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abstract

PURPOSE Heterogeneity in tumor mutational burden (TMB) quantification across sequencing platforms limits
the application and further study of this potential biomarker of response to immune checkpoint inhibitors (ICIs).
We hypothesized that harmonization of TMB across platforms would enable integration of distinct clinical data
sets to better characterize the association between TMB and ICI response.

METHODS Cohorts of patients with non–small-cell lung cancer sequenced by 1 of 3 targeted panels or by whole-
exome sequencing (WES) were compared (N = 7,297). TMB was calculated uniformly and compared across
cohorts. TMB distributions were harmonized by applying a normal transformation followed by standardization to
z scores. In subcohorts of patients treated with ICIs (Dana-Farber Cancer Institute n = 272; Memorial Sloan
Kettering Cancer Center n = 227), the association between TMB and outcome was assessed. Durable clinical
benefit (DCB) was defined as responsive/stable disease lasting ≥ 6 months.

RESULTS TMB values were higher in the panel cohorts than in the WES cohort. Average mutation rates per gene
were highly concordant across cohorts (Pearson’s correlation coefficients, 0.842-0.866). Subsetting the WES
cohort by gene panels only partially reproduced the observed differences in TMB. Standardization of TMB into z
scores harmonized TMB distributions and enabled integration of the ICI-treated subcohorts. Simulations in-
dicated that cohorts . 900 are necessary for this approach. TMB did not associate with response in never-
smokers or patients who harbor targetable driver alterations, although these analyses were underpowered. An
increase of TMB thresholds increased DCB rate, but DCB rates within deciles varied. Receiver operating
characteristic curves yielded an area under the curve of 0.614, with no natural inflection point.

CONCLUSION The z score conversion harmonizes TMB values and enables integration of data sets derived from
different sequencing panels. Clinical and biologic features may provide context to the clinical application of TMB
and warrant additional study.

JCO Precis Oncol. © 2019 by American Society of Clinical Oncology

INTRODUCTION

Immune checkpoint inhibitors (ICIs) have revolution-
ized the treatment of multiple advanced cancers.1-6

However, only aminority of patients experience clinical
benefit, and clinically actionable biomarkers of re-
sponse are urgently needed.

To date, the only approved biomarkers of ICI response
are mismatch repair deficiency and, in non–small-cell
lung cancer (NSCLC), programmed cell death-ligand 1
(PD-L1) expression. However, mounting evidence has
demonstrated an association between tumor muta-
tional burden (TMB) and response to ICIs,7-17 and
there is considerable interest in developing TMB as

a clinical biomarker. TMB quantification from targeted
next-generation sequencing (NGS) panels has been
shown to correlate with whole-exome sequencing
(WES)–derived TMB13,18-20 and to associate with ICI
response, which makes the clinical assessment of
TMB practically feasible.19,21

However, the proliferation of data related to TMB has
also generated confusion because there are now
multiple commercial and academic NGS panels
in routine use, with important differences in gene
panel composition, sequencing pipeline, and TMB
algorithm.22,23 How these differences affect TMB
quantification is unclear, and how to translate one
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platform’s TMB values to another for translational discovery
or clinical use is not known. Furthermore, the studies that
have described an association between TMB and response
applied different thresholds to define TMB-high versus
TMB-low groups. It is not known whether this threshold
heterogeneity reflects different TMB quantification that
arises from different platforms, variation across patient
cohorts, or unknown clinical or biologic effects on the
association between TMB and response.

Given these questions, we sought to develop a strategy to
harmonize TMB across NGS platforms. We applied this
method to integrate multiple clinically annotated cohorts
and to more fully characterize the relationship between
TMB and ICI response to add nuance and context to our
current understanding. We focused on NSCLC because of
the early interest in applying TMB to clinical practice in this
disease subtype24-26 and to avoid confounding of TMB by
tumor type.27

METHODS

Study Population

Three cohorts of patients with NSCLC whose tumors had
been profiled by a targeted NGS panel were evaluated.
These panel cohorts were compared with a fourth WES
cohort from The Cancer Genome Atlas (TCGA).

Dana-Farber Cancer Institute cohort. Patients at the Dana-
Farber Cancer Institute (DFCI) whose tumors had un-
dergone OncoPanel NGS were included if they had
advanced NSCLC and had consented to institutional
review board–approved protocols. The ICI subcohort
consisted of patients treated with ICIs who were evalu-
able for response.

Memorial Sloan Kettering Cancer Center cohort. Molecular
profiling from the Memorial Sloan-Kettering Cancer Center
(MSKCC) MSK-IMPACT NGS panel21 was obtained from
the cBioPortal for Cancer Genomics28,29 and limited to

NSCLC samples. The ICI subcohort consisted of patients
treated with ICIs whose tumors had undergone NGS
sequencing.13

Foundation Medicine cohort. Patient-level mutation calls
for samples sequenced by Foundation Medicine were
obtained (study accession phs001179)30 and filtered to
include only NSCLC samples.

TCGA cohort. Somatic WES data from NSCLCs sequenced
by TCGA31 were downloaded from the cBioPortal for Cancer
Genomics.

NGS

The DFCI cohort was sequenced as previously described.32,33

In brief, tumor DNA was extracted and used for custom-
designed hybrid capture library preparation. NGS (Onco-
Panel) was performed and somatic alterations identified by
custom pipeline. Given the absence of matched normal
tissue, common single nucleotide polymorphisms were
filtered if present at . 0.1% in Exome Variant Server,
NHLBI GO Exome Sequencing Project, or gnomAD; vari-
ants present ≥ 2 times in COSMIC were rescued. All var-
iants were reviewed for technical quality.34 Finally, to
minimize inadvertent inclusion of germline variants, con-
sistent with previous aggregation efforts,35 an additional
germline filter was applied to exclude events present in the
Exome Aggregation Consortium with an allele count . 10,
after rescuing known somatic events.

The MSKCC, Foundation Medicine, and TCGA cohorts
were sequenced as described.13,30,31,36 The MSK-IMPACT
and TCGA WES pipelines use matched normal samples to
isolate somatic events. Foundation Medicine uses an in-
ternal algorithm to filter putative germline events.

TMB

TMB was uniformly calculated for each sample as the
number of nonsynonymous mutations per megabase
(Mb) of genome covered. DFCI mutation counts were

CONTEXT

Key Objective
It is not known how to account for differences in tumor mutational burden (TMB) generated by different sequencing assays.

We sought to address assay heterogeneity in TMB quantification by developing a technique to harmonize TMB across
assays and applied this technique to a pool of distinct clinical cohorts to better characterize the association between TMB
and response to immune checkpoint inhibitors.

Knowledge Generated
TMB differs across sequencing assays because of differences in gene panels and sequencing pipelines. Standardization of

TMB into z scores enabled interassay comparison and pooling of distinct clinical cohorts. From this pooled analysis, we
observed that TMB may not associate with response in patients who are never-smokers or harbor targetable oncogenes,
and TMB thresholds yield significant trade-offs in sensitivity and specificity.

Relevance
Standardization of z scores harmonizes TMB values across assays for pooled analysis. Clinical and biologic features may

modulate the association between TMB and response.
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divided by the number of bases covered in each OncoPanel
version: v1, 0.753334 Mb; v2, 0.826167 Mb; and v3,
1.315078 Mb. For MSKCC samples, the mutation count
was divided by 0.896665, 1.016478, and 1.139322 Mb
for the 341-, 410-, and 468-gene panels, respectively.
For Foundation Medicine samples, 1.1 Mb was used as
the length of genome covered.19 For TCGA samples, 38
Mb was used to approximate exome size, as previously
described.19

PD-L1 Testing

A subset of ICI-treated patients had tissue evaluated for PD-
L1 expression, which was reported as the percentage of
tumor cells with membranous PD-L1 staining. MSKCC
specimens were stained as previously described13; DFCI
specimens were stained using clone E1L3N (Cell Signaling
Technology, Danvers, MA) at 1:200 dilution with pressure
cooker antigen retrieval in citrate buffer.

Immunotherapy Outcomes

Patients in the DFCI and MSKCC ICI subcohorts were
annotated for treatment response to anti-PD-(L)1 mono-
therapy or in combination with anti–cytotoxic T-cell
lymphocyte-4. Scans were reviewed by thoracic radiolo-
gists at each institution, and response was determined
using RECIST version 1.1.37 Progression-free survival was
assessed from the start of ICI treatment until the date of
progression or death; patients without progression were
censored at last scan. Consistent with prior studies,8,13

complete response (CR), partial response (PR), or stable
disease (SD) . 6 months was defined as durable clinical
benefit (DCB); no durable benefit (NDB) was defined as
progressive disease (PD) or SD ≤ 6 months. Patients
censored before 6 months of follow-up were considered not
evaluable.

Statistical Analysis

Cohort-specific gene mutation averages were calculated by
summing the number of mutations in each gene within
a cohort and dividing the total by the number of patients in
the cohort. The means were then transformed to a normal
distribution by natural logarithmic transformation. The
linear correlation between log average mutations per gene
in the panel cohorts versus TCGA was evaluated using
Pearson’s correlation coefficient.

Power transformations were used to normalize cohort-
specific TMB distributions; Tukey’s ladder of powers38 in
the rcompanion package39 was used to identify the optimal
transformation coefficient. The normalized distributions
were then standardized into z scores by subtracting the
transformed distribution mean and dividing by the standard
deviation. Overlap between normalized distributions was
calculated using the overlapping package.40

TMB comparisons were made using the Mann-Whitney U
test. The Fisher’s exact test was used to test for differences
in categorical variables. All P values are two-sided, with

P , .05 taken as significant. Receiver operating charac-
teristic (ROC) curve analyses were performed using the
pROC and OptimalCutpoints packages.41,42 Exploratory
cutoffs were selected to maximize the distance to the y = x
line (Youden’s index), maximize specificity with sensitivity
. 80%, maximize both sensitivity and specificity, maximize
the κ-statistic, and maximize the diagnostic odds ratio. All
statistical analyseswere performed inR 3.4.2 (R Foundation,
Vienna, Austria). Human investigations were performed
after approval by a local human investigations committee
and in accordance with an assurance filed with and ap-
proved by the Department of Health and Human Services,
where appropriate.

RESULTS

Comparison of TMB Quantification Across Panel and

WES Platforms

Patients with NSCLC whose tumors had undergone se-
quencing through OncoPanel (n = 1,157), MSK-IMPACT
(n = 1,520), Foundation Medicine (n = 3,476), or TCGA
(n = 1,144) were included (N = 7,297; see Data Supple-
ment for cohort diagram and clinical characteristics). To
determine whether TMB differed between platforms, we
plotted the distribution of TMB within each cohort (Fig 1A).
TMB distributions differed between cohorts, and targeted
panels were associated with higher TMB values than WES.
Because targeted panels sequence fewer bases with fo-
cused inclusion of mutated cancer genes, we hypothesized
that the higher TMB measurements associated with NGS
panels were attributable to gene selection. We tested this by
subsetting the WES data to include only those genes
captured by the targeted panels (downsampling; Data
Supplement; Fig 1B) and found that downsampled distri-
butions retained greater TMB counts than the unfiltered
TCGA distribution, which suggests that gene panel com-
position contributes to the observed difference in TMB
distributions between cohorts. However, the relative dif-
ferences were less pronounced than in the real-world
cohort comparisons, which suggests that assay-specific
differences, such as depth of sequencing and the ab-
sence of a paired germline sample, might also contribute to
inter-test variation.

To further examine assay-specific sources of variation in
TMB across panels, we compared the average number of
mutations per gene in each cohort against the TCGA av-
erages, surmising that this could reflect differences in assay
performance or mutation calling (Figs 1C-E). Concordance
between the panel cohorts and TCGA was high (Pearson’s
correlation coefficients, 0.842-0.866), and only rarely
mutated genes emerged as outliers, which suggests min-
imal gene-specific variability. Comparison of variant classes
demonstrated differential enrichment in the panel versus
WES cohorts, which is also consistent with assay-specific
differences in mutation filtration (Data Supplement).

Tumor Mutational Burden Harmonization and Response Association
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FIG 1. Comparison of tumor mutational burden (TMB) distribution and gene mutation rates across targeted panel and whole-exome sequencing (WES)
cohorts. (A and B) TMBdistributions in the panel cohorts and obtained by subsetting theWES cohort to the panel gene sets (downsampling) are higher than
the WES TMB distribution. The x-axis depicts the percentile of each TMB value; the y-axis depicts TMB in mutations/megabase (Mb). Eight high outliers in
panel A are not shown. (C-E) Natural log average mutation rates per gene in each panel cohort are highly correlated with average gene mutation rates in the
WES cohort. Each point represents a gene. The dashed line depicts y= x. Pearson’s correlation coefficients are shown. (F) Normalization and standardization
of TMB distributions bring the next-generation sequencing and WES cohort distributions into alignment. The left side shows the kernel density plot of
unadjusted TMB values in each cohort, and the right side shows the transformed density plot of TMB z scores that demonstrate high overlap. DFCI, Dana-
Farber Cancer Institute; MSKCC, Memorial Sloan Kettering Cancer Center; TCGA, The Cancer Genome Atlas.
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Harmonization of TMB Across Platforms Using z
Score Standardization

We first attempted to harmonize TMB values across cohorts
by linearly mapping panel TMB distributions onto the TCGA
TMB distribution (Data Supplement). However, inconsis-
tent variation in TMB across distributions prohibited use of
a linear constant. This variability was also diminished but
still present when the downsampled TMB values were
analyzed (Data Supplement). Consequently, we instead
pursued the strategy of transforming unadjusted TMB
values into standardized z scores that could be compared
across panels. Use of a power transformation converted the
right-skewed TMB distributions (Fig 1F) to normal distri-
butions (skewness values ≤ 0.06; Data Supplement), and
standardization to z scores brought the TMB distributions
into good concordance (Fig 1F) with . 85% overlap (Data
Supplement). Cohort size simulation demonstrated that
cohorts of . 900 patients are necessary for this approach
(Data Supplement).

TMB z Scores Correlate With ICI Outcome and Allow for

Cross-Cohort Comparison

We then applied this transformation to TMB in the DFCI and
MSKCC ICI-treated subcohorts (n = 272 and 227, re-
spectively; total n = 499; demographic features are listed in
Table 1; detailed clinical characteristics are listed in the
Data Supplement) and examined whether the derived TMB
z scores associated with response.13,24,26 We confirmed that
TMB was higher in patients with CR/PR or DCB than in
those with PD or NDB in both subcohorts pretransformation
(Fig 2A) and that this association held when post-
transformation z scores were used (Fig 2B). We noted
that while the unadjusted DFCI TMB values were higher
than the unadjusted MSKCC TMB values, the z score
standardization produced overlapping distributions (Data
Supplement), which allowed us to combine the DFCI and
MSKCC ICI cohorts. In the merged cohort, TMB z scores
remained significantly higher in responders (Fig 2C).

TMB Is Lower in Never-Smokers and May Not Associate

With Response

We performed subgroup analyses using the transformed,
pooled cohort (DFCI and MSKCC ICI-treated patients, n =
499) to determine whether specific clinical and biologic
features affect the association between TMB and response.
TMB z scores in ever-smokers were higher than in never-
smokers (median, 0.312 v −0.456; P , .0001); notably,
TMB in ever-smokers with NDB was higher than that in
never-smokers with DCB (median, 0.171 v −0.456; P =
.00097; Fig 2D). Among never-smokers, TMB did not differ
between DCB and NDB (median, −0.456 v −0.456; P =
.749). Sampling simulations (Data Supplement) suggest
that this negative finding may be due to decreased power in
this subset, although lower TMB values and distinct biology
may also contribute (Data Supplement). Similar exploratory
analyses of patients who harbor targetable oncogenic

drivers did not demonstrate an association between TMB z
score and DCB (total n = 74), although power in these small
driver subgroups was also limited (Fig 2E). Power simu-
lations suggested that cohort sizes . 300 may be neces-
sary to detect a difference in TMB between patients with
DCB and NDB in groups with lower response rates or effect
sizes (Data Supplement).

TMB Thresholds and Response

Given the heterogeneity in previously identified thresholds
and the percentile cut points used to identify such
thresholds, we used our pooled cohort to systematically
explore the relationship between TMB and response to ICIs
across the TMB distribution. We calculated the rate of DCB
and CR/PR with increasing TMB thresholds in the pooled
and separate ICI cohorts (Fig 3A; Data Supplement).
Table 2 lists the TMB z scores and values associated with
each threshold. We observed a gradual increase in the rate
of DCB with increasing TMB thresholds. We noted, how-
ever, that this could arise from enriching for high TMB
outliers and therefore calculated the rate of DCB within
each TMB decile (joint cohort shown in Fig 3B; separate
cohorts shown in the Data Supplement). In this analysis, we
noted high DCB rates in the highest deciles (40.4% in
patients with TMB z scores between the 80th and 90th
percentiles; 53.1% in patients with TMB z scores ≥ 90th
percentile) and low rates in the lowest deciles (16.7% in
patients with TMB z scores , 10th percentile). However,
the middle deciles exhibited greater heterogeneity in DCB
rate. Accordingly, the odds ratio of DCB with increasing
TMB thresholds was highest with TMB cutoffs ≥ 80th
percentile and more heterogeneous at lower thresholds
(Fig 3C). Similar trends were observed in smokers; there
was no increase in DCB rates with increasing TMB
threshold in never-smokers (Data Supplement). The pat-
tern of association between PD-L1 and DCB was similar to
TMB, with increasing rates of DCB with higher PD-L1
thresholds but more variability within PD-L1 score group-
ings (Data Supplement).

Given the heterogeneity of response rates over the mid-TMB
distribution, we used ROC curve analysis to formally quantify
how well TMB z scores discriminate between DCB and NDB.
ROC analysis yielded an area under the curve (AUC) of
0.614. The Youden’s index cutoff was associated with
a sensitivity of 61.8% and a specificity of 57.3%, which
resulted in undertreatment of 12% of patients and over-
treatment of 30% (Fig 3D; Table 3). Application of other
thresholds demonstrated better specificity at higher TMB z
score thresholds but at the expense of missing patients
who would have responded. Cutoffs and their associated
sensitivity/specificity were similar in the cohorts considered
separately (Data Supplement). Application of the clinically used
PD-L1 threshold ≥ 50% was associated with undertreatment
of 13% and overtreatment of 19% of patients. TMB z score
did not discriminate between DCB and NDB in never-
smokers or patients with targetable driver mutations (AUC,

Tumor Mutational Burden Harmonization and Response Association
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0.493; data not shown). Analysis of TMB thresholds with
respect to progression-free survival, rather than response,
demonstrated similar results (Data Supplement).

DISCUSSION

We present a pragmatic comparison of TMB calculated
from targeted panels and WES and apply TMB z score
conversion to enable harmonized analyses. We demon-
strate that this approach can translate TMB values across
tests and can be used to integrate distinct data sets for

discovery and further analyses. In addition, our use of real-
world data sets allows us to incorporate and account for
sources of variation not captured by in silico downsampling
analyses, such as differences in mutation/indel calling
pipelines, depth of coverage, and germline filtration. This
approach is distinct from other parallel harmonization

TABLE 1. Patient Characteristics of Immune Checkpoint
Inhibitor–Treated Subcohort
Characteristic No. (%)

DFCI

No. of patients 272

Median age at diagnosis, years (range) 65 (24-90)

Sex

Male 132 (49)

Female 140 (51)

Histology

Squamous 37 (14)

Adenocarcinoma 213 (78)

Other 22 (8)

Smoking status

Ever 241 (89)

Never 31 (11)

Line of therapy

First 86 (32)

Second 132 (48)

Third or higher 54 (20)

Treatment

PD-(L)1, monotherapy 251 (92)

PD-(L)1 + CTLA-4 combination 21 (8)

Best overall response

CR/PR 56 (21)

SD 72 (26)

PD 144 (53)

Clinical benefit

DCB 83 (31)

NDB 189 (69)

Actionable mutations

EGFR 21 (8)

BRAF V600E 6 (2)

ALK 2 (1)

ROS1 1 (, 1)

RET 3 (1)

MET exon 14Δ 9 (3)

(Continued in next column)

TABLE 1. Patient Characteristics of Immune Checkpoint
Inhibitor–Treated Subcohort (Continued)
Characteristic No. (%)

MSKCC

No. of patients 227

Median age at diagnosis, years (range) 66 (22-92)

Sex

Male 116 (51)

Female 111 (49)

Histology

Squamous 31 (14)

Adenocarcinoma 179 (79)

Other 17 (7)

Smoking status

Ever 183 (81)

Never 44 (19)

Line of therapy

First 47 (21)

Second 122 (54)

Third or higher 58 (26)

Treatment

PD-(L)1, monotherapy 195 (86)

PD-(L)1 + CTLA-4 combination 32 (14)

Best overall response

CR/PR 39 (17)

SD 80 (35)

PD 108 (48)

Clinical benefit

DCB 69 (30)

NDB 158 (70)

Actionable mutations

EGFR 18 (8)

BRAF V600E 1 (, 1)

ALK 1 (, 1)

ROS1 4 (2)

RET 1 (, 1)

MET exon 14Δ 7 (3)

Abbreviations: CR, complete response; CTLA-4, cytotoxic T-cell
lymphocyte-4; DCB, durable clinical benefit; DFCI, Dana-Farber
Cancer Institute; MSKCC, Memorial Sloan Kettering Cancer Center;
NDB, no durable benefit; PD, progressive disease; PD-(L)1,
programmed cell death 1 or programmed cell death-ligand 1; PR,
partial response; SD, stable disease.
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were not associated with response in never-smokers (median, −0.456 v −0.456; P = .749). TMB z scores were significantly higher in ever-smokers with
NDB than never-smokers with DCB (median, 0.171 v −0.456; P = .00097). (E) TMB z scores in the joint cohort do not associate with response in
patients with mutations in targetable oncogenic drivers. Box plots represent medians and interquartile ranges, and vertical lines extend to the 95th
percentiles. (*) P , .05, (†) P , .01, (‡) P , .001.
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efforts,22,43 which focus on standardization of TMB defi-
nitions and reporting and eventually aim to generate gold
standard cell lines for benchmarking. We anticipate that
our approach will be of immediate use to both clinicians
and researchers and anticipate that it can be easily applied
to other platforms and relevant tumor types.

Although the association between TMB and response to
ICIs in NSCLC has been demonstrated, less is understood
about how clinical and biologic features affect this asso-
ciation. Here, we found that TMB did not associate with
DCB in never-smokers and in patients who harbor tar-
getable oncogenic mutations. Of note, these analyses were
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underpowered to detect a difference, and our power
simulations indicated that larger cohorts are needed and
caution against definitive conclusions in these small sub-
group analyses. However, we also observed that never-
smokers who benefitted from ICIs had markedly lower TMB
values than ever-smokers who did not, which suggests that
further study to identify TMB-independent predictors of
response in never-smokers may be warranted and raises
the important possibility that the clinical application of TMB
as a biomarker will need to take clinical and biologic fea-
tures into account.

The importance of context is further emphasized by our
analysis of TMB thresholds. Prior analyses have generally
focused on identifying a single threshold to define TMB-
high and TMB-low subgroups, with variation in selected
thresholds across studies.13,15,26,44 Our systematic analysis
of TMB thresholds illustrates additional nuances in the
relationship between TMB and response. We observed
enrichment in DCB with higher TMB thresholds, as ex-
pected, but weaker discrimination in the midrange of TMB
values without a single, natural biologic inflection point.
These findings may account for some of the observed
heterogeneity among previously proposed thresholds, as
there may be a range of values that discriminate similarly
between responders and nonresponders. In addition, our

data suggest that the choice of a given threshold must be
decided within a goal-specific context that considers the
relative efficacy of the alternative treatment; a TMB
threshold selected to enrich for response to first-line
therapy may be different than a threshold selected for
second-line therapy. Of note, TMB is independent of PD-
L1 expression,12,13 with similar biomarker performance:
Increasing expression is associated with improved effi-
cacy without a natural cut point, there is variability in DCB
enrichment within deciles of expression, and distinct
thresholds are appropriately applied on the basis of the
specific treatment scenario (ie, ≥ 50%, ≥ 1%, none).3,5,45

Ultimately, these data do not answer whether and how TMB
should be applied to clinical practice, as this must be
examined through prospective clinical trials, but add nu-
ance to our understanding of how TMB associates with
response.

One limitation of this study is that our comparison of TMBs
assumes that the observed distinctions reflect differences
in platforms rather than in patients/samples. We were not
able to account for clinical and tumor features because of
inconsistent sample annotation but note that our large
cohorts help to mitigate sampling bias, and the overall
consistencies in shape of distribution are reassuring.
Whether TMB distributions should be more narrowly

TABLE 2. TMB z Score Associated With Each Decile Cutoff in the Joint Immune Checkpoint Inhibitor Cohort
TMB

Percentile TMB z Score DFCI MSKCC Foundation Medicine TCGA (mutation count)

10th −1.04 4.81 2.27 2.83 1.84 (55)

20th −0.47 7.22 3.89 4.45 3.35 (101)

30th −0.24 8.42 4.78 5.30 4.18 (125)

40th 0.00 9.87 5.90 6.36 5.25 (158)

50th 0.17 11.07 6.89 7.27 6.10 (183)

60th 0.45 13.24 8.76 8.97 7.58 (228)

70th 0.70 15.47 10.82 10.80 9.41 (282)

80th 0.95 18.05 13.34 13.00 11.31 (339)

90th 1.38 23.49 19.10 17.90 15.43 (463)

NOTE. Equivalent tumor mutational burden (TMB) values in the DFCI, MSKCC, Foundation Medicine, and TCGA cohorts are shown.
Abbreviations: DFCI, Dana-Farber Cancer Institute; MSKCC, Memorial Sloan Kettering Cancer Center; TCGA, The Cancer Genome Atlas.

TABLE 3. Test Characteristics and Performance of TMB Cutoff Values in the Joint Immune Checkpoint Inhibitor Cohort (n = 499)

z Score Cutoff
DFCI
TMB MSKCC TMB Sensitivity, % Specificity, % DCB Rate, % OR (P)

With ‡ Cutoff,
No. (%)

With DCB Not
Treated, No. (%)

Treated
With NDB, No. (%)

−0.46 7.34 3.77 86.2 24.2 33 1.99 (.008) 394 (79) 21 (4) 263 (53)

0.28 11.90 7.18 61.8 57.3 39 2.10 (, .001) 245 (49) 58 (12) 151 (30)

1.08 20.60 15.10 26.3 88.2 54 2.99 (, .01) 80 (16) 111 (22) 39 (8)

3.10 61.40 68.20 0.70 99.7 67 4.60 (.22) 3 (1) 150 (30) 1 (0.2)

NOTE. Rightmost columns describe number of patients with durable clinical benefit (DCB) who would not have been treated at that threshold (false
negative) and the number of patients who would have been treated with no durable benefit (NDB) (false positive).
Abbreviations: DFCI, Dana-Farber Cancer Institute; MSKCC, Memorial Sloan Kettering Cancer Center; OR, odds ratio; TMB, tumor mutational burden.
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defined by sample features, such as histology or stage, is an
open question, and the normalization we describe here can
be adjusted as more is learned. At present, however, TMB
is compared across patients and biopsy specimens without
reference to these sample characteristics, which makes
this aggregated approach consistent with current clinical
practice.

In conclusion, we provide a practical approach to the
challenge of standardizing TMB across platforms, and we
apply this approach to integrate distinct data sets to better
understand how TMB associates with response. Much
remains to be learned about how and why TMB associates
with response to ICI and how best to apply TMB in the clinic
for precision immunotherapy.
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