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Abstract

Background: To reduce disruptions of processes and the cost of maintenance,
predicting the onset of failure (or a similar event) of a physical system (or
components of a physical system) has become important. Prediction of onset of
failure would allow appropriate corrective actions at the right time. In this paper, we
present a method to predict the “onset” of failure (the start of a degradation process
or similar types of events) of a physical system that minimizes data collection and
personalizes it for the physical system. The method applies to situations where one
monitors the operating characteristics of the physical system at regular time intervals
by means of attached sensors and other measurement instruments. It creates a
model of the physical system, during normal operations, using the time-series data
produced by the sensors and measurement instruments. However, it does not create
or use any time-series models. It simply examines the distribution of time-series data
across different time periods. It uses this model of normal operations in subsequent
time periods to monitor the physical system for deviations from normality.

Results: We illustrate this method with an application to predict the “onset” of
subsequent decompensated heart failures for patients already treated for a heart
failure at a hospital. As part of an NIH study, these heart failure patients received two
ECG patches, an accelerometer and a bio-impedance measurement device for
regular monitoring for a period after their release from the hospital.

Conclusions: When dealing with non-homogenous, disparate physical systems,
personalized models can be better predictors of a phenomenon compared to
generalized models based on data collected from an assortment of such physical
systems. In medicine such models can be a powerful addition to the set of medical
diagnostic tools. And such personalized models can be built rather quickly without
waiting for extensive data collection.
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Background
In general, the first step to create a model of any phenomenon is data collec-

tion. For example, to predict fraud, an organization would collect data on differ-

ent fraud and non-fraud cases. And to predict breast cancer from biopsies, one

would collect data on different cases where the tumors were either benign or

malignant. In general, the basic idea in machine learning is to build models from

a diverse set of cases so that the models can “generalize” and accurately account

for the variety of cases that exemplify the phenomenon. However, the attempt to

generalize from a very diverse set of cases can sometimes be problematic and

can result in models that may not be very accurate in their predictions. Such

diversity of cases arise often in the medical field because human bodies become

very dissimilar physical systems over time. For example, one would find patients

with similar medical histories exhibiting different medical conditions making it

difficult to identify common medical profiles for certain medical conditions.

(Creating such common profiles is the task of generalization in machine

learning.) For instance, heart failure patients often have very different medical

histories and, thus, makes it difficult to build highly accurate profiles for them.

Hence, generalization and accuracy of prediction suffer with these kinds of

phenomena.

It is often possible to redefine the problem, especially when system degrad-

ation prediction is of interest, by simply focusing on the data produced by an

individual physical system. In this scenario, one simply would build models of

an individual physical system that, in effect, would define its normal operating

characteristics. Such models would no longer need to compare an individual

system’s behavior with other similar systems. They would therefore not require

extensive data collection for the purpose of “generalization.” In addition, they

could be built quickly, almost instantaneously in some cases, and be able to

capture the idiosyncrasies of a particular system.

Here is an example of such a situation. In one particular NIH study of decom-

pensated heart failure (DHF) [40], further discussed later in this paper, DHF

patients, after their first heart failure treatment, received a package of devices

for remote patient monitoring (RPM) on their discharge from the hospital. The

package included two ECG patches, an accelerometer and a bio-impedance

measurement device. The NIH study collected data from individual patients with

the RPM devices in order to predict the “onset” of next decompensated heart

failure for such patients. However, given the diversity of the patient population

in this study, any population-based predictive model, based on RPM and other

medical data of the patients, would not be very accurate. In this paper, we

redefine the prediction problem in such situations and show that a personalized

model for each individual patient, based simply on the RPM data, would be

much more accurate in its prediction of the “onset” of DHF.

In this paper, we propose a method for personalized modeling of a physical

system for failure prediction (or, to be precise, predict the start of the degrad-

ation process of a system) based on time-series data produced by sensors and

other measurement instruments. We then show the application of this method

to predict the “onset” of subsequent decompensated heart failure of three
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patients from the NIH study. Heart failures are generally a slow degradation

process and are similar to slow failure processes of many other physical systems.

Thus, the method can be applied to failure prediction of machinery and produc-

tion processes with similar characteristics. Although the proposed method uses

time-series data produced by sensors and other instruments, it does not actually

construct or use any time-series models. It simply examines the distribution of

time-series data across specified time cycles to make predictions about the

“onset” of failure. Prediction of the “onset” of slow degradation processes is also

not strictly anomaly detection but is more about trend analysis. The advantage

of personalized modeling is that it does not require large amounts of data

collection about other similar systems. And for situations where it is difficult to

generalize from diverse population characteristics, personalized models can be

far more accurate.

Literature review - remaining useful life (RUL) approach to failure prediction

Prediction of remaining useful life (RUL) of a physical system, before it is likely to

require repair or replacement, is widely used for predictive maintenance. RUL

methods, also called prognostic methods, are broadly classified as two types: (1)

data-driven methods and (2) model-driven methods [28]. Data-driven approaches

use statistical and machine learning methods on historical failure data of similar

systems to build prognostic models. Traditional data-driven approaches include

autoregressive (AR) and threshold autoregressive models [3, 42], projection pursuit

models [12] and multivariate adaptive regression splines models [13]. More recent

data-driven approaches include a variety of neural network models [2, 19, 20, 27,

37, 41]. Model-based approaches use models that describe the physics of the

system [1, 7, 30].

Liu et al. [28] proposed a data-model fusion framework for system state prog-

nostics. Nystad et al. [34] investigated the problem of estimating the remaining

useful life using stochastic lifetime models and considered randomly distributed

failure thresholds. Gola and Nystad [16] combined a condition monitoring

system that provides reliable calculations of the actual erosion state of a choke

valve during its operation with a lifetime RUL model. In effect, it adjusts a life-

time RUL model using real-time system monitoring data. Lei et al. [26] proposed

a model-based method for predicting RUL that has two modules: (1) an indica-

tor constructor which fuses mutual information from multiple features and

properly correlates to the degradation processes of machinery, and (2) a RUL

predictor that uses a particle filtering-based algorithm.

Casoetto et al. [3] constructs a model of normal behavior of a system by fusing

multiple sensor signals during its normal operation. Using this model, they then

monitor the behavior of the system for degradation, expressed by drift of signals

away from the normal. They fit an Autoregressive (AR) model to time series sig-

nals of multiple sensors and extract the Power Spectral Density (PSD) peaks of

individual sensor readings from the roots of the corresponding AR model charac-

teristic equation. These features, extracted during normal operations, are saved as

the model of normal operating behavior. Their overall idea is very similar to ours
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in the sense that they build a personalized model of a process or system and do

not use any historical data. They predict failure (degradation) by observing drift

in the behavior of the system. However, our signal fusion method is completely

different from their method.

Qiu et al. [37] present a prognostic method that includes a wavelet filter-based

method for signal de-noising, weak signature enhancement for fault identification and

two Self Organizing Maps (SOMs) for performance assessment and degradation detec-

tion to detect defects at an early stage in rolling element bearings. The approach, in

principle, also constructs a personalized model by training the SOMs with normal op-

erating data of a system. We also use SOMs in our method as discussed later. However,

the way they use SOMs to track system degradation is completely different from ours.

Plus, we do not use any wavelet-based method for signal denoising.

Literature review – predictive models in personalized medicine

There are many ongoing efforts to use predictive models in personalized medicine that

rely more on individual patient’s medical history and data. We cite a few here. Nevins

et al. [32] provide a model building framework to combine multiple types of data, both

genomic and clinical, of individual patients to better predict breast cancer treatment

outcomes. Esteban et al. [11] model the clinical evolution of individual patients, which

usually is composed of thousands of events such as ordered tests, lab results and diag-

noses, to predict the future sequence of events for clinical decisions. Their specific

work related to patients with kidney failure who either obtained an organ transplant or

were still waiting for one. They construct neural network models in combination with

embeddings in a clinical context. Che et al. [6] propose a model to personalize predic-

tion of Parkinson’s disease progression. It learns patient similarity from longitudinal

and multi-modal patient records with a Recurrent Neural Network (RNN) architecture.

Ng et al. [33] propose a method to build personalized predictive models to predict the

onset of diabetes in patients. They show that personalized models (they use logistic

regression models), built using data of similar patients, outperform global models that

use data for all patients. Jiang et al. [21] propose a new method to calibrate a predictive

model for individual patients; it uses a similar group of patients for calibration. Lee

et al. [24] used a cosine-similarity based patient similarity metric to identify similar

ICU patients from an ICU database and to dynamically build 30-day mortality predic-

tion models for individual patients. Their model outperformed the general, one-size-

fits-all model for such predictions. Lee [25] uses the same idea of finding similar

patients but uses a random forest model instead of cosine similarity, to build a custom-

ized model for an individual patient. Many of these methods, particularly the ones that

use a similar group of patients, use notions from the collaborative filtering method used

in personalized recommendation systems in e-commerce. In summary, to build predict-

ive models for personalized medicine, these are the kinds of approaches being used.

Literature review - predicting heart failure

Ross et al. [39] performed a systematic review of studies evaluating patient

characteristics associated with hospital readmission for heart failure (HF). Rahimi

et al. [38] reviewed the literature for risk prediction models for patients with
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heart failure and identified the most consistently reported independent predic-

tors of risk across models. Kansagara et al. [22] assessed the performance of the

prevailing set of models that predict hospital readmission. Mortazavi et al. [31]

used data from Telemonitoring to Improve Heart Failure Outcomes trial [5] to

compare the effectiveness of various machine learning methods to predict 30-

and 180-day all-cause readmissions and readmissions because of heart failure.

Choi et al. [8] used a recurrent neural network (RNN) model to predict the ini-

tial diagnosis of heart failure. The RNN model exploited temporal relations

among events in electronic health records (EHRs) and used 3884 HF records of

primary care patients. They also compared it with other models such as logistic

regression, neural network, support vector machine and K-nearest neighbor clas-

sifiers. Wang et al. [44] used structured and unstructured data from electronic

health records to predict the onset of heart failure and varied the prediction

window from 60 to 720 days before heart failure diagnosis. They used a total of

1684 heart failure records of primary care patients. Dai et al. [9] used five ma-

chine learning models to predict heart-related hospitalizations. They used EHR

data of patients with heart disease from a large urban hospital in Boston.

The rest of the paper is organized as follows. The “Method” section provides

an overview of the nature of the proposed personalized model and the data col-

lected and used to predict the “onset” of heart failure using such a model. The

“Results” section has the detailed steps of the proposed method. The

Table 2 Slicing across time-series to create each data point for clustering

Data Point Time t X(1) X(2) X(3) X(4)

D1 t = 1 1 2 3 4

D2 t = 2 5 6 7 8

D3 t = 3 0 2 4 6

D4 t = 4 3 5 7 9

D5 t = 5 2 4 6 8

D6 t = 6 1 3 5 7

D7 t = 7 5 3 1 0

D8 t = 8 2 4 6 8

D9 t = 9 5 4 3 2

Table 1 Different types of biosensors and the biosignals generated by them. From Pantelopoulos
& Bourbakis [35] and with permission of IEEE
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“Discussion” section shows the application of the method to predicting the

“onset” of decompensated heart failure for three patients in the NIH study. The

“Conclusions” section provides some concluding remarks.

Method
The proposed method is based on time-series data

The proposed method is about personalizing a model for a physical system to

predict the “onset” of its degradation process. Such a model is solely based on

Fig. 1 A 2-dimensional Kohonen map

Table 3 Count of data points at each node (cluster) of a 4 × 3 (12 node) Kohonen SOM after
training

Node Number Count of data points
assigned to the node

Node 1 17

Node 2 14

Node 3 87

Node 4 9

Node 5 16

Node 6 5

Node 7 26

Node 8 6

Node 9 7

Node 10 63

Node 11 23

Node 12 15
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data recorded at certain time intervals by a monitoring system for the physical

system. It does not use or depend on any prior knowledge about such physical

systems. For plants and machinery, such a monitoring system typically would

consist of different types of sensors attached to them, such as the ones to

measure vibration, pressure and temperature. For the heart failure case study

discussed in this paper, the remote patient monitoring (RPM) system consisted

of two ECG recording patches, an accelerometer to monitor the patient’s activity

and a bio-impedance measuring device.

The sensors of a monitoring system can generate data at different frequencies.

For example, ECG patches generate data every few milliseconds while blood

pressure and weight might be recorded only a few times a day. The data gener-

ated by a sensor is essentially time-series data. When multiple sensors generate

data at different frequencies, the frequencies need to be aligned for modeling

purposes. There are different ways to align slow and high frequency time-series

data. For example, temperature or pressure, if they are measured too frequently,

can be averaged over a time interval to produce a lower frequency time-series.

In the same way, if weight is measured infrequently, the same weight value can

be used at subsequent time points until a new weight is recorded.

Sensor data is usually collected by external devices which then can extract

additional information from them. The extracted features, in turn, define

additional time-series. In general, multiple sensors and downstream devices

collectively produce streaming time-series data. Thus, we can define a physical

system by the characteristics of such a collection of different time-series. One

way to predict the “onset” of degradation (the “onset” of failure) is to model

each time-series from the data generated during normal operations of the phys-

ical system, then monitor the physical system using these time-series models

and look for deviations from the normal operating mode [3]. However, we do

not create any time-series models in our approach. Instead, we look for changes

in the distribution of time-series data over time and then isolate one or more

time-series that potentially is causing the degradation.

Table 4 Count of data points in the consolidated clusters of the 4 × 3 (12 node) Kohonen SOM

Nodes combined Count of data points in
the consolidated clusters

2, 3, 5, 6, 7 148

1, 4 26

8, 9, 10, 11, 12 114

Table 5 Cluster sizes in consolidated form in three different Kohonen SOMs

Cluster sizes in consolidated form Average

4 × 3 SOM 3 × 3 SOM 5 × 2 SOM

148 133 151 144

26 33 28 29

114 122 109 115
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On the decompensated heart failure study

Since we will illustrate each step of our method with a few heart failure cases, we

present some background information on the NIH supported decompensated heart

failure study at Mayo Clinic that provided the data for these cases. The NIH study

[40] used the BodyGuardian remote monitoring system from Preventice [36]. The

BodyGuardian remote health management system is an FDA 510 approved device

used for remote monitoring of cardiac patients. It has a front-end that includes an

adhesive snap-strip body sensor (BodyGuardian) with built-in electrodes that meas-

ure ECG signals and bio-impedance. It also has a 3-way accelerometer. Overall, the

system measures heart rate, ECG, respiration rate (RR) and activity. It also commu-

nicates with off-body sensors such as a BP cuff and scale to incorporate BP and

weight data. In addition, it solicits symptoms from the user thus acting as an event

recorder and recording simultaneous physiologic data. It wirelessly transmits all

data to a central data analysis hub.

From ECG signals, bio-impedance measurements and accelerometer data, Body-

Guardian derives 56 features. It classifies activity level in the range 0 to 100, which

is then binned into 10 ranges. From the activity data, it derives three basic body

positions: lying, leaning and standing. We excluded activity level and body position

data from our model. From ECG data, it extracts a number of features including:

PVC (premature ventricular complex), SVC (supraventricular complex), NSR

(normal sinus rhythm), Unclassified Rhythm, SinTachy (sinus tachycardia), SinBrady

(sinus bradycardia), IVCD (interventricular conduction delay), Mobitz 1 and 2, AV

Block (atrioventricular block), PJC (premature junctional complex), PAC (premature

atrial contractions), SVTA (supraventricular tachyarrythmia), AFib (atrial fibrillation

- slow, normal, rapid), IVR (idioventricular rhythm), VT (ventricular tachycardia),

VF (ventricular fibrillation), minimum heart rate and maximum heart rate. The

data also includes blood pressure, respiration rate and weight.

We decided to have the data averaged every 5 min for modeling purposes,

although the data is available on a finer time scale. In effect, we are observing

the patient every 5 min. When recorded continuously during a day, one gets 288

observations. We decided to create a model using BodyGuardian data for a

single day and, then, use that model to track changes in the patient’s physio-

logical profile on subsequent days. Since the physiological measurements vary

Table 6 Four highest ranking features for three individual patients

4 highest ranking features

Patient A SVC SinTACHY Respiration Rate NSR

Patient B PVC SVC SinTACHY NSR

Patient C Afib normal Unclassified rythm Respiration Rate NSR + IVCD

Table 7 Cluster data distribution for patient A on subsequent days of monitoring
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during the course of a day, our approach is to model the distribution of the

physiological data during the day.

Since, in this study, Mayo Clinic provides a patient with the BodyGuardian

device only after a heart failure treatment, in general, we create a model for a

patient after a full day of recording following discharge from the hospital. One can

construct models using data over several days following discharge from the

hospital, but there is a risk in the sense that there could be onset of decompensa-

tion very soon after discharge. The model is meant to reflect the physiological state

of the patient before the onset of a subsequent decompensation.

We do not use any clinical data of patients in our models. Nor do we use data

of other patients to build each individualized patient model. This concept of

creating a personalized model based predominantly on data generated by

wearable biosensors is new and may have wide applicability in many situations.

Table 1 (from [35]) shows some typical biosensors in use today and the

biosignals generated by them. There are many factors driving the growth in

usage of such wearable devices including: an aging population worldwide, the

need to reduce hospital and emergency visits, and the need to monitor and

manage chronic diseases remotely.

Results
Here are the steps of the proposed method:

Step 1: Select a set of time-series to use for modeling the physical system. This set

may include both original sensor/device measurements (e.g. weight, blood pressure of

a patient) and derived measurements (e.g. QRS complex, atrial premature complexes

from an ECG).

Table 8 Cluster data distribution in percentage for patient A on subsequent days of monitoring

Fig. 2 Figure shows the cluster data distribution change in graphical form
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Step 2: Determine a time interval P for recording time-series data and record

the average values of the selected time-series within that time interval from

streaming data. For example, the time interval P can be a millisecond, a minute

or 5 min and would depend on how frequently one should observe the physical

system for degradation or “onset” of failure or certain other events.

Step 3: Suppose we record the average values of N time-series in each time interval of

duration P. Suppose T is the total number of observed time intervals during normal

operations of the physical system, and X (t, i), i = 1…N, t = 1…T, the average value of

the ith time-series at the tth time interval. Thus, X (t, i), i = 1…N, is an observation of

the physical system across all N time-series at time t. Each time-series i, i = 1…N, rep-

resents a feature in the dataset.

Step 4: Using T collected observations of N time-series, create a clustering model to

record the distribution of time-series data in that observation period T*P.

For example, one can monitor a heart failure patient every 5 min (P = 5 min) for

a day (T = 12 * 24 = 288 durations of 5 min) to create a model of the patient. One

can use a clustering model, such as Kohonen Self-Organizing Map (SOM) [23], to

model the distribution of the time-series data. The resulting clustering model

represents normal behavior of the physical system and shows the distribution of

time-series values normally observed within a period of time T*P.

Step 5: Obtain a ranking of the features (time-series) using any unsupervised feature

ranking method or from the clustering method.

Step 6: Monitor the physical system in subsequent periods of length T*P using the

model created in Step 4 and data from the N time-series. The monitoring tracks

any changes in the distribution of time-series data. Monitoring essentially means

passing the data through the clustering model and assigning each datapoint to the

closest cluster. To understand the factors that cause a change from the normal

behavior of the physical system, track some of the highest-ranked features (time-

series) found in Step 5.

Table 9 Average feature values (or counts of feature values) for patient A on subsequent days of
monitoring

Table 10 Average feature values (or counts of feature values) as percentage of day 0 values for
patient A on subsequent days of monitoring
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For example, one can create a model of a heart failure patient, using remote monitor-

ing data, the day after discharge from a hospital and that model would then define

“normal functioning” of the patient after the hospital treatment. One would then use

that model to monitor the patient on subsequent days using the N time-series data for

each day.

Step 7: If significant deviation in the distribution of the time-series data and in the tra-

jectory of some of the highest ranked features occurs during the monitoring period,

notify/alert a supervisory system of the change from normal.

Discussion
Application of the method to predict the “onset” of decompensated heart failure

The “Method” section explained Steps 1 and 2 of the method for the heart

failure case study: (1) selection of time-series for modeling the patients, and (2)

determination of the time interval P for time-series measurements. Step 3 sets

up the data for clustering in Step 4. Here is an example of proper structuring of

the data for clustering. Table 2 shows four time series – X(1), X(2), X(3) and

X(4) – and 9 values for each recorded over 9 time intervals. The first data point

for clustering is D1 = [1, 2, 3, 4] and the last data point is D9 = [5, 4, 3, 2]. In

essence, for the clustering model, each time-series corresponds to a feature and

we slice the time-series data across time.

Step 4 of the method - clustering

In Step 4, the method creates clusters to characterize the distribution of the data during

normal operations of the physical system. In our implementation, we used Kohonen’s

Self Organizing Map (SOM) [23] for clustering. However, one can use other methods

Fig. 3 Figure shows the distribution change in graphical form for SVC, SinTACHY and NSR

Table 11 Cluster data distribution for patient B on subsequent days of monitoring
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as well such as K-means clustering [29]. Ghesmoune et al. [15] has a comprehensive

survey of data stream clustering methods.

A two-dimensional rectangular grid defines a Kohonen SOM as shown in Fig. 1. For

example, a grid of size 4 × 3 has 12 nodes.

As part of this step, since randomness is inherent in any clustering method,

we train Kohonen SOMs of different sizes (e.g. 3 × 3, 4 × 3, 5 × 2) to verify the

data distribution. In addition, after training the Kohonen SOMs, we combine

nearby nodes (nearby clusters) of each SOM to verify the consistency of the data

distribution across the SOMs. For example, suppose we train a Kohonen SOM

of size 4 × 3 with data from 1 day of remote monitoring of a heart failure

patient (which produces 288 data points) and let us suppose the resulting 12

node SOM produces the clusters shown in Table 3. We then combine the

closest nodes (clusters) to produce more consolidated clusters. Table 4 shows

the result of such a consolidation that produced three clusters from the 4 × 3

SOM clusters in Table 3. Table 5 shows the consolidated data distribution

(cluster sizes) from three different Kohonen SOMs of sizes 4 × 3, 3 × 3 and 5 × 2.

The consolidation process produces a data distribution that is invariant to the

Kohonen SOM size.

Step 5 – feature ranking

One can get feature rankings by a variety of means [4, 10]. Table 6 shows the four

highest-ranking features (out of 42 features) for three different heart failure patients.

Here the features correspond to the time-series. Note that the top-ranking features

Table 12 Cluster data distribution in percentage for patient B on subsequent days of monitoring

Fig. 4 Figure shows the cluster distribution change in graphical form
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(time-series) are different for the three patients and essentially characterize each patient

individually along with the associated data distribution.

Step 6 – individual patient monitoring using the clustering model and the ranked

features

Here we show the application of personalized clustering models and the ranked fea-

tures to three different decompensated heart failure patients from the NIH supported

study at Mayo Clinic. We will label the patients as A, B and C. We discuss each case

separately below.

Patient A – readmitted to the hospital 17 days after hospital discharge

Patient A was a 76 years old male who had hypertension and diabetes. Remote

monitoring of the patient, after the first heart failure treatment, started 10 days

after discharge from the hospital. We created a personalized model on the first

day of data collection (Day 0) and used it to monitor the patient on subsequent

days. Assignment of data on subsequent days to the 3 Day 0 clusters (Clusters

1, 2 and 3) was on a nearest cluster basis. Table 7 shows the cluster data distri-

bution of time-series data on subsequent days. Table 8 shows these values as a

percentage of the total recordings each day. Figure 2 shows the cluster data dis-

tribution change in a graphical form. As one can observe, the cluster distribu-

tion changed drastically from Day 1. The hospital readmitted the patient for

heart failure on Day 11. A fair estimate would be that the “onset” of decompen-

sation started around Day 1 and confirmed by similar observations on subse-

quent days.

Table 9 shows the average values (for Respiration Rate) or counts (for SVC,

SinTACHY and NSR) for each day of the four highest ranked features for patient

A. Table 10 shows these values as a percentage of the values on Day 0. Figure 3

shows the distribution change in a graphical form for SVC, SinTACHY and NSR,

the three highest ranked features. These physiological features provide additional

information - with their upward, downward or fluctuating trends - to support a

judgment about the “onset” of decompensation and about potential treatment.

Table 13 Counts of feature values for patient B on subsequent days of monitoring

Table 14 Counts of feature values in percentage of day 0 values for patient B on subsequent days
of monitoring. SinTACHY was skipped because it’s Day 0 value is 0
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From the accelerometer data, BodyGuardian calculates whether the patient is

standing, leaning or lying. Data for Patient A showed that he was standing or

leaning almost 100% of the time from Day 1. Cardiologists generally know that

decompensated heart failure patients cannot lie supine because of breathing

problems. Thus, body position is another indicator of heart failure. In this case,

multiple indicators confirm the “onset” of decompensated heart failure on Day 1.

Patient B – readmitted to the hospital 17 days after hospital discharge

Patient B was a 73 years old female who had hypertension, diabetes and other

ailments. Remote monitoring of the patient, after the first heart failure

treatment, started the day after discharge from the hospital. We created a per-

sonalized model on the first day of data collection (Day 0) and used it to moni-

tor the patient on subsequent days. Assignment of data on subsequent days to

the 3 Day 0 clusters (Clusters 1, 2 and 3) was on a nearest cluster basis. We

dropped Days 5 and 6 because there was minimal monitoring on those days.

Table 11 shows the cluster data distribution of time-series data on subsequent

days. Table 12 shows these values as a percentage of the total recordings each

day. Figure 4 shows the cluster distribution change in a graphical form.

As one can observe, the cluster distribution fluctuates until Day 10 and then

cluster 1 size increases from Day 11 to 14. There was minimal data collection on

Day 16. The hospital readmitted the patient for weakness, tiredness, abdominal

pain and other problems on Day 17. From the cluster distribution in Fig. 4, one

can infer that the “onset” of the medical problems most likely started on Day 11

when the cluster distribution started to change.

Fig. 5 Figure shows the distribution change in graphical form for SVC, SinTACHY and NSR

Table 15 Cluster data distribution for patient C on subsequent days of monitoring
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Table 13 shows the counts for each day of the four highest ranked features for

patient B for the corresponding days in Table 11. Table 14 shows these values

as a percentage of the values on Day 0. Figure 5 shows the distribution change

in a graphical form for PVC, SVC and NSR, three of the four highest ranked

features. These physiological features provide additional information to support

a judgment about the “onset” of decompensation-related problems and about

potential treatment. For this patient, accelerometer data shows that she was

standing or leaning on the average 85% of the time every day from Day 10 to 15

compared to 69% average on prior days. In this case, multiple indicators confirm

the “onset” of heart failure related problems on about Day 10 or 11.

Patient C – not readmitted to the hospital during the monitoring period

Patient C was a 75 years old male who had hypertension and was hospitalized

for COPD or asthma. Remote patient monitoring started about 3 weeks after

hospital discharge, but the patient used the devices only part of the day on

many of the days. We created a personalized model on the first day of reason-

ably good data collection and used it to monitor the patient on subsequent days.

Table 15 shows the cluster data distribution of time-series data on subsequent

days where Day 0 corresponds to the day of model creation. Table 16 shows

these values as a percentage of the total recordings each day. Assignment of data

on subsequent days to the 3 Day 0 clusters was on a nearest cluster basis. We

dropped several days because there was minimal monitoring on those days.

Figure 6 shows the cluster distribution change in a graphical form. As one can

observe, the data distribution remains fairly steady on the days that had good

Table 16 Cluster data distribution in percentage for patient C on subsequent days of monitoring

Fig. 6 Figure shows the cluster distribution change in graphical form
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monitoring. There was no re-admittance of the patient to the hospital during

the monitoring period.

Table 17 shows the counts for each day of the four highest ranked features for

patient C for the corresponding days in Table 15. Table 18 shows these values

as a percentage of the values on Day 0. Figure 7 shows the distribution change

in a graphical form for Afib normal, Unclassified rhythm, Respiration Rate and

NSR + IVCD, the four highest ranked features. These physiological features

provide additional information - with their upward, downward or fluctuating

trends - to support a judgment about the “onset” of decompensation-related

problems and about potential treatment.

For this patient, accelerometer data shows that he was standing or leaning on

the average 66% of the time during a day for the days in Table 15, which means

he was sleeping well. In this case, there were no significant indicators predicting

the “onset” of a major medical event. In fact, the patient did not return to the

hospital during the monitoring period of about a month.

Conclusions
In medicine, where we encounter non-homogeneous, disparate physical systems,

generalized predictive models based on a population of patients may be less

accurate compared to personalized models, as demonstrated by Ng et al. [33].

Generalized models are also expensive to build because they require extensive data

collection. And, because they require extensive data collection, there is a significant

wait time for generalized models. On the other hand, a personalized model of the

type proposed here can be built quickly because it needs data from just one

individual patient whose model is to be built.

Note that the method proposed here does not use any information from electronic

medical records (EMR) or electronic health records (EHR) of a patient or find similar

patients for comparison. However, many of the other personalized predictive models,

such as those of Che et al. [6], Ng et al. [33], Jiang et al. [21], Lee et al. [24] and Lee

[25], use EMR/EHR data of similar patients to build their personalized predictive

models.

Table 17 Average feature values (or counts of feature values) for patient C on subsequent days of
monitoring

Table 18 Average feature values (or counts of feature values) as percentage of day 0 values for
patient C on subsequent days of monitoring
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In general, in the context of personalized medicine [18], personalized models can be

a powerful addition to the set of medical diagnostic tools. Personalized models offer

more accurate predictions and information compared to generalized models based on a

whole population of patients,

Now that ECG measurements are becoming common in many consumer and

medical-grade wearable devices (such as Apple Watch Series 4 or later [14], Quardio-

Core [43], AliveCor [17], Samsung S-Patch 3 [45]), personalized model building on

wearable devices may not be far away.
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