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Visual Servoing in Non-Rigid Environments: A Space-Time Approach

D Santosh and C V Jawahar

Abstract— Most robotic vision algorithms are proposed by
envisaging robots operating in structured environments where
the world is assumed to be rigid. These algorithms fail to
provide optimum behavior when the robot has to be controlled
with respect to active non-rigid targets. This paper presents
a new framework for visual servoing that accomplishes the
robot positioning task even in non-rigid environments. We
introduce a space-time representation scheme for modeling the
deformations of a non-rigid object and propose a model-free
hybrid approach that exploits the two-view geometry induced
by the space-time features to perform the servoing task. Our
formulation can address a variety of non-rigid motions and
can tackle large camera displacements without being affected
by the degeneracies in the task space. Experimental results
validate our approach and demonstrate the robust and stable
behavior.

I. VISUAL SERVOING IN PRESENCE OF
NON-RIGID MOTION

The problem of controlling the movement of robotic
systems using visual feedback has been a topic of substantial
research in the field of Visual Servoing [10]. Several influen-
tial approaches in this area have been envisaged to perform
the servoing task [4], [13]; however, much of the research
until now presumes structured and rigid environments. In
this paper, we propose an approach to visual servoing that
can control a dynamic system even in an unknown active
non-rigid environment.

In robotic vision research, motion analysis has been largely
restricted to rigid objects due to their simplicity, elegance and
immediate industrial applicability. However, in real world
situations, motion of physical objects is often non-rigid [2]
in nature. Common examples include motion of human body,
flying birds, ocean waves etc. It has been a persistent desire
to employ robots in such natural and unconventional envi-
ronments. For this to be successful, it is desirable to develop
servoing strategies and algorithms that can perform optimally
even in such unstructured scenarios. Our motivation towards
non-rigid motion analysis has been driven by applications
in the areas of surgical robotics, underwater robotics, active
vision systems etc.

Dealing with non-rigid motion poses several challenges in
the design of optimal servoing strategies. Non-rigid objects
undergo a persistent change in their pose which forbids
any single image to characterize their state. This is because
motion instruction planned based on the features extracted at
current time instant might not be relevant in the next instant
as the object undergoes a change in its pose. Further, the
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Fig. 1. Proposed scheme for visual servoing in non-rigid environments

desired configuration of the end-effector cannot be described
by using only a single image or a single pose as it will lead to
oscillations of the manipulator even after the goal position is
reached. Note that the unavailability of static features (in case
of whole body deformations) and background features (in
case of moving targets) makes it imperative to engender new
representation schemes for visual servoing using only the
pose-varying features on the object surface. This necessitates
a time-based representation, rather than a purely spatial one,
due to the temporal nature of the object deformations. It
must be emphasized that non-rigid motion encompasses wide
range of possible motions ranging from simple translatory
motion such as a waving hand to highly complex motion like
that of a beating heart. A general representation for all kinds
of motions is preferable, but appears to be inconceivable
at this stage. Establishing correspondence between image
features is usually the primary step in visual servoing.
However, finding accurate correspondences is often difficult
in practical situations; especially, while matching points in
two views separated by large displacement. This is a highly
formidable requirement in case of deformable objects as this
demands frame-to-frame matching of the object deformations
which is complicated even for simple motions.

Existing servoing schemes are not designed to tackle non-
rigidity. Cartesian-based algorithms require complete 3D
information of the object which is a strong assumption for
deformable targets. Image-based servoing schemes cannot
be directly used as these schemes use information only
from a single image to guide the robot, which results in
an oscillatory camera trajectory [15]. Also, these methods
are not completely model-free, since depths of the observed
features are needed in the control law [10]. Further, they
demand the exact frame-to-frame correspondences between
image features. Moreover, new representations conceived for

D Santosh and €V Jawahar —are with ~the Center  modeling the non-rigid motion cannot be directly utilized
for Visual Information Technology, International Insti- . . . . .
tute of Information Technology, Hyderabad 500032, India 1D these schemes as the corresponding interaction matrix
{santosh@research.,jawahare}iiit.ac.in relating the feature motion in the image space to the camera
1-4244-0602-1/07/$20.00 ©2007 IEEE. 2452



motion in the Cartesian space has to be derived.

In this paper, we propose a different approach to visual
servoing in which the motion characteristics of active non-
rigid objects are used to perform the servoing task, without
the requirement of 3D structure information. Our approach is
based on the bi-dimensional appearance of the objects in the
environment and explicitly takes into account independent
object motions. In most cases, where an object has a repet-
itive motion, the space-time trajectories of representative
points on it will serve to uniquely represent the object
(Sect. II). These trajectories are invariant to object defor-
mations and can be utilized to obtain a stable estimate of
the projective transformation relating the initial and desired
views (Sect. III-A). The estimated transformation is then
used in a feedback-based hybrid control to perform the ser-
voing task (Sect. III-C). The overall algorithm is summarized
in Fig. 1. In [15], a preliminary strategy to tackle non-
rigidity was discussed. In that approach, gross features of the
object deformations were extracted and used in the servoing
algorithm. However, the method handles only simple non-
rigid motions. Further, issues of optimal camera trajectory,
degenerate configurations (such as local minima, singularity)
etc. have not been analyzed. In the current formulation, we
aim to not only generalize our approach to complex non-
rigid motions but also achieve the desirable characteristics
of the servoing algorithm (Sect. III).

II. GEOMETRY OF NON-RIGIDITY

Active non-rigid motion can essentially be classified into
three primary types, namely articulated motion, elastic mo-
tion and fluid motion [2]. This classification is based on the
constraints on the degree of the smoothness and continuity
in the motion. Among the different forms of non-rigidity,
elastic motion constitutes the most general form of non-
rigid motion [2]. Elastic or cyclic motion is ubiquitous in
the natural world. For instance, the motion of heart and
other body organs; motion of flying birds, swaying trees and
moving aquatic animals; ambulatory motion of humans and
animals etc. All such motions involve a regularly repeating
sequence of motion events and thus demonstrate a cyclic
pattern in their deformations. In this paper, we concentrate on
accomplishing the servoing task in presence of such station-
ary elastic objects. It may be noted that global motion from
a moving non-rigid object can be separated by performing
rigid and non-rigid motion segmentation [3].

Different modeling strategies have been proposed in the
field of computer vision to characterize non-rigidity. Most
approaches employ methods like the linear subspace model
(appearance manifold), kinematic chains, dynamic Markov
models etc. to model the deformations as variations to the
model parameters. In these methods, assumptions regarding
the objects and their motion are made, which restrict the class
of objects that can be handled. A standard modeling scheme
for all kinds of motion is very much desirable for the design
of a general servoing strategy. Our pursuit is to engender a
stable representation for a generic non-rigid object.
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Fig. 2. Projective transformation in the Space-Time: Point trajectory in the
4D space-time projects onto the 3D space-time describing a curve in the
image space

A. Non-Rigid Motion as Space-Time Curves

We represent a non-rigid object using a set of
representative points moving with different velocities [12].
These interest points are locations where the object deforms
in shape, and constitute to its surface appearance. A
deformation of the object induces a change in the point
locations. For a stationary target, its deformations can be
described using the motion of these configuration of points.
This is because repeated activity transforms the points such
that they traverse a fixed trajectory in the three-dimensional
space. For a static observer perceiving the object, these
points always appear to traverse along the same 3D curves.

Projections from 4D to 3D Space-Time More formally,
let O be the observed object and Py, ..., P, be the interest
points on the object surface in the 3D space. Let the 3D
coordinate of the point P;, i = 1,2,...,nbe [X; Y; Z;]T.
The motion of this point in the Euclidean space can be
considered as a set of points Py, = [Xy Yy Zi. Ti]T defining
a curve C; in a 4D space-time where T} denotes time.
Assuming a pin-hole camera, the space-time projection of
the point onto the 3D (image) space-time satisfies

Pr ~ MPy, (1)

where matrix M denotes the 4 x5 extended camera matrix, ~
denotes equality up to scale and ~ denotes corresponding ho-
mogeneous coordinates. Although the space-time projection
from Py to pj cannot be described by projective cameras,
(1) signifies that a point in the real space-time is projected
to an image space-time point by an extended affine camera.
Thus the motions in the 4D space are projected onto images
and can be observed as a set of points p = [z y t]7 ina
3D space-time on image motions extracted from an image
sequence (See Fig. 2). This 3D space-time can be perceived
as a spatio-temporal entity with two spatial dimension x,y
and a time dimension ¢. The corresponding image coordi-
nates m can be obtained from the normalized coordinates p
with an affine transformation

m = Kp, 2)

where K is the camera intrinsic matrix [8]. These points
define the image trajectory c¢; of the 4D space-time curve C;.
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Curves have been employed in computer vision for a very
long time. However, most of the works until now refer to
them in the context of shape descriptors. In this paper, the
concept of ‘space-time curves’ is being introduced for vi-
sual servoing purpose. Such a representation offers multiple
benefits. First, such features allow large class of motions
to be accommodated as few constraints are enforced on the
kinds of motion. As they are invariant to the changes in the
object pose, they provide a stable and unique set of features
for visual servoing. Moreover, the desired configuration of
the manipulator can be stably defined using these invariant
features. Further, such a representation avoids the complex
problem of establishing frame-to-frame feature correspon-
dences during the servoing task. The space-time curves
provide a more geometric and intuitive representation of the
object than other past features and thus are more interesting.
Compared to finding corresponding points, corresponding
curves can be easily and robustly identified using multiple
cues e.g., periodicity, curvature etc.

B. Navigation Formulation

Let F, be the coordinate frame attached to the target, and
F* and F be the coordinate frames attached to the calibrated
cameras at the desired and current positions respectively.
Let F* be displaced from F in the Euclidean space by
R € SO(3) and t = [t,,1y,t,]7 € N3, where R, t denote
the rotation matrix and the translation vector respectively.
Considering the angle-axis representation for rotation matrix
R, we have R = exp([r]x), where r = w6, is the vector
containing the angle of rotation # and the axis of rotation
u, exp is the matrix exponential function and [r]y is the
skew-symmetric representation of the vector r. The relative
camera pose with respect to frame F* is defined by a 6 x 1
vector £ = [t rT]T. The points on the space-time curve C;
in the current frame F get transformed to desired frame F*
as P* = RP+t, defining the curve C;. These points project
onto the normalized plane Z* as p* and their corresponding
image coordinates are obtained using the relation m* = Kp*
(similar to (2)). These image points define the trajectory c;
in the desired frame F* (See Fig. 2).

In visual servoing, the goal is to reduce the error in the
desired and the current features so as to drive the disparity
in pose between F and F* to zero. The objective function
e can be defined as a function of time ¢ as

e(t) = ci(t) —cj. 3)

Since the image features are a function of the camera pose
ie, ci(t) = f(E(t)), (3) can be redefined as

e (t)=E(t) — & 4)
Thus the servoing task reduces to the problem of estimation
of the partial displacement of the camera followed by a
minimization of error in the relative pose parameters. We
assume that the frame rate of the camera is sufficiently high
for capturing one cycle of the points trajectory.
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Fig. 3. Homography-based visual servoing using planar curves: The curves
indicate the space-time trajectory of the points on the non-rigid object

III. PROPOSED SERVOING APPROACH

The goal of our solution is to design a servoing algorithm
to drive the disparity between the current and the desired
camera configurations to zero. The desirable characteristics
of the algorithm are —

e Immunity to non-rigid deformations and continuity in

the velocity screw.

o Ability to tackle large camera displacements without

being affected by degeneracies in the task space.

o Robustness to image measurement errors.

« Independence from prior knowledge of the object model

and parameter initialization.

¢ Decoupling of camera motion and ensuring feature

visibility.

We employ a hybrid homography-based formulation to
achieve the above desirable characteristics. In literature,
model-free hybrid approaches have been developed to deal
with unknown environments [5], [13]. These methods exploit
the information provided by the projective reconstruction of
the scene computed only from the visual features extracted
from the images.

We begin with a simple, not so strict assumption that the
motion of a point on a non-rigid object can be approximated
to a planar motion [7]. The most general motion of a
sufficiently small element of a deformable object can be
represented in three mutually orthogonal directions (i.e., as
a sum of translation, rotation and an extension). However,
in presence of opaque objects, the visible deformations are
those occurring at the object surface. These deformations
can be assumed to occur locally on the plane. Hence the
dominant motion of the points can be assumed to be planar in
nature. Note that each curve can be planar in any orientation
while the object is non-planar (See Fig. 3).

A. Homography-based Visual Servoing

Given the planarity assumption of the point trajectories,
the projective transformation between the two views of
the scene can be defined using a homography [8]. Several
methods have been proposed in literature to estimate ho-
mography from planar curves [1]. However, most of the
approaches deal with parametric curves. Since non-rigid
motion can be complex, parametric methods might not be
capable of estimating homography in all situations as they
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Fig. 4.  Effect of degenerate conﬁgurations:/(a) Servoing begun using
reference curve A reaches a degeneracy at F' whose origin lies on the
reference plane containing curve A (b) Discontipuity in the velocity screw
is due to the switching of curves (A to C) at F'

are dependent on the chosen parametrization and cannot
handle changes in curve topology. To accommodate arbitrary
large class of motions, we extend the notion of higher order
primitives further to include an ordered collection of points
on a contour. We employ the homography estimation from
contours technique proposed in [11]. In this method, the
homography is estimated using only an ordered set of pixels
of the contour, without the requirement of explicit point to
point correspondences. The algorithm converges to the actual
homography in few iterations and is robust to outliers and
errors in image measurements.

The recovered homography can then be decomposed to
obtain the rotation matrix R, the scaled translation vector
é and the plane normal n using the procedure described
in [6]. It must be emphasized that information from mul-
tiple homography estimates, computed for a set of point
trajectories, can be utilized to unambiguously decompose H
without the requirement of a priori knowledge or parameter
initialization. The motion parameters are then used in the
control law to generate the optimal velocity instruction.
In [13], a similar method is discussed by Malis et al
wherein the homography between two views of a planar
contour is estimated and the parameters obtained from its
decomposition are used in a 21/2D control to servo the end-
effector.

B. Reliable Homography Computation

A single homography estimate is not sufficient when the
camera has to undergo large displacements in visual servoing
as it can be affected by occlusion of visual features, tracking
(drift) errors, the camera center approaching the feature
plane or due to singular homographies [8]. These degenerate
configurations render the homography invalid. In either of
the cases, when a degeneracy is reached, a new planar curve
has to be chosen as the current curve can no longer be
used for estimating the two-view projective transformation.
This switching causes a discontinuity in the velocity screw
affecting the stability of the robotic system. In Fig. 4, the
effect of switching is demonstrated, where a positioning
task with respect to a non-rigid object is simulated. The
above limitation is caused by the fact that only information
from a single homography is being utilized at a time. To
circumvent this problem, we compute a robust and reliable
estimate of the homography using information from multiple
homography estimates as described in [14]. In this method,
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the resultant homography is efficiently computed as a linear
combination of four independent homographies by exploiting
the rank-4 subspace constraint on homographies.

C. Control Law

Given the stable estimate of the motion and structure
parameters (i.e., R, % 4, M), we describe a control law to obtain
a decoupled camera trajectory without loosing the visibility
of features during servoing. Our approach is motivated by
the controls presented in [5] and [13].

The translational velocity to move directly to the goal
can be determined as —\,(%) d, where X, is a gain fac-
tor and d is the distance to the plane (See Fig. 3). The
rotational velocity is computed as —A,uf, where A, is
again a gain factor and wu,f denote the rotation axis and
angle that are obtained using the Rodrlqguez formula as
0 = arccos(3(tr(R) — 1)), [u]x = 2RTC(0) where tr(R)
indicates the trace of matrix R. A direct control in the
Cartesian space might result in the features leaving the
camera field of view. However, information from image
features can be incorporated into the decoupled control to
enforce the visibility constraint. We know from the image-
based visual servoing control [10]

u—u* -1 < uv - w2 v v
[“*U* }: i 70% é 1402 (17#1;” ) —u [W]’
—_
L, Loy Loy
)
where p=[u v 1] = [z 17, p* = [u* v* 1T =[z* 1T

and Z = Z(P) (See Fig. 3), while [v w]? denotes the
velocity screw. Equation (5) can be rewritten as x — x* =

[Ly Lu,, Lo ][V way w.]®, which yields
Wry = me[(x - (E*) - LVV - szwz]v (6)
where v = (é)d and w, = uyf. In (6), the rotational

motion wy, is controlled not only to minimize the differences
between the current and the goal image features but also to
compensate the effects caused by translation on the image.
This ensures a straight-line trajectory of the features in the
image. Estimates of Z and d are requlred in (5) and (6) This
can be obtained as Z = -3 and d = - t( T where d* is an
estimate of the constant dlstance to the plane 7 in F* [13].
In general, this quantity is considered as a gain ratio and a
coarse estimate obtained from a simple stereo technique is
adequate [13]. Consequently, all the parameters required for
the control are now available directly from the homography
decomposition. In summary, the resultant expression for the
velocity v is given as

Wz

—Auvlzxs 03x2 03x1
where B = 02x3 “Awgylax2 02x1 . @)
01x3 O1x2 —Awzlix1

Equation (7) has only one singularity that occurs at Z = 0
(See expression for L,). However, the robust homography
computation ensures that this degeneracy is always avoided.
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Fig. 5. Experimental Setup with the cameras and the objects used

Fig. 6. Non-Rigid Objects used in the experiments: Three sampled frames
depicting the extreme positions during their motion

Thus using the space-time curves described by the points
belonging to the object, the relative camera displacement
can be reliably computed and used in the above control to
achieve stable servoing behavior uninfluenced by the object
deformations.

IV. EXPERIMENTAL RESULTS AND ANALYSIS

We present a series of real and simulation results to
validate the performance of the proposed technique. Real ex-
periments were conducted to validate the proposed modeling
scheme and also to verify the underlying concept behind the
proposed servoing strategy i.e., the estimation of projective
transformation using space-time curve features and obtaining
the relative end-effector displacement; while the performance
of the servoing algorithm was studied in simulation. The
basic implementation of our proposed algorithm can be
summarized into the following steps.

1) In an off-line step, acquire images from the final goal
position and extract the curves ¢ describing the 3D
point trajectories from these images

2) Acquire a sequence of images from the current camera
pose and obtain c;

3) Estimate homography H; induced by the space-time
curves (Sect. III-A) and compute the reliable homog-
raphy estimate H.,..; (Sect. III-B)

4) Decompose H,.s; to obtain the motion and structure
parameters

5) Using (7), obtain the velocity instruction v and move
the end-effector to the new pose

6) Repeat steps 2 to 5 until convergence
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Fig. 7. Interest points tracked on the objects shown in Fig. 6. Fig.(a) and
(b) show the two corresponding views of Objectl. Fig.(c) plots the point
trajectories obtained in case of (a) and (b) that were used to estimate the
homography. Fig.(d),(e) and (f) show one of the views of the Objects 2,3
and 4 respectively, along with the interest point trajectories

Experiments were conducted using an imaging set-up con-
sisting of a 1m cubical structure with holders to support CCD
cameras (See Fig. 5). The object motion was tracked using
the real-time GPU-based tracking system developed in [16].
The different objects used in the experiments are shown in
Fig. 6. The objects possess multiple interest points moving
with different velocities resembling non-rigid motion. Fig. 7
shows the tracked motion of the points on the object sur-
face. Using these space-time curve features, the projective
transformation between the two views was estimated and the
relative camera displacement was computed. The computed
result was compared to the ground truth obtained from a
simple calibration technique. The estimated parameters were
very close to the actual values in almost all the cases except
in a few, when the considered point trajectory was out of
plane. From this experiment, we ascertained that the relative
displacement of the camera can be reliably estimated using
the space-time curve features of the non-rigid object.

Simulations were conducted in MATLAB environment
using a camera with a 512 x 512 pixel array and a sampling
time of 7" = 40ms. Visual servoing was halted when the
pixel error reduced below 1 pixel. An arbitrary configuration
of points emulating a non-rigid object was considered. The
non-rigid motion of the points was simulated using arbitrary
planar curves. The image acquired at the initial and the de-
sired camera position is displayed in Fig. 8(a). The servoing
task was performed using the algorithm summarized above.
Fig. 8(b) shows the smooth convergence of error norm and
Fig. 8(d) displays the camera trajectory. At convergence,
the camera arrives at the reference pose and the visual
features coincide with the desired features. We observe that
the control is stable and the translational and rotational
velocities (Fig. 8(c)) converge to zero within few seconds.
The proposed approach was also tested successfully on mul-
tiple initializations of curves. Further, several experiments
were performed, using different initializations of the camera
configurations, obtaining similar results.

Experiments were also conducted to analyze the perfor-
mance of the algorithm in presence of noise in calibration
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Fig. 9. Results in presence of (a) Calibration and (b) Image Measurement
errors for the same case as in Fig. 8

(pose) and image measurements. An additive, zero-mean
Gaussian noise with variance ¢ = 0.1 was considered.
The parameters were varied in turn and average of the
error measures was analyzed. From Fig. 9, we observe
that the convergence is achieved even in presence of errors
demonstrating the robust behavior of the approach.

Finally, an experiment was conducted to analyze the
behavior of the robust homography computation algorithm.
The degenerate case as shown in Fig. 4 was considered. The
displacement that the camera had to realize was approxima-
tively composed of a rotation of 5, —40 and 0 degrees around
camera x,y and z axis respectively and a translation of 5,0
and lcm along those axis. Fig. 10(a) shows the variation
in weights corresponding to the homographies. Observe that
the weight corresponding to degenerate H tends towards the
minimum value as the camera approaches the degeneracy.
The smooth velocity screw in Fig. 10(b) demonstrates the
stable behavior of the algorithm unlike Fig. 4(b).

V. CONCLUSIONS

A new framework for visual servoing has been proposed in
this paper that accomplished the positioning task in unknown
non-rigid environments. The algorithm utilized multiple ho-
mography estimates relating the current and desired camera
views in conjunction with the novel non-rigid modeling
scheme to accomplish the servoing task. The algorithm can
handle most types of non-rigid motions and can tackle large
camera displacements without being affected by degenerate
configurations. A drawback with our present approach is
the requirement of a high fps camera as the sensor has to
perceive the target for a minimum of one cycle at every time
step so as to acquire the complete space-time trajectory of the
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Fig. 10. Robust Homography Computation: (a) Normalized weight values
(b) Velocity Screw. The weight corresponding to the degenerate curve
reduces to a minimum when the degeneracy is approached, thus leading
to a smooth velocity screw (unlike Fig. 4(b))

points. Note that although the points motion is cyclic with
respect to a stationary camera; with a moving camera, the
motion will not project onto periodic image paths due to the
constantly changing camera pose relative to the point motion.
However, this limitation can be overcome by using the recent
developments in the field of multiple-view geometry of the
space-time [9] that attempt to predict the point trajectory
at the current pose using information acquired from current
image and the past views. Our future work will be devoted
to the development of this predictive control.
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