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Some Lattice Models

with Hyperbolic Chaotic Attractors

S. P.Kuznetsov

Examples of one-dimensional lattice systems are considered, in which patterns of different
spatial scales arise alternately, so that the spatial phase over a full cycle undergoes transformation
according to an expanding circle map that implies the occurrence of Smale–Williams attractors
in the multidimensional state space. These models can serve as a basis for design electronic
generators of robust chaos within a paradigm of coupled cellular networks. One of the examples
is a mechanical pendulum system interesting and demonstrative for research and educational
experimental studies.
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1. Introduction

The uniformly hyperbolic attractors were introduced in the mathematical theory of dy-
namical systems due to Smale, Anosov, Sinai, and other researchers in the 1960s – 1970s [1].
Hyperbolic attractors are characterized by roughness or structural stability. In the context of
physical or technical objects it implies insensitivity of the dynamical behavior to small varia-
tions in parameters, manufacturing imperfections, interferences, etc. which may be significant
for possible applications [2]. It turned out, however, that hyperbolic chaos is not widespread in
real-world systems, and its implementation requires special efforts.
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Smale – Williams solenoid is the simplest representative of the hyperbolic chaotic attractors.
Imagining an abstract discrete-time dynamical system, we assume that the evolution in one step
transforms a certain torus region in such way that it experiences longitudinal stretching and
tranversal compression, folds into a loop with the number of turns M � 2, and is placed inside
the original torus. Under multiple repetitions, the number of turns tends to infinity, and the
resulting object will have a transversal Cantor structure. The essential point is that the angular
coordinate evolves according to the expanding circle map. For individual orbits on the attractor
the dynamics are chaotic. For clarity, the above description appeals to the three-dimensional
state space, but such attractors can occur in spaces of higher dimension too.

Physical examples of systems with attractors of Smale – Williams type can be constructed
using oscillators residing in states of excitation and inhibition alternately, while the angular vari-
able has a sense of the oscillator phase [3]. Another approach is based on the treatment of pat-
terns arising in an active medium, say, for Turing structures or standing waves, and the angular
variable is a spatial phase [4–6]. A disadvantage of the first approach is that it requires, as a rule,
the use of rather complex external driving for parameter modulation, combining low-frequency
and high-frequency components. Within the second approach, instead of high-frequency mod-
ulation a spatial nonhomogeneity is introduced, which is effortless. A disadvantage is the need
of exploiting systems of infinite dimension of the state space, which complicates mathematical
description and practical implementations.

What seems to be of interest is the application of the second approach for organizing
hyperbolic chaos in finite-dimensional systems, namely, in lattices of cells, whose dynamics are
governed by ordinary differential equations. In this respect, it is worth mentioning a paradigm
of cellular neural networks (CNN) based on electronic components designed as arrays of cells
arranged in space [7]. These systems were suggested, particularly, for parallel data processing, as
an alternative to traditional computational approaches. As one of the directions, the application
of CNN was considered for analog modeling of complex space-time dynamics including Turing
structures, spiral patterns, turbulence.

This article discusses three models of one-dimensional cell arrays, which can inspire the
design of CNN generating rough chaos.

2. Nonautonomous lattice system generating Turing patterns

The simplest nonautonomous lattice system can be obtained by spatial discretization of the
model based on the Swift – Hohenberg equation [4], where the alternate excitation of long-wave
and short-wave Turing patterns is provided. Replacing the spatial differentiation operator in
the equation of Ref. [4] with a difference operator, we obtain

u̇j + 2κ2(1 − 2κ2)(uj+1 − 2uj + uj−1) + κ4(uj+2 − 2uj + uj−2) =

= (A− 1 + εδj)uj − u3j , (2.1)

where uj is the dynamical variable related to the jth spatial cell, and κ, A, ε are the parameters.
The quantities δj define the spatial nonhomogeneity, the role of which will be explained below.
Note that in the lattice a connection is involved not only between the nearest neighbors but also
with the neighbors through one, with a certain ratio between the coupling coefficients.

Let the system be a ring chain with the number of cells 2N . If the parameter κ is constant
and ε = 0, then in the linear approximation the increment of the pattern with the wavenumber k
is λ = A− (1 − 4κ2 sin2 πk/2N)2, and it is maximal at sin(πk/2N) = 1/2κ.
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In the ring with the periodicity condition uj+2N = uj, the wave number k should be an
integer. For patterns of wave numbers k = 1 and k = 3 the maximal increment is achieved,

respectively, at κ1 = 1
2

sin π
N

and κ3 = 1
2

sin 3π
N

. We will assume that in Eq. (2.1) the parameter

is modulated in time with period T in such way that the alternate excitation of these patterns
is provided:

κ(t) = κ(t + nT ) =

{
κ1, 0 � t < T/2,

κ3, T/2 � t < T.

At the stage κ = κ1, a pattern is formed with the wave number k = 1 and some spatial

phase ϕ, i.e., u ∼ U1 cos(πj/N +ϕ) + Ũ3 cos(3πj/N + 3ϕ), where U1 ∼
√
A. The third harmonic

arises due to the presence of a cubic term and has a small amplitude Ũ3 � U1. After switching
to κ = κ3, the long-wave component k = 1 decays, but the system becomes unstable with
respect to the excitation with k = 3. The initial stimulation of the short-wave pattern is

provided by Ũ3, so that it accepts a spatial phase of 3ϕ. At the end of the stage the pattern

u ∼ U3 cos(3πj/N + 3ϕ) takes place, with U3 ∼ √
A. After the next switching, the third

harmonic decays, but instability for the first harmonic gives rise to growth of its amplitude. The
“germ” is the component with k = 1 provided by combination of the damping short-wave mode
and the spatial distribution εδj . If the fourth harmonic dominates in δj , then, due to the term

cos(4πj/N) cos(3πj/N + 3ϕ) = 1
2

cos(πj/N − 3ϕ) + . . ., the long-wave pattern arises, this time

with the phase of −3ϕ. Thus, at each full modulation period, the spatial phase is transformed
in accordance with a three-fold expanding circle map.

Taking into account that spatial distributions of uj are determined by odd harmonics, we
can consider a lattice of twice less number of cells N . To do so we simply replace the boundary
conditions of periodicity by the condition of sign change: u−1 = −uN−1, uN = −u0. One can
use a stroboscopic description of the dynamics on a period of the modulation by the Poincaré
map Xn = F(Xn−1), where the state vector is Xn = (u0, u1, . . . , uN−1)t=nT .

Figure 1a illustrates space-time dynamics in the lattice system with N = 12. Distributions
of the values uj are shown at the instants of the parameter switches depending on the spatial
index. Although uj relate to discrete nodes, the points are linked in the plot to visualize the
patterns clearly. As is seen, the waveforms at each new stage of activity jump chaotically over
the lattice length. It can be verified that the chaotic displacement of the patterns at successive
stages corresponds to transformation of the spatial phases according to the triple expanding
circle map. During numerical integration of the equations, at the end of each modulation period
a spatial phase of the pattern is evaluated as ϕn = arg(u0 + iuN/2), and the data are plotted

in coordinates (ϕn−1, ϕn), see Fig. 1b. Observe that one passage of the full interval for the
preimage corresponds to a triple passage of the image in the opposite direction. Compression of
the phase volume in other directions in the state space ensures existence of the Smale – Williams
type attractor. Figure 1c shows a set of points (u0, uN/2) obtained by successive iterations of the
stroboscopic Poincaré map. An enlarged fragment of the plot illustrates the transversal Cantor
structure inherent to the solenoid.

The total number of Lyapunov exponents for the system is N = 12, however, to judge about
the nature of the attractor and its fractal properties it is sufficient to evaluate only few larger
exponents. Numerically, the first three exponents at the chosen parameters are Λ1 = 0.993,
Λ2 = −5.085, Λ3 = −34.19. The positive one is responsible for the instability of trajectories
on the attractor and for chaotic nature of the dynamics. It is close to the value ln 3 ≈ 1.0986
associated with the expanding map for the angular variable. The remaining negative exponents
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Fig. 1. (a) Evolution of patterns in the ring system (2.1) with the number of cells N = 12 and boundary
condition of the sign change at the ends. The configurations relating to the parameter switching instants
are shown. (b) Diagram of the spatial phase transformation on each one parameter modulation period.
(c) Portrait of the attractor of the Poincaré map in projection on the plane. The parameters are: A = 0.4,
T = 25, and ε = 0.03 with the spatial nonhomogeneity imposed with the dominated fourth harmonic:
δj = {0, 1, 1, 0,−1,−1, 0, 1, 1, 0,−1,−1}.

are responsible for the transverse compression and formation of the Cantor structure of the
solenoid. Using the Kaplan – Yorke formula, one can estimate the fractal dimension of the
solenoid as DKY = 1 + Λ1/|Λ2| ≈ 1.20.

3. Pendulum ring chain with vibrating suspension

A pendulum, the suspension point of which performs a periodic oscillatory motion in the
vertical direction, is an interesting example of a mechanical system, where, depending on pa-
rameters, many different modes can be observed [8]. The phenomenology of dynamics becomes
even richer if we turn to systems based on chains of coupled pendulums and to a continuous
limit that is a medium described by the sine-Gordon equation [9].

Here we will consider a set of N pendulums suspended on a ring hoop, which is forced
to perform a definite oscillatory motion in the vertical direction. Each pendulum is connected
with the nearest neighbors by spiral springs, so that the moment of the interaction force is
proportional to a relative deflection angle of the neighboring pendulums. Avoiding unnecessary
complication of the model, we assume that dissipation is due to the presence of friction force
between the hoop and the pendulums of moment proportional to the instantaneous angular
velocity. The equations in dimensionless form are

(1 + εδj)
[
θ̈j + (1 + a(t)) sin θj

]
= −γθ̇j +D(θj−1 − 2θj + θj+1),

j = 0, 1, . . . , N − 1,
(3.1)

where θj is the deflection angle for the jth pendulum, γ is the dissipation parameter, D is the
coupling coefficient of the neighboring pendulums, and εδj is the relative deflection of the mass
of the jth pendulum from the mean value. The ring arrangement of the pendulums implies
imposition of the boundary conditions of periodicity: θj+N = θj.

Suppose the vertical movement imparted to the hoop to which the pendulums are suspended
follows a sinusoidal law with amplitude A2 and frequency ω2 during N2 oscillations, and then
with amplitude A1 and frequency ω1 duringN1 oscillations, after which the switches are repeated
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with period T :

a(t) =

{
A2ω

2
2 sinω2t, 0 � t < τ,

A1ω
2
1 sinω1(t− τ), τ � t < T,

τ = 2π
N2

ω2
, T = 2π

(
N2

ω2
+
N1

ω1

)
. (3.2)

Bearing in mind that the eigenfrequencies of linear modes of oscillations of the ring chain
of pendulums without taking into account pumping, dissipation and mass variation, are given

by Ωs =
√

4D sin2 πsN−1 + 1, we assign the pump frequencies ω1 and ω2 equal to twice the
frequencies of the first and the third modes: ω1 = 2Ω1, ω2 = 2Ω3.

The dynamics may be treated in terms of the stroboscopic Poincaré map Xn = F(Xn−1)

transforming the 2N -dimensional state vector Xn = (θ0, θ1, . . . , θN−1, θ̇0, θ̇1, . . . , θ̇N−1)t=nT for
one period of the pump modulation.

The mechanism leading to the emergence of hyperbolic chaos is similar to that for the model
of parametric excitation of oscillations of a nonlinear string of Ref. [5]. During pumping at the
frequency ω1 a standing wave is excited, for which we can write, roughly, θj ∼ sin(2πj/N + ϕ),
where the phase constant ϕ depends on initial conditions. The amplitude stabilizes at some
level due to nonlinearity of the pendulums. Also, because of the nonlinearity, there will be
a component of the third spatial harmonic, having a spatial phase of 3ϕ. At the next stage, the
pumping at ω1 stops, and the oscillations of the first mode are damped. Now, however, pumping
at frequency ω2 is switched on, which leads to parametric instability for the standing wave of
the third mode. This wave is formed from the initial perturbation given by the third spatial
harmonic of the wave produced at the previous stage, so it will have the spatial phase shift of 3ϕ.
Further, the stage of pumping at ω1 comes again. The seed for the parametric oscillations
growth is provided by a combination of the disturbance θj ∼ sin(6πj/N + 3θ) left from the
previous stage and the spatially nonuniform mass distribution given by δj . If it contains the
dominating second harmonic δj ∼ sin(4πj/N), the combination contributing to the first mode

has a spatial phase ϕnew = 3ϕ+const, as sin(4πj/N) sin(6πj/N+3θ) = 1
2

cos(2πj/N+3θ)+ . . .,

and the parametrically excited standing wave will inherit the same phase. Thus, at each new
modulation period, a three-fold expanding circle map for the phase takes place. The result of
multiple repetition of the transformation will be the formation of the Smale – Williams solenoid
in the state space of the map Xn = F(Xn−1).

Figure 2a shows dependences of the angular accelerations of the pendulums on time accord-
ing to data of numerical integration of (3.1) for sustained chaotic motion. Although pendulum
oscillations themselves are indistinguishable on the scale of the graph, it shows clearly how the
amplitudes vary in time in the system functioning in accordance with the mechanism described
above. Panel 2b illustrates the transformation of the spatial phase of the standing waves during
each modulation period of the pump. The phases ϕn = arg[θ0(nT ) + iθN/4(nT )] are calculated
at the moments of switching the pump frequency from ω1 to ω2, when the first spatial mode is
dominating. This diagram is the main evidence that the Smale – Williams type attractor indeed
takes place since it demonstrates the required topological property. In the system under consid-
eration, the solenoid is an object in the state space of the Poincaré map of dimension 2N = 24.
Panel 2c shows this attractor in two-dimensional projection. The enlarged fragment in the
diagram visualizes the transverse structure of fibers of the solenoid.

The total number of Lyapunov exponents of the attractor of the Poincaré map is 2N = 24.
The first three exponents are Λ1 = 1.0913, Λ2 = −2.484, Λ3 = −14.70. A positive exponent
responsible for the chaotic nature of the dynamics is close to the value ln 3 ≈ 1.0986 associated
with the threefold expanding map. The remaining exponents are negative, being responsible
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Fig. 2. (a) Diagrams of dependences of the angular accelerations of pendulums on time in the sustained
chaotic mode based on the numerical solution of the differential equations, where the stages of slow
and fast oscillations of the suspension are shown in brown and black. (b) Plot of the spatial phase
transformation on each modulation period of pumping. (c) Portrait of the attractor of the Poincaré map
in projection on the plane. The number of chain elements is N = 12, the parameters are D = 1.19
and γ = 0.12, A1ω

2
1 = A2ω

2
2 = 0.6. The variation of the masses is characterized by ε = 0.01 and

a set δj = {0, 1, 1, 0,−1,−1, 0, 1, 1, 0,−1,−1}. Switches of the pump frequencies between ω1 = 2.297 and
ω2 = 3.677 take place after each N1 = 85 and N2 = 136 oscillations of the suspension.

for the transversal compression and formation of the Cantor structure of the solenoid of fractal
dimension estimated from the Kaplan – Yorke formula as DKY ≈ 1.44.

4. Autonomous lattice system with hyperbolic chaos

In this section an autonomous lattice system is examined inspired by a distributed system
with Smale – Williams attractor proposed in Ref. [6]. We change the spatial differentiation by
finite-difference operators and add some modifications to adopt the model to simpler implemen-
tation. Consider a ring chain of 2N cells governed by the equations

u̇j = D0(uj−1 − 2uj + uj−1) + u3j − ujv
2
j − αuj+N + εδjvj ,

v̇j = (−γ + u2j)vj + μu2j .
(4.1)

Here uj , vj are the dynamic variables of the cells numbered by j = 0, 1, . . . , 2N − 1,
and μ, ε, γ are the parameters. In addition to coupling of neighboring cells characterized by D0,
each cell is linked with the opposite element of the ring that is characterized by coefficient α.
By a set of values δn, a weak spatial inhomogeneity is introduced.

If ε = 0, then, near the equilibrium state the substitution uj ∼ exp(λt − iπkj/N) leads
to expression for the increments of modes of wave numbers k, which, in accordance with the
condition of periodicity, should be integers: λ(k) = −α(−1)k − 4D0 sin2(πk/2N). Assuming
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0 < α < 4D0 sin2(3π/2N), only one mode k = 1 has a positive increment, while the other modes
are damped, including the homogeneous one with k = 0.

When specifying the spatial nonhomogeneity as the third spatial harmonic, i.e.,
δj ∼ cos 3πjN−1 + . . ., it is possible to ensure generation of the hyperbolic chaos.

Suppose the system is initially close to zero state and demonstrates growth in time of the
spatial distribution uj with the wave number k = 1. In the general case, this is a superposition
of the sine and cosine components with some coefficients that can be written as a single term
with some spatial phase ϕ: uj ∼ cos(πjN−1 + ϕ). When the factor (−γ + u2j) in the second

equation becomes positive, the growth of the variable vj starts. Since at its initiation the process

is stimulated by a quadratic term u2j , the spatial dependence of vj will be determined by the

second harmonic: vj ∼ cos2(πjN−1 + ϕ) = 1
2

+ 1
2

cos(2πjN−1 + 2ϕ). As the values of vj

grow, the variables uj start to decrease rapidly at some time due to the inhibitory effect of the

term v2j in the first equation. When the values uj become small enough, the variables vj also

experience damping with decrement determined by γ. As a new stage of increase of uj comes, it is
stimulated by a term εδjvj, namely, by its first harmonic: δjvj ∼ cos(3πj/N) cos (2πj/N + 2ϕ) =

= 1
2

cos(πj/N − 2ϕ) + . . . This ensures transfer of the double phase with the opposite sign to

the first harmonic of uj : ϕnew ≈ −2ϕ.
Similar dynamics can be provided in a lattice of twice less number of cells. Indeed, as the

distributions of uj are determined by odd harmonics, and for vj by even ones, the solutions
of (4.1) we consider must satisfy uj+N = −uj and vj+N = vj . Therefore, instead of (4.1) we
can write the equations for N cells

u̇j = D0(uj−1 − 2uj + uj+1) + u3j − ujv
2
j + αuj + εδjvj ,

v̇j = (−γ + u2j)vj + μu2j ,
(4.2)

where the boundary conditions of periodicity are replaced by conditions of sign change at the
ends: u−1 = −uN−1, uN = −u0. Here, unlike (4.1), the long-distance interactions are excluded;
the respective term in the equation contains now the variable for the same cell with inverted sign.

The system (4.2) can also be described in terms of the Poincaré map, the dimension of which
is 2N−1. To do so, we need to introduce a cross-section in the state space of the system (4.2) by
some hypersurface S, which is defined by some algebraic equation f(u0, v0, . . . , uN−1, vN−1) = 0
and must cross the flow of phase trajectories. The Poincaré map expresses the vector of
a point on the hypersurface through the vector of the previous its intersection by the trajectory:
Xn = F(Xn−1).

Figure 3 shows space-time diagrams illustrating the dynamics of the ring system (4.1) with
the number of cells 2N = 12. The distributions of the values u and v are shown depending
on the spatial index j plotted along the horizontal axis at time instants corresponding to the
maximal values of the first mode amplitude. As can be seen from the figure, the waveforms at
each new stage of activity jump chaotically on the chain length.

Similar dynamics occur for the same parameters in the system (4.2) with the number of
cells N = 6 with the boundary conditions of sign reversal at the ends, see Fig. 4. The chaotic
displacement of the patterns at successive stages of activity corresponds to transformation of
the spatial phases according to the double expanding circle map. In the process of numerical
integration of the equations at the time of each mth maximum of the first mode amplitude eval-

uated as
√
u20 + u2N/2, the spatial phase is calculated as ϕn = arg(u0 + iuN/2), and the data are

plotted in coordinates (ϕn−1, ϕn), see panel 4b. Although the shape of the branches is distorted
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Fig. 3. Evolution of patterns in the ring system (4.1) with the number of cells 2N = 12 in the sustained
chaotic regime, on the left for the variable u, and on the right for the variable v. The configurations
relating to successive maximums of the first mode amplitudes are shown. The parameters are: D0 = 8,
α = 2.2, γ = 0.6, μ = 0.4, ε = 0.25, δj = {1,−1,−1, 1, 1,−1,−1, 1, 1,−1,−1, 1}.

Fig. 4. Waveforms in the sustained regime of chaotic self-oscillations for a cell j = 0 in system (4.2) (a),
diagram for the spatial phases (b) and attractor in the Poincaré section (c). The parameters are D0 = 8,
α = 2.2, γ = 0.6, μ = 0.4, ε = 0.25, δj = {1,−1,−1, 1, 1,−1}.

in comparison with the ideal linear expanding circle map, this does not violate its affiliation to
the same topological class. In the presence of the phase volume compression in other directions
in the state space it ensures the occurrence of the Smale – Williams type attractor. Panel 4c
shows a set of points (u0, uN/2) corresponding to the moments of maximal amplitudes of the first
mode. This is a portrait of the attractor in the Poincaré section in a two-dimensional projection.

The total number of Lyapunov exponents for the system (4.2) is 2N = 12. The computed
first three exponents are λ1 = 0.0597, λ2 = 0.0000, λ3 = −0.2046. As the average period of
the Poincaré section passages is T ≈ 9.866 according to the calculations, the largest Lyapunov
exponent of the Poincaré map is 0.589, which roughly agrees with the value ln 2 ≈ 0.693.
The second exponent is zero and refers to a perturbation along the reference trajectory in the
autonomous system. The remaining exponents are negative. The Kaplan – Yorke dimension for
the Poincaré map attractor is DKY = 1 + λ1/|λ3| ≈ 1.29, which reflects the fractal structure of
the solenoid.

5. Conclusion

We have considered three lattice models in the form of one-dimensional arrays of coupled
cells, which are able to generate hyperbolic chaos associated with attractors of Smale – Williams
type. These examples show the possibility of implementing such attractors in finite-dimensional
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systems, where the spatial phase of forming and disappearing patterns undergoing expanding
circle map on a characteristic time interval plays the role of angular variable on Smale – Williams
solenoids. It is to be hoped that the models can inspire the design of electronic generators
of rough chaos, following the earlier suggested paradigm of coupled neural networks. One of
the examples is a ring pendulum system, which seems to be an interesting and demonstrative
mechanical model for research and educational experimental studies illustrating the hyperbolic
chaos.
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