CORRECTION

Correction to: A literature review and novel theoretical approach on the optical properties of whole blood

Nienke Bosschaart¹ · Gerda J. Edelman¹ · Maurice C. G. Aalders¹ · Ton G. van Leeuwen¹ · Dirk J. Faber¹

© Springer-Verlag London Ltd., part of Springer Nature 2021

Correction to: Lasers Med Sci https://doi.org/10.1007/s10103-013-1446-7

Original text, taken from the on-line version:

Following the method of Duysens, adapting only the terminology, we arrive at:

$$\mu_{a,blood} = \left(\frac{1 - e^{(\mu_{a,Hb} \cdot d_{RBC})}}{\mu_{a,Hb} \cdot d_{RBC}}\right) \mu_a, HB \tag{3}$$

where $\mu_{a,blood}$ and $\mu_{a,Hb}$ are the absorption coefficient of a blood sample and haemoglobin solution, respectively. The length d_{RBC} is a typical dimension of a red blood cell.

There are two issues:

- There is a minus-sign missing within the exponential.
- The subscripts of the absorption coefficients within the parenthesis (..) are incorrect, and accordingly, the first sentence after the Eq. is incomplete.

The correct version should read:

Following the method of Duysens [32], adapting only the terminology, we arrive at:

$$\mu_{a,blood} = \left(\frac{1 - e^{-\mu_{a,RBC} \cdot d_{RBC}}}{\mu_{a,RBC} \cdot d_{RBC}}\right) \mu_{a,Hb} \tag{3}$$

where $\mu_{a,blood}$ and $\mu_{a,Hb}$ are the absorption coefficient of a blood sample and haemoglobin solution, respectively, and $\mu_{a,RBC}$ is the absorption coefficient of the hemoglobin solution *inside* the red blood cell. The last two absorption coefficients are related through the haematocrit, $\mu_{a,Hb} = Hct \cdot \mu_{a,RBC}$. The length d_{RBC} is a typical dimension of a red blood cell.

The original article has been corrected.

Publisher's note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The original article can be found online at https://doi.org/10.1007/s10103-013-1446-7.

Published online: 25 October 2021

Nienke Bosschaart n.bosschaart@amc.uva.nl

Biomedical Engineering and Physics, Academic Medical Center, University of Amsterdam, P.O. Box 22700, 1100 DE Amsterdam, The Netherlands