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Abstract
The paper presents a novel application of the State Dependent Riccati Equation 
(SDRE) guidance approach with state constraints for a chaser spacecraft in the close 
proximity of a passive target. The dynamics are described by full 6 degree of free-
dom rigid-body relative motion. The final trajectory is defined by a passively safe 
approaching cone, which acts as path constraint and follows the attitude motion of 
target. A Near Rectilinear Halo Orbit in the Earth-Moon system is the selected ren-
dezvous scenario to fully validate the proposed solution, even though the parameters 
related to the constraints and weighting functions are kept as general as possible, 
thus applicable to other similar missions.

Keywords Guidance · Rendezvous · Three body problem · NRHO

Introduction

In the past few years there has been an increased interest in space exploration. In 
particular, the International Space Exploration Roadmap was proposed in February 
2018 [1] indicating, as objectives, a permanent return to the Moon, and unmanned 
and manned missions to Mars.

Within this context, an international effort is undergoing to plan a mission to 
the Moon consisting in a target space station located in a near rectilinear halo orbit 
(NRHO) about the L2 Lagrangian points of the Earth - Moon system, and a lunar 
lander equipped with a rover collecting lunar samples and bringing them back to 
the station, to later be returned to Earth [2]. There are many advantages in using a 
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NRHO, such as stability of the orbit with low ΔV  for station-keeping, continuous 
visibility from Earth for communications, low periselene altitude, etc. However ren-
dezvous and berthing dynamics and control require in depth study primarily because 
of the non Keplerian environment the vehicles will move in, where classical control 
strategies based on linearized two-body dynamics no longer apply.

The rendezvous mission considered here consists of a series of orbital maneuvers 
and controlled trajectories, which successively bring the active vehicle (chaser) close 
and eventually into contact with the passive vehicle (target). The complexity of the 
rendezvous approach results from the multitude of conditions and constraints that 
must be fulfilled. The target station may impose safety zones, approach-trajectory 
corridors and hold points along the way to verify the chaser’s trajectory accuracy, and 
to switch between appropriate sensor suites. Any dynamic state (position and veloci-
ties, attitude and angular rates) of the chaser vehicle outside the nominal limits of the 
approach trajectory could lead to collision with the target, a situation dangerous for 
crew and vehicle integrity [3].

The problem of control of rendezvous dynamics in Earth’s orbit has been studied 
since the 1960s’ [4, 5] and performed in the past, starting with the Apollo program, 
the historical 1975 Apollo - Soyuz mission, and occurring at the present time with 
the activities related to the international space station. While long range rendez-
vous and phasing are generally automated, most of the close range rendezvous is 
still performed manually [6, 7]. Traditionally, rendezvous and proximity operations 
are performed using open-loop maneuver planning techniques, and ad hoc error 
corrections. Examples of constrained maneuvers include the thrust magnitude con-
straints, constraints on the approaching spacecraft to maintain its position within a 
Line-of-Sight (LOS) cone emanating from the docking port on the target platform, 
and constraints on the terminal translation velocity for soft-docking are proposed for 
instance in [8–10].

From a guidance and control standpoint, several methods can be found in the 
literature. Some of the studies use terminal sliding mode control, which enables a 
time-fixed process with the flight prescribed a priori [11]. A fixed-time glideslope 
guidance algorithm on a quasi-periodic halo orbit can be found in [12]. Another 
interesting reference on guidance algorithms for low Earth orbit (LEO) is [13], 
where linear optimal regulator control combined with proportional navigation was 
proposed. Hartley and coworkers applied model predictive control techniques for a 
Keplerian rendezvous [14]. An application of H-infinity control can be found in [5], 
which shows good performance for the case of elliptic orbit, provided linearization 
bounds are maintained.

A State Dependent Riccati Equation (SDRE) method provides a systematic approach 
for solving the infinite horizon optimal control of nonlinear systems, avoiding the solu-
tion of the associated Hamilton-Jacobi-Bellman partial differential equation, generally 
unpractical. The technique guarantees local stability and optimality, robustness with 
respect to non-modeled dynamics and uncertainties, as well as real time implementa-
tion. SDRE effectiveness has been proven extensively on a wide variety of applica-
tions, see [15] for instance. The method has been also used for relative motion control 
in a classical two-body scenarios with good results in the control of translation-attitude 
coupling [16, 17]. The paper proposes and verifies a State Dependent Riccati Equation 
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technique as an effective approach to the close range rendezvous in a three-body prob-
lem, with particular reference to the future Artemis program. To the authors’ knowl-
edge, this is a novel application due to the nature of the underlying dynamics, except 
perhaps for the work in [18], where the authors proved the efficiency of SDRE for a 
station-keeping and reorientation for formation flight in a Sun - Earth scenario, with 
solar pressure perturbations.

The paper is organized as follow: the mathematical model of relative motion of two 
spacecraft is provided in Sect. 2. Section 3 describes the motion constraints introduced 
in the State Dependent Riccati Equation general algorithm. The guidance structure 
for the problem and numerical examples are presented in Sect. 4 and conclusions in 
Sect. 5.

Equations of Motion

This section summarizes the relative motion dynamics in the restricted three body 
problem. More details can be found in [19] and [20], among others. Although general 
in nature, the application in the paper will be based on the proposed Lunar Orbital Plat-
form Gateway (LOP-G) consisting of a a space station in a lunar NRHO orbit, and a 
Lunar Ascent Element (LAE) returning from the Moon for berthing with the station. 
They will be also referred to as target and chaser respectively. The chaser spacecraft is 
the only actively controlled element.

Relative Translation

Let us consider two spacecraft performing a rendezvous maneuver. The two spacecraft 
are subjected to the gravitational action of the two primary bodies (in this case Earth 
and Moon).

The relative motion between the two vehicles is described with respect to a widely 
used reference system L ∶

{
�t;�̂, �̂, �̂

}
 , local-vertical local-horizon (LVLH), which is 

appropriate for control design, with the unit vector defined as follows:

where �mt is the target position with respect to the Moon-centered rotating frame, 
with magnitude rmt = ||�mt|| , �t∕m = �mt ×

[
�̇mt

]
M

 is the target angular momentum 
with respect to the Moon, with magnitude ht∕m = ||�t∕m|| . In general, the unit vec-
tors �̂, �̂, �̂ are also known as V-bar, H-bar e R-bar (strictly speaking defined only 
for Keplerian motion). Note that if we introduce the M ∶

{
�m;�̂m, �̂m, �̂m

}
 frame cen-

tered in the center of mass of Moon, the unit vectors �̂m − �̂m lie in the moon orbital 
plane:

(1)�̂ = �̂ × �̂, �̂ = −
�t∕m

ht∕m
, �̂ = −

�mt

rmt

(2)�̂m = −
�em

rem
, �̂m = �̂m × �̂m, �̂m = −

�m∕e

hm∕e
,
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Also, �em is the Moon position with respect to the Earth, rem = ||�em|| , 
�m∕e = �em ×

[
�̇em

]
I
 is the specific angular momentum of the Moon with respect to 

the Earth, and hm∕e = ||�m∕e|| . The equations describing the dynamics of the relative 
position between the two spacecraft, in the LVLH frame, are taken from [19] and are 
shown below:

Referring to Fig. 1a we have:

In Eq. (3) we have the relative position � , and its derivatives with respect to the 
LVLH frame; the angular velocity �l∕i of the LVLH frame with respect to the iner-
tial frame, and the target and chaser positions with respect to the Moon-centered 
frame �mt , �mc , respectively.

The proposed target orbit is shown in Fig. 2, with the average period of 7 days, 
and aposelene and periselene distances of 70,000 km and 6,000 Km, respectively.

The close range rendezvous and berthing are assumed to occur during aposelene 
passage for safety reasons, since the target’s velocity is the lowest, this also allows 
for the simplification of the equations. In this case in fact, the approximation of the 
primary bodies revolving in circular orbits, (Circular Restricted Three-Body Prob-
lem CR3BP assumption) appears appropriate [21]. With this assumption, the num-
ber of time-varying parameters in Eq. (3) reduce. Indeed �em is constant, 𝜔m∕i = n�̂m 
and 

[
�m∕i

]
M

= 0 . The use of equations derived from CR3BP, while still nonlinear, 
allows the reduction of variables with respect to the elliptical case. In fact for target 
information we only need: �mt,

[
�mt

]
L
.

Relative Attitude

In the study of rendezvous operations, during long range approach, the transla-
tional motion is considered sufficient to describe the relative distance propagation 
and even the design of a reference trajectory. As the chaser moves near the target, 

(3)

[
�̈
]
L
+ 2�l∕i ×

[
�̇
]
L
+
[
�̇l∕i

]
L
× � + �l∕i ×

(
�l∕i × �

)
= 𝜇m

(
�mt

r3mt
−

�mc

r3
mc

)
+ 𝜇e

(
�et

r3et
−

�ec

r3
ec

)

�mc = �mt + �, �et = �mt + �em, �ec = �et + �

(a) Target and Chaser in Three-Body
System.

(b) LVLH Reference Frame. (c) Chaser Body Frame (C frame).

Fig. 1  Reference frames
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attitude and attitude rates dynamics and control become of paramount importance 
for the safety of the maneuver as well as the precision required during the final 
phase (be that either berthing or docking). The procedure adopted here consists of 
a separate computation of chaser and target attitude, since the latter is undergoing 
passive motion [22].

Chaser Attitude

The chaser spacecraft (LAE) is the part of the lander, and will depart the Moon’s 
surface once the ground operations are complete. It is assumed to be cylindrical, 
and its side view is depicted in Fig. 3. Its preliminary configuration can be found 
in [23].

Fig. 2  NRHO target orbit

Fig. 3  Chaser side view
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With reference to the body fixed frame C shown in Fig. 1c, which has the ori-
gin in the center of mass of the rigid chaser spacecraft and axes parallel to the 
principal axes of inertia, the attitude dynamics are given by:

where � is torque vector, � is the inertia matrix and � is the angular velocity of the 
rotating frame. Note that � is defined with respect to the inertial frame, and it can be 
computed as:

where �c∕l is the angular velocity of chaser with respect to L and �l∕i is the angular 
velocity of L with respect to inertial frame. The kinematic motion can be described 
by standard Euler angles and by means of quaternions as well. In this work the 
following definition was used: q1 = cos(

�

2
) , qi = ei sin(

�

2
) with i = 2, 3, 4 ; where 

� =
[
e2, e3, e4

]⊤ is the Euler rotation eigenaxis and � is the rotation angle around � . 
The differential relationship between quaternions and angular velocity is given by:

with �c∕l the quaternion that describes the relative attitude between C and L , and 
[⋅]× denotes the operator that transforms a vector into the associated antisymmetric 
matrix. The set of differential equations given by Eqs. (4) and (5) provide the non-
linear attitude model of chaser [24].

Target Attitude

For the target’s attitude we take as reference the international space station (ISS) 
dynamics, which is attitude controlled using a two sided limit cycle controller, 
and has a sawtooth profile. This motion can be modelled as an harmonic oscilla-
tor [22] and described in Eq. (6) below using quaternion formulation:

where �t∕l is the quaternion that describes the attitude of target body frame with 
respect to LVLH, �̇t∕l is the time derivative of quaternion, �t∕l is the angular velocity 
of target with respect to LVLH frame; �̇t∕l is the angular acceleration of target with 
respect to LVLH frame, �(⋅) is the matrix that relates the time derivative of the qua-
ternion with the angular velocity, and �qt is a diagonal matrix containing the eigen 
frequency for each axis. Note that the fixed target frame is defined similarly to that 
of the chaser (Fig. 1c).

(4)��̇ + � × �� = �

� = �c∕i = �c∕l + �l∕i

(5)
�̇c∕l =

1

2

[
0 − �

⊤
c∕l

�c∕l − [�c∕l]
×

]
�c∕l

=
1

2
�(�c∕l)�c∕l

(6)
[
�̇t∕l
�̇t∕l

]
=

[
1

2
�(�t∕l) 04×3
−�qt 03×3

] [
�t∕l
�t∕l

]
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Relative Attitude

The relative attitude between two rotating objects is based on the difference of the 
respective angular velocities expressed in an appropriate frame [22]. In this case 
the difference is expressed in the C reference:

�cl(��∕�) is the matrix that transforms the components of a vector from frame L to 
frame C.

Once the relative angular velocity �c∕t has been determined, we can compute the 
derivative of the associated quaternion as: �̇c∕t =

1

2
�(�c∕t)�c∕t.

Control Synthesis

As described in the introduction, the SDRE methodology is used to synthesize of 
a closed loop guidance in the final berthing phase of the mission. A short review 
of the methodology is described below for clarity’s sake. The reader can refer to 
[15] and [25], for more details. The next section specializes the general structure 
to the specific problem addressed by the paper.

Consider a nonlinear regulator problem that minimizes the following quadratic 
cost function:

subjected to nonlinear differential constraints affine in the control of the form:

where � ∈ ℝ
n is the system’s state vector (see later for the present application), 

� ∈ ℝ
m is the control vector, � ∶ ℝ

n
→ ℝ

n , � ≠ 0 ∀� ∈ ℝ
n ; �(�) ≥ 0 and �(�) > 0 

are the weight matrices of the state vector and the input vector respectively. If the 
dynamics of the system in Eq. (10) can be written in a pseudo-linear form by the 
introduction of a State Dependent Coefficient (SDC) as:

with state and input matrices functions of the state, then the SDRE control method 
assumes the form of a LQR-like controller and can be summarized in the following 
two steps:

(7)�c∕t = �c∕l − �cl(��∕�)�t∕l

(8)�cl(�c∕l) =

⎡
⎢⎢⎣

1 − 2(q2
3
+ q2

4
) 2(q2q3 + q1q4) 2(q2q4 − q1q3)

2(q2q3 − q1q4) 1 − 2(q2
2
+ q2

4
) 2(q3q4 + q1q2)

2(q2q4 + q1q3) 2(q3q4 − q1q2) 1 − 2(q2
2
+ q2

3
)

⎤
⎥⎥⎦

(9)J(�, �) =
1

2 ∫
∞

0

(
�⊤�(�)� + �⊤�(�)�

)
dt

(10)�̇ = � (�) + �(�)�

(11)�̇ = �(�)� + �(�)�
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1. solve the associated state dependent algebraic Riccati equation: 

2. compute the nonlinear state feedback control law, which assumes a full state 
feedback form: 

In order to obtain a valid solution �(�) of the algebraic Riccati equation, the 
pair

{
�(�);�(�)

}
 must be pointwise stabilizable in the linear sense [15].

• Motion Constraints

The rendezvous maneuvers can be performed by imposing constraints on the rela-
tive position and relative velocity of the two spacecraft when they are approach-
ing, especially in the final phase of the rendezvous. This can be incorporated in 
the general SDRE design as well.

Consider the system described by Eq. (10), with initial conditions 
�(�) = �0 ∈ Ω and a set of allowable states defined by:

it is possible to design a controller such that the closed loop system is stable and � 
does not exceed �Ω , the boundary of Ω , defined by:

The sufficient condition for � to remain in Ω is ∇�(�)�̇ = 0 . The controller that 
satisfies these conditions forces the trajectories of the closed loop system to fol-
low the level curves of the Ω set. Incorporating the constraint as a quadratic term, 
the cost function becomes:

The second term on the RHS of the cost function introduces the constraints, 
and can be represented by the fictitious output � , defined as follow:

�z is a p × p matrix, selected such that its i-th element has a large value when 
� is near the border of the i-th constraint and small elsewhere. This means that 
in the cost function the component expressed by JΩ(�, �) is predominant with 
respect to J0(�, �) when the state does not respect the constraint, and becomes 
negligible when the constraint is satisfied [16].

In cases when ∇�(�) is orthogonal to �(�) , the term �(�) = 0 . An alternative way 
of choosing �z(�) is then to penalize the state, that is the i-th element of the weight 

(12)�⊤(�)�(�) + �(�)�(�) − �(�)�(�)�−1(�)�⊤(�)�(�) +�(�)

(13)� = −�−1(�)�⊤(�)�(�)�

(14)Ω =
{
� ∶ �(�) ≤ 0, �(�) ∈ ℝ

p, �(⋅) ∈ C1
}

(15)�Ω =
{
� ∶ �(�) = 0, �(�) ∈ ℝ

p, �(⋅) ∈ C1
}

(16)
J(�, �) = J0(�, �) + JΩ(�, �) =

=
1

2 ∫
∞

0

(
�⊤�(�)� + �⊤�(�)�

)
dt +

1

2 ∫
∞

0

(
�⊤�z(�)�

)
dt

(17)� = ∇�(�)
[
�(�)� + �(�)�

]
= �(�)� + �(�)�
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assumes a large value when we are in a region of the state space to be penalized and 
zero otherwise [25].

With the introduction of state constraints, the control law becomes:

where

For the purpose of the present work, the assumption of full state availability was 
made, when deriving the control law in Eq. (18), that is relative position and rate 
vectors, attitude quaternions, and angular rate.

If full state is not available to the controller, a discrete state estimate can be con-
sidered referring to the work in [26], and improved in [27], in order to avoid possible 
loss of observability due to the size of selected time intervals. Recalling [27], we 
consider a stochastic nonlinear system of the form:

where � is a Gaussian zero-mean white noise associated with the process, � is a 
Gaussian zero-mean measurement noise. By means of Euler’s discretization, with 
step �s , we have �k = �n + �sA(x̂k) , and �k = �(x̂k).Where �(.) is one possible 
SDC parametrization of a continuous system and �(.) is a possible SDC parametri-
zation for the output of the system in Eq. (20). The nonlinear discrete time system 
can be viewed as a frozen-in-time linear equation. Traditionally, there are two for-
mulations of the discrete SDRE estimator based on Kalman filter. Here we use the 
two-step recursive update (see [27] for details).

SDRE Guidance Law

The general SDRE controller defined in Eqs. (11), (16) and (18) is now detailed 
in terms of problem specific state dependent coefficient (SDC) parametrization 
[15], and the definition of state constraints. Numerical results of the SDRE closed 
loop guidance applied to the cis-lunar rendezvous will be then presented and dis-
cussed in the next section.

SDC Parametrization for Translation

The equations of relative motion described by Eq. (3), can be parametrized since 
all the conditions of existence are guaranteed. Note that the nonlinearities of the 
system are due to gravitational terms. The term that takes into account the gravi-
tational attraction due to the Moon can be rewritten as follows:

(18)� = −�(�)� = −
[
�0(�) +�Ω(�)

]
�

(19)�0(�) = �̄−1(�)�(�)�̄(�) �Ω(�) = �̄−1(�)�T (�)�z(�)�(�)

(20)
�̇ = � (�) + ��

�(�) = �(�) + �
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the gravitational attraction due to the Earth is given by:

where � =
[
x y z

]⊤ , �mt =
[
0 0 − rmt

]⊤ , �mc =
[
x y z − rmt

]⊤ , �em =
[
rx
em

r
y
em rz

em

]⊤ , 
and

The complete parameterization of the relative motion, Eq. (3), becomes:

� = [𝜌 �̇]⊤ is the state vector, 
[
Ω̇l∕i

]
L
 and Ωl∕i denote the antisymmetric matrices 

associated to 
[
�l∕i

]
L
 and �l∕i , respectively.

SDC Parametrization for Attitude

Similarly, it is possible to derive a SDC parameterization for the dynamics and kin-
ematics of the chaser’s attitude (see Eqs. (4), and (5)). The parameterization was taken 
from [28].

where � = −0.0001 is a small constant added to the spacecraft quaternion kinemat-
ics for numerical reasons in the solution of algebraic Riccati equation. Notice that 
the addition of � correction is only an artifact since the quaternions parameters rep-
resent only three independent parameters The coefficients aij are:

(21)�m

�
�mt

r3mt
−

�mc

r3
mc

�
=

⎡
⎢⎢⎢⎣

−
�m

r3
mc

0 0

0 −
�m

r3
mc

0

�mx �my �m(z − rmt) −
�m

r3
mc

⎤
⎥⎥⎥⎦
� = �m(�)�

(22)

�e

�
�mt + �em

���mt + �em��3
−

�mt + �em + �

���mt + �em + ���3
�

= �e(�)� =

⎡⎢⎢⎢⎣

�er
x
em
(2r x

em
+ x) −

�e

r3
ec

�er
x
em
(2r

y
em + y) �er

x
em
(2(r z

em
− rmt) + z)

�er
y
em(2r

x
em

+ x) �er
y
em(2r

y
em + y) −

�e

r3
ec

�er
y
em(2(r

z
em

− rmt) + z)

�e(r
z
em

− rmt)(2r
x
em

+ x) �e(r
z
em

− rmt)(2r
y
em + y) �e(r

z
em

− rmt)(2(r
z
em

− rmt) + z) −
�e

r3
ec

⎤⎥⎥⎥⎦
�

�m = −�m

(r2
mc

+ rmtrmc + r2
mt
)

(rmc + rmt)(r
3
mc
r2mt)

, �e = �e

(r2
ec
+ retrec + r2

et
)

(rec + ret)(r
3
ec
r3et)

(23)�(�) =

[
03×3 �3×3

−
[
Ω̇l∕i

]
L
− Ω2

l∕i
+ �m(�) + �e(�) − 2Ωl∕i

]
, �(�) =

[
03×3
�3×3

]

(24)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

�

2
0 0 0 −

q2

2
−

q3

2
−

q4

2

0
�

2
0 0

q1

2
−

q4

2

q3

2

0 0
�

2
0

q4

2

q1

2
−

q2

2

0 0 0
�

2
−

q3

2

q2

2

q1

2

a11
q1

�T�
a11

q2

�T�
a11

q3

�T�
a11

q4

�T�
0 0 0

a12
q1

�T�
a12

q2

�T�
a12

q3

�T�
a12

q4

�T�
0 0 0

a13
q1

�T�
a13

q2

�T�
a13

q3

�T�
a13

q4

�T�
0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
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Constraints and Keep‑out‑Zone

In the final phase and proximity operations of the rendezvous, the chaser should 
approach the target from a direction bound by a safety zone for collision avoid-
ance mitigation. Typical constraints for close range are selected as spheres of a 
given radius (for instance in the Heracles-ESA mission the rendezvous sphere 
has a 10 Km radius, the approach sphere 2 Km, and the keep-out-zone 0.2 Km, 
respectively). In this work a simpler cone-like final approach corridor is consid-
ered as in [9].

Figure 4 shows a qualitative constraint illustration, in which � is the unit vec-
tor of the path direction, and � is the maximum cone angle of the corridor and 
the main design parameter. The constraint geometry is rewritten using Eq. (14) 
formalism and becomes:

where � =
[
𝜌⊤, �̇�⊤, �⊤

c∕l
, 𝜔⊤

c∕l

]⊤
 is the system’s state vector. The constraint is repre-

sented as a fictitious output as in Eq. (17) expressed in a target T  frame so, as we 
can see from Eq. (25), the direction of cone axis depends on target’s attitude.

Note that in our case ∇l(�)⊥�(�) , so the weight function �z was selected to 
penalize the state when it is far from the imposed constraint. In other words, we 
chose the weight function that depends on the 3D distance between the chaser’s 

[
a11, a12, a13

]⊤
= − �

−1
(
�c∕t × ��c∕t

)

(25)l(�) = −
[
𝜌⊤

]
T
⋅

[
�
]
T
+ ||𝜌||T cos 𝛽 ≤ 0

Fig. 4  Approaching cone constraint
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center of mass and the line described by the unit vector � . In this way, �z has a 
large value when the chaser’s center of mass is far from the cone axis and small 
value when it is close to, as mentioned earlier.

Results

In this section, numerical simulations are presented to validate the proposed method. 
The target moves on a NRHO and we simulate rendezvous maneuvers both at the 
aposelene, as well as in the worst case condition, i.e. close to periselene. Table 1 
summarizes the initial conditions. We assume that the attitude motion of the tar-
get has a maximum amplitude of 5 ◦ and the eigen-frequency of Eq. (6) is equal to 
kqt = 0.1571 rad s−1 [3]. The chaser is is modeled as a cylinder with inertia matrix 
� = diag(0.0011, 0.0006, 0.0006) kg ⋅ km2 [20]. The direction vector of the approach-
ing cone is 

[
�
]
T
= [−1, 0, 0]⊤ and the maximum cone angle is set to � = 25◦.

The main equations used for motion propagation are those relative to the circular 
restricted three body problem. For better numerical stiffness the equations are nor-
malized as in [29]; the distances are normalized to the Moon’s orbit semi-major axis, 
the time in units of the inverse mean motion of the NRHO orbit, and the masses are 
expressed such as Me +Mm = 1 . The terminal conditions selected for the tests are � 
≤ 1 m for relative position, and �̇� ≤ 0.03 m/s for relative velocity. Note that for ESA’s 
ATV mission concept [30] the constraints were 20 m in relative position, and 0.01 
m/s for relative velocity [3]. Simulations were run using  SimulinkTM, the guidance 
and navigation algorithm runs at 1 Hz, and the Dorman-Price integration algorithm 
was used.

Aposelene Approach

The aposelene is considered the most feasible area for the docking/berthing. Current 
literature indicates that as the most likely location, and it has been shown that CR3P 
equations are sufficiently accurate for the dynamic description of the relative motion 
[6, 21]. In this case, the target has the slowest orbital velocity. The docking/berthing 
zone is indicated in red in Fig. 2.

Table 1  Initial conditions Variable Data

�c∕l [1.0, 0, 0, 0.0087]⊤

�c∕i 
[
rad s−1

]
[0, 0.01, 0]⊤

�t∕l [0.9999, −0.0061, −0.0061, −0.0061]⊤

�t∕l 
[
rad s−1

]
[0.0019, 0.0019, 0.0019]⊤[

�0
]
L
 [km] [−10, 0, −4]⊤[

�0
]
L
 
[
km s−1

]
[0, 0, 0]⊤
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The SDRE controller was tested by means of a limited Montecarlo simulation 
for six different relative distances � = 5, 8, 11, 14, 17, 20 Km. For each � , 20 ran-
dom uniformly distributed points were selected.

The weighting matrices coefficients used for the translation are:

The constraint matrix depends on distance between cone axis and chaser, and is 
set as follow:

where �axis(x, y, z) is the classical formula that defines the distance of one point from 
line in 3D space. All weights were selected by trial and error in order to maximize 
the accuracy and minimize the control effort.

The position is assumed to be an available measurement, so 
�(�) =

[
�3×3 03×3

]
 . The measurement error is considered as purely random with 

Gaussian distribution, zero mean and standard deviation � = 1∕3 × 10−2 m [16]. 
The process error model is based on [31], and is considered as purely random 
with Gaussian distribution, zero mean and standard deviation � = 1∕3 × 10−6 
Km∕s2 . The control weighting matrices are the same as in Eq. (27), and the pro-
cess noise and measurement covariance matrices are given by:

The initial condition for the error covariance matrix is given by:

The filter initial conditions are:

where �0 is the real relative position and velocity of chaser, �p and �v are 3 × 1 vec-
tors of uniformly distributed random numbers, in the interval (0, 10) [cm] and (0, 1) 
[cm/s], respectively.

The performance analysis was based on normalized values of position error, error 
rate and amount of control, over the time of flight period.

(26)�0 =

�
�p 03×3

03×3 3 ⋅ �3×3

�
�p = 12 ⋅

⎡
⎢⎢⎣

105 0 0

0 106 0

0 0 105

⎤
⎥⎥⎦

(27)�0 = 10−9 ⋅ �3×3

(28)�z = 5 ⋅ 104 ⋅ �axis(x, y, z)

(29)�f =

[
03×3 03×3

03×3 10−12 ⋅ �3×3

]
�f = 0.6768 ⋅ 10−21 ⋅ �3×3

(30)�0

f
=

[
2.6015 ⋅ 10−10 ⋅ �3×3 03×3

03×3 0.9820 ⋅ 10−5 ⋅ �3×3

]

�0
f
= �0 +

[
�p
�v

]
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where ��(t) , ��̇�(t) , �v are the error vectors respectively between real position and esti-
mated position, real velocity and estimated velocity, and equivalent propellant con-
sumption. Figure 5 shows the relative position between chaser and target from the 
Montecarlo simulation.

The time of flight and control effort are shown in Figs. 6 and 7.
As we can see from Figs. 6 and 7, the total control effort �v and time of flight 

tof  increase with increasing relative distance, as expected. In addition, the linear-
ity in Fig. 6 confirms the feasibility of aposelene approach in terms of validity of 
the equations of motion.

(31)Ie𝜌 = ∫
tof

0

||�𝜌(t)|| dt Ie�̇� = ∫
tof

0

||��̇�(t)|| dt 𝛿v = ∫
tof

0

||�|| dt

Fig. 5  Relative position, apose-
lene approach

Fig. 6  Time of flight vs dis-
tance, aposelene approach
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When the chaser initial conditions are not inside the LOS cone and the rela-
tive distance is less than 15 Km, the chaser moves very slowly as it reaches the 
approach corridor. The corresponding standard deviation could be reduced by 
increasing the number of tests. The average errors in position and rate, between 
real and estimated values, are shown in Table 2.

Fig. 7  Control effort vs distance, 
aposelene approach

Table 2  Error indices for 
aposelene approach

� 5 8 11 14 17 20

Ie�[km] 5.0237 8.0863 11.1153 14.2042 17.5742 20.5091
Ie�̇�[m/s] 0.0150 0.0176 0.0197 0.0223 0.0248 0.0271

Fig. 8  Chaser relative trajectory 
for attitude analysis
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To evaluate the attitude behavior at the aposelene, we consider a sample trajec-
tory from those simulated above and shown in Fig. 8. The rendezvous maneuver 
lasts about 2 hours starting from relative distance of about 11 Km. The results in 
terms of ΔV  expenditure compare favorably with the results in [32], where differ-
ent thrust allocation algorithms were used, and the results in [33], where continu-
ous thrust was implemented using the adjoint method.

For the selected example, the control forces and torques are shown in Figs. 9 
and 10, respectively.

The large initial values depend on the fact that the chaser is controlling both 
its translation and rotation, the coupling is noticeable especially along the z 
axis, with the oscillatory behavior of the z force component. The control amount 
could be tuned further by changing the weights in the optimization. The angular 

Fig. 9  Control effort (torques)

Fig. 10  Control effort (forces)
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behavior in terms of quaternions and angular rates is shown in the next figures 
(See Fig. 11). Figure 9 shows the target and chaser quaternions, while the time 
histories of chaser and target angular velocities are shown in Fig. 12.

The weighting strategy used to satisfy the constraint imposes a severe penalty on 
velocity, due to the orthogonality of ∇�(�) ⟂ �(�) . As matter of fact we have initially 
a high velocity in R-bar and then, when the chaser reaches the axis of the approach-
ing cone, the R-bar component decreases and the V-bar velocity has a plateau, with 
the chaser moving towards the target.

Periselene Approach

A rendezvous at the periselene of the NRHO orbit is not considered practical for 
several reasons: first of all the target vehicle is at its maximum speed, thus making 

Fig. 11  Attitude quaternions in 
the LVLH frame

Fig. 12  Angular velocities in the 
chaser’s body frame
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the safety requirements very critical and too restrictive, secondly to maintain a 
desired relative position and velocity, the requirements on Δ V could be too high for 
the mission. Thirdly the circular restricted three body problem may lose accuracy 
during propagation. This case is then used only for the purpose of evaluating the 
behavior of the proposed guidance in a worst case scenario.

Fig. 13  Target orbit at periselene

Fig. 14  Relative position, per-
iselene approach
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The approach zone at the periselene is shown in red in Fig. 13.
The Montecarlo simulations were performed with the same parameters used 

for the aposelene approach. The propagation equations are based on the elliptical 
restricted three body problem. The resulting trajectories, time of flight, and control 
effort are shown in Figs. 14, 15, and 16, respectively.

The most significant difference between the two cases is the increase of control 
amount required to perform the rendezvous at periselene, as suspected. Table  3 
shows very similar errors in position and a slightly increase in rate error for the 
periselene approach. An interesting comparison is shown in Fig.  17. On the left 
a zoomed set of trajectories obtained using the ER3BP are shown (taken from 

Fig. 15  Time of flight versus 
distance, Periselene approach

Fig. 16  Control usage versus 
distance, Periselene approach
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Table 3  Error indices for 
Periselene approach

� 5 8 11 14 17 20

Ie�[km] 5.1318 8.2563 11.3744 14.9193 18.0001 21.44694
Ie�̇�[m/s] 0.0165 0.0196 0.0208 0.0232 0.0231 0.0261

Fig. 17  Comparison between ER3BP (left) and CR3BP (right) solutions at Periselene

Table 4  Time of flight and control effort difference between ER3BP and CR3BP

        [km]      5      8     11     14     17    20

 

              [min]      0      0      0      0 0.2842     0

 
             [m/s] 0.3908 0.3018 0.2264 0.0980 0.5358 0.5853

Fig. 18  Influence of gain on the weighting Matrix W, low gain (left), high gain (right)

tc
of
− te

of

�c
v
− �e

v

�
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Fig. 14), while on the right the trajectories are computed using the CR3BP equa-
tions. This indicates that the CR3BP equations could be sufficient for the relative 
motion description, see Table 4. Figure 18 shows the influence of the gain in the 
weighting matrix �z described in Eq. (28). The higher the gain and the faster the 
trajectory moves towards a rectilinear V − bar path (figure to the right). The numeri-
cal values for the two cases are shown in Tables  5 and 6, respectively.

Conclusions

The paper presents a State Dependent Riccati Equation approach to closed loop 
guidance with state constraints. The technique is applied in a rendezvous scenario 
between two spacecraft around the Moon in a NRHO environment, due to nonlinear 
nature of the relative dynamics. The constraints are formulated as a conic area that 
depends on the target’s attitude, so the chaser’s center of mass must follow the com-
plete target’s motion. Although simulations are based on a somewhat limited Monte-
carlo analysis, the method provides successful control and feasible ΔV  requirements 
at the aposelene, and also a satisfactory behavior at the periselene, with additional 
control effort. The weighting selection on the constraints allows the designer to 
modify the trajectory in order to acquire quickly a desired V − bar direction, which 
appears to be desirable in standard rendezvous maneuvers. The mission scenario 
used for the synthesis is based on current information on the lunar gateway study, 
thus the numerical data could be subjected to variations in the future, as well as the 
computational requirements of SDRE, with respect to mission design.
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Table 5  Low gain data x [km] -5 -10 -15 -20

tof  [min] 69.7208 82.5500 63.4542 72.4500
�v [m/s] 24.1119 49.1187 20.1752 26.7785

Table 6  High gain data x [km] -5 -10 -15 -20

tof  [min] 142.3917 180.0000 94.7333 135.8458
�v [m/s] 14.4529 43.2740 14.1848 19.1513
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