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Abstract

Dynamic mathematical models in biotechnology require, be-
sides the information about the stoichiometry of the biological
reaction system, knowledge about the reaction kinetics. Modu-
lation phenomena like limitation, inhibition and activation oc-
cur in different forms of competition with the key enzymes re-
sponsible for the respective metabolic reaction steps. Theiden-
tification of a priori unknown reaction kinetics is often a crit-
ical task due to the non-linearity and (over-)parameterization
of the model equations introduced to account for all the pos-
sible modulation phenomena. The contribution of this paper
is to propose a general formulation of reaction kinetics, asan
extension of the Michaelis-Menten kinetics, which allows lim-
itation/activation and inhibition effects to be describedwith a
reduced number of parameters. The versality of the new model
structure is demonstrated with application examples.

1 Introduction

The dynamic model of a perfectly stirred tank bioreactor is usu-
ally derived from mass balances, which lead to a differential
equation system for the concentration vector~c ∈ R

n:

d~c (t)

dt
= K~r (~c (t)) − ~c (t)D (t) + ~u (t) ; ~c (t0) = ~c0. (1)

The matrixK ∈ R
n×m contains the information on the stoi-

chiometry of the reaction system and is usually time-invariant.
The vector~r ∈ R

m contains the reaction rates of each individ-
ual reaction and is usually a non-linear vector function of the
concentrations.D ∈ R is the renewal (or dilution) rate and
~u ∈ R

n contains the reactor input conditions.

There is a large variety of mathematical descriptions of there-
action kinetics available in the literature, most of them adapted
heuristically to a specific phenomenon and often similar oneto
each other. A rather extensive list of models is given in [3].

Mathematical modelling of biological reaction systems is adif-

ficult task, when littlea priori knowledge about the stoichio-
metric coefficients and the kinetics is available. A systematic
approach is therefore necessary to find the best model struc-
ture and the best values of the model parameters with respect
to some imposed criterion. For instance, in terms of model
identification, the optimal structure is characterised by mini-
mal correlations between parameters and maximal identifiabil-
ity properties. In terms of state estimation and control, how-
ever, simplicity and (non-)linearity play important roles.

A model identification strategy has recently been proposed by
Bogaerts [5], which – under certain conditions – decouples the
estimation of stoichiometry and kinetics within a macroscopic
modelling approach. Therefore, both model components can
be identified independently of each other. However, the formu-
lation of the kinetic model used by Bogaerts [5] departs from
the commonly accepted models (exponential functions instead
of rational models) and does not allow all the modulation phe-
nomena to be parcimoniously represented.

Following the above-mentionned identification strategy, this
contribution addresses the problem of deriving a general for-
mulation of the reaction kinetic model, which would be in
agreement with widely-used classical expressions, and which
would allow the description of the main limitation/activation
and inhibition effects with a minimum number of parameters.

This paper is organised as follows: In section 2, some com-
monly used models are introduced and discussed. A general
modelling approach for limited and inhibited reaction kinetics
is proposed in section 3 and its properties are discussed. The
potential of the new formulation is illustrated by means of two
examples in section 4. Section 5 concludes this paper.

2 Classical Models

The most famous model is certainly the phenomenologically
based approach of Monod [7], which was found for the growth
of bacteria cultures on a single substrate:

S
µx
−→ X. (2)



It is characterised by a maximum (specific) growth rateµmax ∈
R

µ (s) = µmax
s

s + K
, (3)

which is reached with an increasing substrate concentrations ∈
R of the limiting substrate according to the constantK ∈ R,
often called half-saturation constant, becauseµ (K) = 1

2µmax.
Monod’s equation (3) is structurally identical to Michaelis-
Menten kinetics [2] derived for enzymatically catalysed reac-
tions:

S + E 
 ES
q

−→ P + E (4)

assuming reaction equilibrium in the first enzymatic step and a
rate-limiting irreversible reaction in the second step:

q (s) = qmax
s

s + KM
. (5)

Following the same line of thought, expressions for more com-
plex cases can be derived as shown in table 1.

The presence of modulators (or effectors) also influence there-
action rate. Inhibitors (or negative effectors) form an inactive
complex with at least one of the substrates or intermediatesin
the reaction chain. For the enzymatic system (4), there are al-
ready three different patterns leading to the respective equa-
tions shown in table 2.

inhibition type enzymatic kinetic expression
reaction path

competitive E + I 
 EI q = qmaxs/KS

1+s/KS+i/KI

uncompetitive ES + I 
 ESI q = qmaxs/KS

1+s/KS(1+i/KI)

non-competitive

E +I 
 EI

ES +I 
 ESI

EI +S 
 ESI

q = qmaxs/KS

(1+s/KS)(1+i/KI)

Table 2: Different types of reversible inhibition of enzymatic
reactions (4).

As a special case, the non-competitive reversible autoinhibi-
tion, i.e. I ≡ S, leads to the well-known Haldane equation [1]

q = qmax

s
KS

(

1 + s
KS

) ·
1

(

1 + s
KI

) =
qmax

1 + s
K1

+ K2

s

, (6)

which is often applied to global reactions such as growth of
biomass on an inhibitory substrate.

Many other laws have been reported in the literature for simple
systems, especially single substrate – single biomass – single
product systems, most of them found heuristically in order to
describe a specific phenomenon. The choice among them is
often a question of taste, since many of them are rather similar.
There is therefore no real justification for the preference of one
kinetic model over the others. Anyway, Monod’s law is the
most widely used kinetic expression due to its simplicity and
its physical and phenomenological background.

For more complex reaction systems with littlea priori qual-
itative knowledge on the exact enzymatic interaction on the

individual reactions, one is often content to write the kinetic
expression as the product of individual phenomena such as lim-
itation, activation and inhibition:

q = qmax

∏

j

αj

(

cij

)

(7)

with 0 ≤ αj ≤ 1 ∀j. This expression usually represents an
extension of the Michaelis-Menten kinetics with modulations
of non-competitive character.

For example, Batt and Kompala [4] have used the approach (7)
for the compartmental modelling of hybridoma cells with

αj =
cij

cij
+ Kj

for limitation and (8)

αj =
Kj

cij
+ Kj

for inhibition. (9)

If no a priori knowledge is available about the structure, i.e.
if a systematic modelling approach is necessary for the selec-
tion of the reaction kinetics, a rather general formulationcould
therefore be written

q = qmax

n
∏

i=1

ci

ci + Klim,i
·

Kinh,i

ci + Kinh,i
, (10)

which results in2n + 1 model parameters for each considered
reaction. This obvious overparametrisation of the kineticex-
pression will certainly lead to identifiability problems. More-
over, due to the physical meaning of the modulation constants
Klim andKinh, which are reasonable for positive values only,
the identification method has to handle (lower bound) con-
straints. Finally, if the reaction rateq is insensitive to a compo-
nenti, the solution for its modulation constants isKlim,i ≡ 0
andKinh,i ≡ ∞, which could cause problems to the optimisa-
tion algorithm.

3 On a General Kinetic Model

For the systematic identification of a model witha priori un-
known kinetics, it is necessary to build up a model structure
capable of representing the most common biological phenom-
ena with the fewest parameters. This almost always results in a
compromise between the model generality and the level of de-
scription (parametrisation) that can be recovered in the model
identification step.

A general kinetic model should at least be able to reproduce the
two major tendencies of modulation:

• the positive effect (limitation, activation) of a component
on the reaction rate, i.e.q is monotonically increasing
with ci;

• the negative effect (inhibition) of a component on the re-
action rate, i.e.q is monotonically decreasing withci.

The invariance ofq with respect toci should also be contained
as a special case.



case enzymatic reaction path kinetic function

reversible reaction E + S 
 ES 
 E + P q (s, p) =
qS,maxs/KS−qP,maxp/KP

1+s/KS+p/KP

two-substrate reaction

E + S1 + S2 
 ES1 + S2 
 ES1S2

E + S1 + S2 
 ES2 + S1 
 ES1S2

ES1S2
q

−→ E + P

q (s1, s2) = qmax

1+
K21
s1

+
K12
s2

+ 1
2

K2K21+K1K12
s1s2

multiple reactions on one enzymeE + Si 
 ESi
qi
−→ E + Pi qi (s1, . . . , sn) =

qi,maxsi/Ki

1+
∑

n
j=1

sj/Kj

Table 1: Some expressions for enzymatically catalysed reactions [2].

3.1 Formulation

As the model of Monod is the most-widely accepted in biotech-
nology, the following model structure is inspired from thisclas-
sical law:

qj (c1, . . . , cn) = qj,max

n
∏

i=1

αij (ci) (11)

with

αij (ci) =







ci

ci+K∗2
ij

if Kij > 0;
1

1+K∗2
ij ci

otherwise.
(12)

3.2 Structure

It is obvious that equation (12) is eqivalent to a Michaelis-
Menten-like expression for positiveK∗

ij with the Michaelis
constantKM = K∗2

ij . NegativeK∗
ij result in a non-competitive

inhibition term withKI = K∗−2
ij . ForK∗

ij ≡ 0, the influence
of the respective component on the reaction kinetics vanishes:
α (ci) ≡ 1.

3.3 Number of Parameters

The advantage of the proposed kinetic model is the unbounded
range for the modulation constantsK∗

ij , whereas the modula-
tion constants in the classical laws are often constrained to be
positive. The representation of the two modulation effectsby
one parameter reduces consequently the number of kinetic pa-
rameters ton + 1 per reaction, which is particularly beneficial
to the model identification procedure.

3.4 Physical Constraints

Some physical constraints have to be imposed in order to en-
sure that a componenti, which is consumed in the reactionj,
cannot be further consumed, when its concentration vanishes.
Let νij be the respective stoichiometric coefficient, the modu-
lation constantK∗

ij has to fulfill

νij < 0 ∧ K∗
ij > 0 ⇒ qj (ci = 0) = 0 (13)

as a sufficient condition to guaranteeci (t) ≥ 0 ∀t ∀ci,0.

Consequently, a substrate cannot have an inhibitory effectin
this approach. Although this is a possible scenario, our ap-
proach for systematic kinetic modelling does not consider this

case, which is often rather difficult to detect through experi-
mental data due to the non-injectivity of the resulting reaction
rate with respect to the concentration of the auto-inhibiting
component. The use of a non-injective function would make
the identification problem more delicate.

3.5 Continuity and Differentiability

The modulation functionαij

(

ci, K
∗
ij

)

in (12) is differentiable
almost everywhere in the admitted range

Qij =
{

ci ∈ R, K∗
ij ∈ R|ci ≥ 0

}

, (14)

especially at the transitionK∗
ij = 0:

∂αij

∂K∗
ij

=











−2ciK
∗

ij

(ci+K∗2
ij )

2 , if K∗
ij > 0,

−2ciK
∗

ij

(1+K∗2
ij

ci)
2 , otherwise,

(15)

which is particularly important for gradient-based optimisation
algorithms used to estimate of the kinetic model parameters:

lim
K∗

ij
→0−

∂αij

∂K∗
ij

= lim
K∗

ij
→0+

∂αij

∂K∗
ij

=
∂αij

∂K∗
ij

∣

∣

∣

∣

K∗

ij
=0

= 0. (16)

Only (ci, K
∗
ij) = (0, 0) is a discontinuity point. However, if the

initial concentration of componenti is non-zero, the solution
for ci of the system equation (1) will always remain non-zero,
i.e.

ci,0 > 0 ∧ qj (ci = 0) = 0 ∧
∂qj

∂K∗
ij

∣

∣

∣

∣

ci=0

< ∞ ∀j ⇒ ci (t) >

(17)

and the critical point (0,0) will never be reached.

Crossing the critical pointK∗
ij = 0 for cij ≡ 0 in the course of

parameter estimation can be interpreted as a binary decision: is
the respective component limiting or not? And therefore is the
reaction rate affected by the zero concentration (αij = 0) or
not (αij = 1)?

3.6 Model Sensitivities

The differential equation for the output sensitivity with respect
to the kinetic parameter vector~pq (qmax, K

∗) is derived from



equation (1):

d

dt

{

∂~c (t, ~pq)

∂~pq

}

= K

(

∂q (~c (t) , ~pq)

∂~pq
+

∂q (~c (t, ~pq) , ~pq)

∂~c

∂~c (t, ~pq)

∂~pq

)

.

(18)

The respective partial derivatives are calculated as follows:

∂qj

∂qj,max
=

n
∏

i=1

αij

(

ci, K
∗
ij

)

(19)

∂qj

∂K∗
ij

= qj,max

n
∏

k=1, k 6=i

αkj

(

ck, K∗
kj

) ∂αij

(

ci, K
∗
ij

)

∂K∗
ij

(20)

∂qj

∂ci
= qj,max

n
∏

k=1, k 6=i

αij

(

ck, K∗
kj

) ∂αij

(

ci, K
∗
ij

)

∂ci

(21)

with

∂αij

(

ci, K
∗
ij

)

∂ci
=











K∗2
ij

(ci+K∗2
ij )

2 , if K∗
ij > 0,

−K∗2
ij

(1+K∗2
ij

ci)
2 , otherwise,

(22)

and ∂αij

∂K∗

ij

according to (15).

3.7 Physical Units

The unit of K∗
ij depends on the respective case in (12) and

changes therefore in the following manner:

[K∗] =

{

[c]
1/2

, if K∗ > 0,

[c]
−1/2

, otherwise.
(23)

4 Examples

The potentials and features of the proposed kinetic model are
first illustrated by means of a small ideal-case example. Con-
sider a reaction system withn = 3 components, – one sub-
strate (S), one biomass (X) and one product (P), – andm = 1
reaction, – the biomass growth, – according to the following
stoichiometry:

1

YS
S

µ
−→ X +

1

YP
P (24)

with known yield coefficientsYS andYP.

The reference dynamics is given by the extended Monod law
for the specific growth rate:

µ = µmax
s

s + KS
·

KI

p + KI
. (25)

The resulting system of ordinary differential equations isthere-
fore written:

d

dt





x
s
p



 =





1
− 1

YS
1

YP



 µ (s, p)x +









0
sin

0



 −





x
s
p







D. (26)

Assuming that the reaction kinetics is completely unknown,the
general kinetic model (11) and (12) is applied here forµ̄, and
its m(n + 1) = 4 parameters

~pT =
[

µ̄max K∗
X K∗

S K∗
P

]

(27)

are calculated uniquely by the set of equation given in table3.

µ̄max = µmax

K∗
X = 0

K∗
S = K

1/2
S

K∗
P = −K

−1/2
I

Table 3: Kinetic parameters of the general model for ideal ex-
ample.

As a second example, consider again the reaction scheme (24)
the kinetic expression

µ = µmax
s

s + KS

(

1 + p
KI

) . (28)

featuring a competitive inhibition by the product, which does
not exactly fit the proposed general reaction kinetic structure
(11) and (12).

Since the kinetic model structures are not equivalent, the pa-
rameters have to be estimated by minimising the following cost
function:

f (~p) =
1

te

n
∑

i=1

∫ te

t0

(ci (τ) − c̄i (τ, ~p))
2
dτ, (29)

i.e. a least-square criterion corresponding to the ideal case of
continuous error-free concentration measurements.

The model parameters chosen for the reference system (24,28)
are given in table 4.

parameter value

YS 1/2
YP 1/3

µmax 1
KS 2
KI 3

Table 4: Numerical values of the reference model parameters–
Example 2 (non-ideal case).

The reference system (24,28) is simulated for the experimental
conditions (initial conditions, inlet substrate concentration and
dilution rate) described in table 5.

The cost function (29) is minimised in order to determine the
four model parametersµmax, K∗

X, K∗
S, K∗

P. Their values are
given in table 6 together with their interpretation in termsof
modulation.

The cost function value at the optimum isf (~pq,opt) = 0.0100.
This value represents a measure of the error made with the



x (0) = 1
s (0) = 10
p (0) = 0.1
sin = 10

D (t) =











0; 0 ≤ t ≤ 10

0.05 (t − 10) ; 10 < t ≤ 20

0.5; 20 < t ≤ 30

Table 5: Operational parameters for the reference system – Ex-
ample 2 (non-ideal case).

parameter value interpretation

µ̄max 2.0772 —
K∗

X 1.1565 limitation Klim,X = 1.3374
K∗

S 1.9500 limitation Klim,S = 3.8025
K∗

P −0.5219 inhibition Kinh,P = 3.6716

Table 6: Non-ideal case example: general kinetic model pa-
rameter values and their interpretation.

model structure. It approaches zero in the case of a total equiv-
alence of the kinetic structures, as in the previous ideal case
example and can be interpreted as the summed mean variance
σ2 of all the considered components. The identified model has
therefore a summed mean standard deviation ofσ = 0.1, which
is relatively low compared to the orders of magnitudes of the
concentrations.

This result is confirmed by the graphical comparison of the
model and the reference systems in figures 1 and 2. The
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Figure 1: Non-ideal case example: General model identified
on structurally different kinetic model. Upper row: compari-
son system with general kinetic model (dashed) vs. reference
system (solid). Lower row: deviation of model system from
reference system∆~c (t) = ~c (t) − ~̄c (t, ~pq).

deviations from the reference model are in a range of about
one percent for all the concentrations, and the maximum devia-
tion of the reaction rates is around ten percent at the beginning
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Figure 2: Non-ideal case example: General model identified on
structurally different kinetic model. Top: comparison general
model (dashed) vs. reference model reaction rate (solid) Bot-
tom: deviation of general from reference model reaction rate
∆µ (t) = µ (~c (t)) − µ̄

(

~̄c (t, ~pq)
)

.

of the experiment, where the model mismatch becomes appar-
ent. Nevertheless, the integration smoothes these deviations,
and the impact on the concentration trajectories becomes neg-
ligibly small, as time evolves.

Due to the different model structures, the identified valuesof
the general model parameters differ from their “correspond-
ing” reference values (cf. table 4) Though, the parameters in
table 6 show the same tendencies as their reference counter-
parts: The product P is inhibiting with a “non-competitive”in-
hibition constant of 3.67, which is in the same range of values
as the “competitive” inhibition constant. Also, the limiting ef-
fect of the substrate S is correctly identified, although themod-
ulation constant has a higher value than the reference param-
eter. Additionally, biomass X is found to be limiting for the
specific growth rate, however with a relatively low Michaelis
constant compared to the biomass concentrations of the experi-
ment. This limiting effect does therefore not play an important
role in this specific experiment and could be neglected, i.e.set
to zero for similar experiments.

It is remarkable that the identified maximum specific growth
rate is about twice the reference value as is the limitation con-
stant of the substrate. These multiplicative factors compensate
each other at low substrate concentrationss, when the modula-
tion constantK∗2

S in the general kinetic formulation becomes
dominant in the denominator ofαS, i.e. when the kinetics fol-



lows approximatively a first-order law.

This already indicates the limitation of the proposed approach.
If somea priori knowledge about the kinetic model structure
is available, this information can of course be used in orderto
derive a physically relevant model equation. However, if no
knowledge about this structure is available, one has to try a
modelling approach, which describes the biological behaviour
in a sufficiently general way and estimate the corresponding
model parameters with an appropriate model identification pro-
cedure based on informative experimental data.

In this connection, the proposed model allows a parcimonious
representation of important modulation effects, e.g. limitation,
activation and inhibition, as well as a distinct physical interpre-
tation of each model parameter. The sensititivities of the model
output with respect to the kinetic parameters can be easily ex-
ploited for further model reduction and simplification.

5 Conclusions

A systematic approach is needed for the identification of math-
ematical models in biotechnology. If possible, it is recom-
mended to separate specific sets of parameters, as for exam-
ple stoichiometric coefficients and kinetic parameters, and to
identify each set individually. For macroscopic modellingap-
proaches, such a separation is possible at least approximatively
for systems with a smaller number of reactions than compo-
nents [6, 5]. The unknown reaction rates~r in (1) are then
eliminated by a linear combination of the differential equations
in excess, i.e. through a linear transformation into a lower-
dimension state space, in which the influence of the reaction
kinetics is eliminated.

The second step of such an identification procedure is therefore
dedicated to the identification of the underlying reaction kinet-
ics, which is often the most delicate task, since the non-linear
kinetic functions are often not known exacty. In such cases,
it is indispensable to choose a kinetic model structure witha
relatively low number of unknown parameters in order to avoid
identifiability problems, but with a sufficiently high potential to
reproduce the majority of biological kinetic phenomena, such
as inhibition and limitation.

A kinetic model representing a reasonable compromise is pro-
posed in this paper. It is based on an extension of the
Michealis-Menten kinetics and is capable reproducing limita-
tion/activation and (non-competitive) inhibition effects. It in-
cludes one parameter per reaction for scaling the maximum
reaction rate andn parameters per reaction characterising the
modulation effect of each component. Its limited number of
kinetic parameters allows identifiability problems to be allevi-
ated. Two application examples, – one ideal case and one non-
ideal case, in which the kinetic model structures are different,
– show the versatility of the proposed approach.
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