.9 0.1 −7.8 16.3 0.2(1.000)

NOD1 −1.3 16.0 −0.1 4.6 −28.9 −0.3(0.998)

NPLOC4 −3.3 −34.8 0.7 58.4 −76.3 14.4(0.998)

PLEKHO2 0.2 11.2 0.1 1.1 −15.3 −0.5(0.998)

POLR3GL −4.3 −1.7 0.0 63.0 28.2 0.1(0.998)

RAB27A 0.6 −12.9 0.0 10.1 14.4 −0.5(0.998)

SECISBP2L −3.7 −34.7 −0.5 55.3 30.4 −0.8(0.998)

SGTB 2.0 −17.5 0.2 3.3 7.4 0.2(0.995)

STRADB −0.7 −3.4 0.1 4.1 1.2 −48.5(0.995)

SWSAP1 1.9 −14.6 0.1 −2.9 −12.1 0.8(0.995)

TEP1 1.7 −33.3 0.3 −0.9 5.4 0.3(1.000)

TERF1 0.2 −22.0 −0.0 43.2 46.4 −18.9(1.000)

THOC1 0.9 30.9 1.2 −0.8 31.4 −67.4(0.002)

TIGD5 1.5 −11.6 1.1 −32.5 3.9 −10.4(1.000)

TK2 −1.0 −13.8 −0.4 25.0 24.7 −0.8(1.000)

TMEM54 3.7 −40.0 0.5 −33.2 −6.1 −69.2(1.000)

TMEM106A −0.8 −11.2 0.2 20.4 4.1 −0.3(0.998)

TOMM7 1.8 0.1 0.1 −7.7 −21.4 2.3(0.998)

TRIM34 0.4 5.5 0.2 2.1 −13.4 −0.3(0.998)

YARS2 0.5 8.1 0.9 −9.7 −5.8 −2.5(0.998)
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Table 4

Summary analysis results for the lung cancer data using different methods. Diagonals are the numbers of 

identified genes using different methods. Off-diagonals are the numbers of overlap-ping genes. In “()” are the 

numbers of overlapping interactions.

Robust Nonrobust Stute Quantile

Robust 33 9(5) 0(0) 0(0)

Nonrobust - 31 3(0) 1(0)

Stute - - 30 2(1)

Quantile - - - 28
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Table 5

Analysis of the lung cancer data using the Nonrobust method: estimates × 100.

Main effect Interaction

Age Gender Intensity Status Gene Age Gender Intensity Status

BCL10 5.5 79.8 0.3 105.6 10.3 −29.2

BTD 6.1 38.4 0.9 91.5 −187.4 94.8

CAPN1 6.1 77.3 −0.0 97.9 22.1 −36.2

CASK 6.4 59.1 0.4 81.9 90.5 −63.1

CSNK1G2 5.9 31.0 0.5 98.0 −20.5 −70.4

DOCK6 5.7 100.0 0.4 85.6 6.5 −35.4

ECI2 7.3 42.0 1.1 39.6 −87.0 57.3

ELMO3 5.1 88.5 0.1 122.5 −34.5 −12.1

FAM83H 5.6 57.3 0.5 116.1 113.1 −72.0

FASN 6.0 53.2 0.7 93.0 117.7 −78.4

KATNB1 6.2 59.6 0.4 85.0 55.6 −49.1

LYRM5 7.4 35.4 0.9 40.4 −43.4 12.2 32.8

MACROD1 5.8 73.2 0.3 99.1 73.1 −58.4

NACC2 6.1 65.9 0.3 92.6 100.7 −70.9

PKP3 5.8 73.9 0.1 99.0 43.3 −54.8

RBFA 5.8 62.4 0.1 104.4 10.9 −66.1

RNH1 6.0 70.6 0.5 79.8 14.9 −32.7

SCYL1 5.5 84.1 0.4 105.6 −36.2 −6.3

STRADB 6.1 59.7 0.9 76.1 −108.6 62.6

SWSAP1 5.8 69.7 0.4 92.9 18.0 −30.6

TEN1 5.6 66.3 0.6 104.1 21.9 −34.3

TIGD5 5.5 46.3 0.8 113.7 125.3 −73.9

TMEM54 6.1 54.6 −0.0 101.4 −1.3 −81.0

TNIP2 5.1 85.9 0.6 100.9 −50.6 −4.2

TOLLIP 6.3 68.2 0.5 73.2 39.8 −48.4

TTC22 5.6 72.3 0.1 114.0 −20.3 −51.8

WASH2P 5.7 25.2 0.3 109.1 19.9 −129.7

YARS2 8.1 18.8 1.1 13.9 −41.6 26.5

YIPF2 5.7 75.2 0.4 99.8 7.8 −27.4

ZNF512B 6.3 54.7 0.4 89.8 94.9 −45.3 −49.6

ZNF699 5.8 93.7 0.5 86.0 59.1 −56.4
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Table 6

Analysis of the lung cancer data using the Stute method: estimates × 100.

Main effects Interactions

Age Gender intensity Status Gene Age Gender Intensity Status

KLHL9 8.1 17.9 1.0 29.2 −358.5 5.4

TPD52L2 7.5 56.8 1.0 31.2 313.5 −4.7

TMEM129 7.7 21.9 1.1 28.5 −522.3 7.4

PCGF3 8.2 20.2 1.1 15.9 −527.4 7.6

XPNPEP1 7.8 30.0 0.9 26.1 −544.6 7.9

FDPS 7.6 24.8 1.1 37.0 254.2 −3.8

GFOD2 7.3 24.7 1.0 40.8 −447.1 6.1

MAGED4B 7.3 23.3 1.0 44.8 −654.5 9.2

PIGG 8.0 11.6 1.0 27.6 −354.2 5.1

UVSSA 8.3 21.3 1.0 17.1 −527.7 7.7

LAMTOR2 7.4 37.0 1.0 36.8 263.9 −3.7

CSNK1G2 7.2 26.4 0.9 44.5 −390.9 5.2

POLR3C 7.7 24.1 1.2 26.7 230.6 −3.3

CTBP1 7.9 17.1 1.1 24.4 −361.4 5.2

PRUNE 7.6 26.2 1.1 33.6 258.6 −3.7

NELFA 7.6 28.8 1.0 32.4 −464.8 6.6

MAEA 7.8 14.9 1.0 33.5 −418.3 6.0

RPS27A 7.7 33.9 1.0 27.1 401.0 −5.8

TBC1D14 7.6 21.4 0.9 34.0 −510.9 7.2

MAN2B2 7.7 27.7 1.1 21.9 −481.9 6.8

DGKQ 7.3 31.0 1.1 36.0 −552.6 7.7

RBFA 7.6 −0.7 0.9 39.7 −565.2 7.8

ACOX3 7.7 19.0 1.2 20.3 −595.1 8.2

TCF25 7.6 27.0 1.1 33.5 −578.8 8.5

PIGC 7.6 27.7 1.1 32.6 190.4 −2.7

TOLLIP 7.2 25.6 1.0 38.7 −393.2 4.9

CREG1 7.4 28.9 1.0 44.0 198.6 −2.9

RAB11B 7.1 30.2 1.1 46.4 −342.1 4.7

CDKN2AIP 7.8 40.2 0.9 32.3 −576.4 8.5

GAK 7.9 31.3 1.1 19.4 −452.0 6.5
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Table 7

Analysis of the lung cancer data using the Quantile method: estimates × 100.

Main effects Interactions

Age Gender Intensity Status Gene Age Gender Intensity Status

ARHGAP1 8.0 −18.2 0.8 16.1 −338.5 5.1

B3GALT4 7.9 −8.1 1.2 14.1 −58.9 1.5

BCL11A 8.1 −12.8 0.8 16.3 9.8

CDKN1A 8.1 −5.3 0.7 16.9 −193.6 2.5

CHIC2 8.3 −0.3 0.9 −1.0 −530.8 7.8 127.8

CHST10 8.1 −7.3 0.8 16.6 18.9

DNM2 8.0 −5.0 0.9 13.5 −245.4 3.4

FAM65A 7.8 5.0 0.8 18.5 −220.7 2.7

GATAD1 8.1 −4.2 0.9 11.8 −42.0 19.6

GGT5 8.2 −14.7 0.8 14.2 −152.4 1.7

GRB7 8.0 −5.1 0.6 24.0 −1.1 66.4

HIST1H4D 8.0 −13.5 0.9 16.7 13.0

LAS1L 7.8 −2.1 0.8 22.9 −12.8

LETM1 7.8 −3.4 1.1 15.6 −54.2 1.1

MAEA 7.8 −3.5 1.2 13.2 −36.1 0.6

PAPOLG 8.0 −16.6 0.8 12.5 16.0

PDGFA 7.9 2.5 0.8 23.1 −240.6 3.5

PDGFRA 8.0 5.7 0.6 21.1 −384.8 4.9 83.9

PPARD 8.1 −5.6 0.8 13.7 −270.3 3.8

PTAFR 8.2 −7.0 0.8 11.6 −258.1 3.7

RXRB 7.8 −5.2 1.4 7.1 −71.6 1.3

SCARNA9 8.1 −9.5 0.7 16.7 23.7

SLC12A4 8.0 −11.2 0.8 18.3 −224.0 2.7

TMEM204 8.1 −2.0 0.8 11.5 −317.9 4.2

TOLLIP 8.0 −6.3 0.9 11.7 −336.9 4.8

TOMM5 8.0 −6.9 0.8 17.8 25.2

ZNF141 7.5 24.8 1.4 8.0 −105.4 65.8 1.3

ZNF761 8.0 −19.2 1.0 17.0 −37.4 83.0
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