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Protein concentration in a living cell fluctuates over time due to noise in growth and division processes.
In the high expression regime, variance of the protein concentration in a cell is found to scale with the
square of the mean, which belongs to a general phenomenon called Taylor’s law (TL). To understand the
origin for these fluctuations, we measure protein concentration dynamics in single Escherichia coli cells
from a set of strains with a variable expression of fluorescent proteins. The protein expression is controlled
by a set of constitutive promoters with different strength, which allows one to change the expression level
over 2 orders of magnitude without introducing noise from fluctuations in transcription regulators. Our data
confirm the square TL, but the prefactor has a cell-to-cell variation independent of the promoter strength.
Furthermore, distributions of the normalized protein concentration for different promoters collapse onto the
same curve. To explain these observations, we use a minimal mechanistic model to describe the stochastic
growth and division processes in a single cell with a feedback mechanism for regulating cell division. In the
high expression regime where extrinsic noise dominates, the model reproduces our experimental results
quantitatively. By using the mean-field approximation in the minimal model, we show that the stochastic
dynamics of protein concentration is described by a Langevin equation with multiplicative noise. The
Langevin equation has a scale invariance which is responsible for the square TL. By solving the Langevin
equation, we obtain an analytical solution for the protein concentration distribution function that agrees
with experiments. The solution shows explicitly how the prefactor depends on strength of different noise
sources, which explains its cell-to-cell variability. By using this approach to analyze our single-cell data, we
find that the noise in production rate dominates the noise from cell division. The deviation from the square
TL in the low expression regime can also be captured in our model by including intrinsic noise in the
production rate.
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I. INTRODUCTION

Protein concentrations inside a single cell determine
functions and behaviors of the cell [1–5]. Given the small
size of a cell, the dynamics of protein concentration is
highly stochastic, and there is a significant cell-to-cell
variability [6–10]. Protein concentration dynamics in a cell

is determined by gene expression and protein synthesis
processes as well as the growth and division processes of
the cell, all of which can introduce significant noise [11,12].
In a genome-wide study of protein concentration fluc-

tuations in individual cells by Taniguchi et al. [13], it is
found that almost all protein concentration distributions can
be described by the Gamma distribution characterized by
its mean hci and variance σ2c. For genes with low expression
levels (fewer than ten proteins per cell cycle), σ2c is found to
scale linearly with hci, which can be explained by a simple
model of the transcription process and its intrinsic noise
[13]. For genes with higher expression levels, σ2c is found to
scale with hci2, which is attributed phenomenologically to
contributions from noise in processes that are “extrinsic”
to the transcriptional process. However, what the main
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sources of this extrinsic noise are and how they lead to the
observed scaling behavior in the high expression regime
remain unclear.
A power law scaling relationship between variance and

mean is generally called Taylor’s law, named after Lionel
Taylor, who first observed it in ecology [14] and later found
to exist in diverse fields from number theory to epidemi-
ology [15–18]. For protein concentration fluctuations in
the high expression regime, the observed scaling relation
σ2c ¼ Ahci2 corresponds to a square Taylor’s law (TL) with
power p ¼ 2. However, for protein concentration fluctua-
tions, the prefactor A is not a constant, and it varies within a
roughly twofold range [13]. Here, by combining exper-
imental and theoretical studies, we aim to understand the
origin of single-cell protein concentration fluctuations in
the high expression regime. Our goal is twofold. We want
to understand the fundamental reason for the universal
scaling behavior observed in protein concentration fluctu-
ations. Equally importantly, we aim to understand how
different (dominant) sources of noise contribute to the
prefactor A to explain its observed variation in individual
cells and/or under different conditions.
We construct a set of Escherichia coli strains that express

the fluorescent protein Venus at levels that varies over 2
orders of magnitude. In each strain, we introduce a plasmid
that contains a constitutive promoter controlling Venus.
This promoter belongs to a set of artificial promoters with
variable strength [19]. We study dynamics of the protein
concentration by measuring the expression level (fluores-
cence intensity) and the cell size dynamics in growing
and dividing cells by using the mother machine micro-
fluidic device. This allows us to measure single cells for
many generations under stable environmental conditions
[8,20–24]. Furthermore, the use of the constitutive pro-
moters in plasmids allows us to vary the gene expression
level by orders of magnitude without introducing signifi-
cant additional sources of noise (e.g., those caused by
fluctuations in regulators for nonconstitutive promoters or
due to the specific chromosomal location of the gene). This
setup helps us isolate some of the common factors that
contribute to the protein concentration fluctuations, which
are difficult to distill from the genome-wide study [13].
The protein copy number fluctuations are studied in E.

coli by Salman et al. [25], where a square TL for the protein
copy number fluctuations in growing and dividing cells is
reported. By using a phenomenological model [4,26],
Brenner et al. show that the protein number N in a growing
and dividing cell follows approximately a log-normal
distribution under the assumption that N increases expo-
nentially with respect to time. The only protein number
scale comes from the mean, which is fixed in the phenom-
enological model as a mathematical constraint. However,
while previous models [4,26] are able to explain the
Taylor’s law in protein number fluctuations phenomeno-
logically, they cannot be used to explain fluctuations of

protein concentration, which depend on fluctuations in both
protein number and cell size that are highly correlated in a
growing and dividing cell.
In this work, we first present a minimal mechanistic

model to describe dynamics of both the protein number and
cell size during growth and division in a coherent frame-
work. In our model, the growth of both the protein number
and cell size depends on the number of a common
production machinery (complex) with production (growth)
rates different for the protein number and cell size. The
production machinery, which can be characterized by the
number of ribosomes (R) in the cell, has its own dynamics,
which is controlled by the same production and division
processes as for a specific protein. Instead of enforcing a
mean protein number as an ad hoc mathematical constraint
as in previous models for protein number fluctuations [26]
and cell size regulation [27], a division control variable
(molecule Z) is introduced in our model. Z also follows the
same production and division dynamics as that of a protein
(or R). The probability of cell division increases sharply
when the number of molecule Z crosses a certain threshold
Z0 [28–32]. We then use this minimal mechanistic model to
study protein concentration fluctuations and compare the
theoretical results quantitatively with single-cell data from
the mother machine experiments. Furthermore, by using a
mean-field approximation in the minimal model, we find
that the stochastic dynamics of the concentration c is
governed by a single Langevin equation with multiplicative
noise. We solve the Langevin equation analytically, which
allows us not only to prove the square TL, but also to show
explicitly how the prefactor A depends on different micro-
scopic noise sources. The deviations from the square TL in
the low expression regime are also discussed.

II. RESULTS

A. Protein concentration fluctuations follow Taylor’s
law with a variable prefactor

We constructed a set of E. coli strains that produce the
fluorescent protein Venus [Fig. 1(a)]. Each strain contains a
plasmid that expresses the Venus gene controlled by a
promoter from a set of constitutive promoters with different
strengths (see the Appendix A for details about the
experiments) [19]. The constitutive promoters are derived
from the same DNA strand with small modifications that
affect the affinity for the sigma factor. Using the mother
machine technique [8,10,22,23] and fluorescent micros-
copy, we monitor individual cells of such strains under
steady-state conditions, with a constant flow of either rich
or poor media. For each combination of nutrient conditions
and promoter strength, we measure the cell size and the
fluorescent intensity protein for approximately 20 different
mother cells and approximately 50 cell generations per
mother cell. We assume that the intensity of the fluores-
cence of a cell at time t, NðtÞ, is proportional to the number
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of Venus protein, and, thus, the fluorescence density
(fluorescence divided by cell size, indicated as c) can be
considered a proxy of the protein concentration.
In Fig. 1(b), we show a typical time trace of the normalized

cell length (size) L (top), total fluorescence N (middle), and
fluorescence density c ð≡N=LÞ (bottom) for many cell
generations. Both the protein number (fluorescence inten-
sity) and cell length follow continuous exponential growth
that is interrupted by periodic “discontinuous” reductions
due to cell division. The fluorescence density c is muchmore
continuous thanN andL, and the influence of cell division is
not strong. This is easy to understand, because the gross
effect of cell division for both N and L is canceled out in c.
However, even though cell division does not affect the
protein concentration the same way as the protein number
or cell size, we note from Fig. 1(b) (bottom) that there is a
small but observable change in c at cell division times (red
dots), which suggests that cell division is likely a source of
noise for protein concentration.

To study how fluctuations in cell size and protein number
depend on the mean growth and transcription rates, we do
experiments using several constitutive promoters with
different strengths [22] in two nutrient conditions [8].
Qualitatively, as shown in Fig. 1(c), a stronger promoter
leads to a higher fluorescence intensity, whereas a rich
nutrient condition leads to a faster growth and a shorter
average division time ΔT.
From the measured time traces ciðtÞ [such as the one

shown in Fig. 1(b)] for each mother cell lineage i, we
compute the mean μi ≡ hciit and variance σ2c;i ≡ hc2i it − μ2i ,
where the average h·it is takenovermeasurements at different
time points. In Fig. 2(a), we show the log-log plot of variance
versus the mean for all individual lineages for all ten
experimental conditions studied in this paper—different
symbols represent the five different promoters, and different
colors represent the two different growth conditions.
Our data clearly show that on average the variance-mean
relation follows the square Taylor’s law with power p ¼ 2

FIG. 1. (a) Schematics of the experimental setup. Using the microfluidic device mother machine and fluorescent microscopy, we
monitor individual cells of various E. coli strains growing under a constant flow of either rich or poor media. Each strain contains a
plasmid that codifies for the fluorescent protein Venus under the control of an artificial promoter from a set of promoters with increasing
strengths, Prof4; 5; B; C;Dg [19]. (b) Typical time traces of a single cell containing the ProB promoter and growing in rich medium:
normalized cell length L (top), total fluorescence N (middle), and fluorescence density c ð¼ N=LÞ (bottom). The vertical lines and the
red dots at the bottom plot indicate the times of cell division. (c) Kymographs illustrating the fluorescence level of strains with the
promoters ProB (left) and ProD (right) controlling Venus expression, growing in poor (top) and rich (bottom) media. Each frame is
separated from the following one by a time interval of 5 min. The bars below the kymographs show the span of a cell trace from birth
until division.
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[the dashed line in Fig. 2(a) has slope 2]. However, it is clear
from our data that there is significant variability among
individual cells.
To characterize the cell-to-cell variability, we define the

strength of fluctuation as Ai ≡ σ2c;i=μ
2
i for each cell i. The

variance-mean relation can, thus, be expressed as

σ2c;i ¼ Aiμ
2
i : ð1Þ

From Fig. 2(a), it is clear that the prefactor Ai varies from
cell to cell. Importantly, we find that the variation in Ai is
independent of the expression level μi across cells in all
strains we study. We compute the correlation coefficient:

CAμ ¼
hAμi − hAihμi

σAσμ
; ð2Þ

where h·imeans averaging over all cells in our experiments
and σ2A ¼ hA2i − hAi2 and σ2μ ¼ hμ2i − hμi2 are the vari-
ance for A and μ, respectively. We find that the correlation
(CAμ ¼ −0.06) is statistically insignificant, which suggests
that the dominant noise sources responsible for the varia-
tions of Ai are independent of the factors that control the
gene expression level in our experiments.
In Fig. 2(b), we show the distributions of A in cells for

each of the ten experimental conditions. The distributions
do not vary significantly or systematically with experi-
mental conditions. The mean is independent of the pro-
moter strength and has only a weak dependence on the
growth condition. Quantitatively, the average hAi ¼ 0.038
and the standard deviation σA ≈ 0.015 are found for all the

cells studied here. It is evident from Fig. 2(b) that variations
in A are dominated by cell-to-cell variability among cells
within the same experimental condition (promoter strength
and growth condition). Consequently, when we average
over the population of cells with a specific experimental
condition E, the resulting averaged variance [σ2cðEÞ] and
mean [μðEÞ] satisfy the square TL [33]:

σ2cðEÞ ¼ hAiμ2ðEÞ; ð3Þ

with a constant prefactor hAi. The population-averaged
variance [σ2cðEÞ] and mean [μðEÞ] are represented by
coordinates of the bold black symbols in Fig. 2(a),
where the averaged square TL [Eq. (3)] is shown as the
dashed line (there is a small error bar much smaller than σA
due to the finite number of cells for each experimental
condition E), and the gray thick line represents the range of
A given by σA.
The prefactor A and its distribution depend on micro-

scopic details of the system such as noise level in protein
production and cell division as we show later in the paper.
To test the generality of our results, we analyze data from
our previous experiments [22], where the same family of
promoters used in this study are integrated in the chromo-
some. As shown in Fig. 10 in Appendix G, the square TL
with p ¼ 2 is preserved and the variation of the prefactor A
is independent of the mean expression level with a
correlation coefficient CAμ ¼ −0.07. Quantitatively, the
distribution of the prefactor A has a mean and standard
deviation A ¼ 0.083� 0.046 that are different from
those found in our current experiments using plasmids.

FIG. 2. TL in protein concentration fluctuations. (a) Variance (σ2c) of the protein concentration versus the mean value μð¼ hciÞ for
individual cells with all experimental conditions. The poor and rich nutrient conditions are labeled by red and green, respectively.
Different symbols correspond to cells with promoters with different affinity to the sigma factor. All data from different cells with
different promoters and growth condition are overlaid with the square TL: σ2c ¼ Aμ2 with A ¼ 0.038� 0.015. The black dashed line and
the gray thick line around it reflect the mean and standard deviation of the distribution of A, respectively. The bold black symbols
represent the mean and variance averaged over cells with the same experimental conditions. (b) Distributions of A for all ten
experimental conditions. The dashed lines indicate the means of A for all the cells in rich (green) and poor (red) conditions.
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Analogous to scaling laws in physics such as those in
critical phenomena, while the power p ¼ 2 remains uni-
versal, the prefactor A in the square Taylor’s law for
protein concentration fluctuations is not a universal con-
stant, and it can vary from gene to gene and from condition
to condition. However, since the variation in A is not
correlated with μ in the high expression regime, the square
TL is preserved statistically despite the variation in A for
individual cases.
From our single-cell measurements, we compute the

probability distribution of the normalized concentration
ðci − μiÞ=σc;i for cells under each experimental condition.
As shown in Fig. 3, all ten distributions for the normalized
concentration collapse onto the same master curve, which
agrees with an analytical solution (dashed line in Fig. 3)
obtained from our model study.
In the following, we develop a minimal mechanistic

model to understand the origin of the square TL; to identify
and quantify some of the dominant noise sources that
contribute to the variations in the prefactor A; and to
explain the collapse of the normalized protein concentra-
tion distributions.

B. A minimal mechanistic model to describe protein
concentration fluctuations in growing and dividing cells

Cell growth and division are complex processes involv-
ing many regulatory proteins and pathways, which are
beyond the scope of this paper. Here, we aim to develop a
simple model that captures the most salient features in
the underlying molecular mechanism governing protein

concentration fluctuations in growing and dividing cells in
a mother machine setup.
In the minimal model, the growth and division processes

in a cell are controlled by a production variable R and a
division variable Z, respectively. All dynamic variables in a
cell such as the cell length L and protein number N, as well
as R and Z themselves, are controlled by R and Z.
The use of a common production variable R that is

shared by other variables of the system is supported by the
fact that growth rates of L and N during cell growth are not
independent. As shown in Fig. 4(a), during each growth
period between two consecutive divisions, we can fit the
cell length and protein number dynamics to exponential
functions and determine the growth rates λl and λn for L
and N, respectively. In Fig. 4(b), we plot λn versus λl for all
growth periods and for both nutrient conditions, which
clearly shows that the two growth rates are highly corre-
lated. To account for this strong correlation, all growth rates
in our model are assumed to be proportional to the common
production variable R, which can be interpreted as the
number of active ribosomes in the cell. In previous experi-
ments [34], it is shown that the growth rate depends linearly
on the RNA/protein ratio. Since the total RNA content in a
cell is a good measure of the ribosome number, these
experiments support the assumption that growth rates are
proportional to R.
In order to maintain cell size homeostasis, a feedback

mechanism is needed to control cell division. Indeed, as
pointed out in Refs. [4,26], if cell divisions were to occur
at independent random time intervals, even with a fixed
mean, the accumulation of variation in division times away
from their mean would lead to divergence of cell length
fluctuation. In bacterial cells, cell division is regulated by the
division protein FtsZ [35–37], which assemble into a ring
(the Z ring) localized at the future division site of the cell.
The completion of the Z ring, together with other proteins, is
critical for cell division. Motivated by these experimental
facts and by following previous theoretical work [28–32],
we assume that the probability for cell division increases
sharply with Z when it crosses a certain threshold Z0.
Since the Z ring formation depends on oligomerization of
FtsZ at a localized site, the threshold is set over the total
number of proteins as opposed to its concentration.
Taken together, our model is represented schematically

in Fig. 5(a) (top). There are four extensive variables:
The cell size (length) L and the protein number N are
“observable” variables that can be directly measured in the
mother machine experiments; the number of growth com-
plexes (ribosomes) R and the number of division proteins
(FtsZ) Z are “hidden” variables that control the growth and
division of all variables including themselves. Since we do
not have detailed information on all the relevant biochemi-
cal processes that govern protein concentration fluctua-
tions, instead of modeling specific biochemical reactions
explicitly as in previous works [12,13,38], we use the
following stochastic ordinary differential equations to study

FIG. 3. Distributions of the normalized protein concentration
fluctuations under different experimental conditions. The dashed
line is obtained from the analytical expression Eq. (13) from
our model.
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the coarse-grained dynamics of the four key variables
(L, N, R, and Z):

dL
dt

¼ RKlð1þ ηlÞ − L
XndðtÞ
i¼1

wðlÞ
i δ½t − tiðZÞ�; ð4Þ

dN
dt

¼ RKnð1þ ηnÞ − N
XndðtÞ
i¼1

wðnÞ
i δ½t − tiðZÞ�; ð5Þ

dR
dt

¼ RKrð1þ ηrÞ − R
XndðtÞ
i¼1

wðrÞ
i δ½t − tiðZÞ�; ð6Þ

dZ
dt

¼ RKzð1þ ηzÞ − Z
XndðtÞ
i¼1

wðzÞ
i δ½t − tiðZÞ�; ð7Þ

which all have the same general form. The first and second
terms on the right side of each equation represent effects of

FIG. 4. Noise sources due to growth and division. (a) The effective growth rates λl and λn are obtained by fitting the cell size and
protein number dynamics during each growth period (between two consecutive division events) with exponential functions. An example
of the fitting is shown for L (top) andN (bottom); different colors correspond to different nutrient conditions. (b) λl versus λn shows high
but not perfect correlation. Deviations from the diagonal correspond to a noise source for c due to growth. The inset shows the
distribution of the relative difference between λl and λn. (c) Distribution of the partition factors wðl;nÞ for cell size and protein number.
(d) The correlation between wðlÞ and wðnÞ is high but not perfect. Deviations from the diagonal correspond to another noise source for c
due to division.

SASSI, GARCIA-ALCALA, ALDANA, and TU PHYS. REV. X 12, 011051 (2022)

011051-6



growth and division, [39] respectively. The variables wðjÞ
i

(j ¼ n, l, r, z) are the partition factors, which is the fraction
of variable j (e.g., protein number) that goes to the tracked
daughter cell upon the ith division event, and they follow a

Gaussian distribution around the mean hwðjÞ
i i ¼ 1=2; tiðZÞ

is the time of the ith division that depends on Z (see below);
Kj (j ¼ n, l, r, z) are the mean growth (production) rates;
ηj (j ¼ n, l, r, z) are the relative noise in the rates; and
ndðtÞ is the number of divisions up to a time t:

ndðtÞ ¼
R
t
0 dt

0 P∞
i δ½t0 − tiðZÞ�. Since we are interested

in protein concentration dynamics in timescales compa-
rable to or longer than the cell division time, the noise ηj is
approximated as a white noise: hηjðtÞηjðt0Þi ¼ Δjδðt − t0Þ
with the noise strength given by Δj. We use a truncated
Gaussian distribution for ηj (truncated to maintain
1þ ηj > 0) in our study, but other forms of the noise
distribution function such as a uniform distribution function
can be used without affecting the general results.

FIG. 5. The minimal mechanistic model and its behaviors. (a) Top: illustration of the four-node model. All production (growth)
processes (green arrows) depend on R. The division process, which reduces all variables (red lines), is controlled by Z. Bottom: the
probability rate of division PdðZÞ as a function of the division protein number Z. (b) Time traces of normalized division protein (red),
protein number N (orange), cell size L (blue), and protein concentration c ¼ N=L (black). In the top, we show in gray the region where
the division probability is large (the dotted line is for Z ¼ Z0). (c) Variance of the concentration versus its mean from our model for
different promoters (different symbols) and under different nutrient conditions (green, rich medium; red, poor medium). The same
symbols and colors are used as experimental data shown in Fig. 2(a) for easy comparison. (d) Distributions of the normalized
fluctuations in the concentration obtained with the same parameters as in (c) collapse onto the same curve. The dashed line is from
the analytical expression Eq. (13) obtained from our model. The parameters for PdðZÞ are ΔZ=Z0 ¼ 2.7 × 10−2 and Δt ¼ 2 min.
See Appendix B for details of the simulations and parameters used.
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We mainly focus on the high expression regime where
the intrinsic noise, i.e., noise in the process that is used to
control the mean expression level in the experiments, can be
neglected. The extrinsic noise [40], which is defined as noise
in the “external”processes that are not involved in controlling
the mean expression level in the experiments, is captured by
the multiplicative factor ð1þ ηnÞ, where ηn characterizes
fluctuations of the external factor(s) relative to its meanvalue
(set to be 1 for simplicity). For example, when a gene is
expressed by using plasmids as in our experiments shown in
Fig. 1, fluctuations in the plasmid copy number can be a
source of extrinsic noise, and they are uncorrelated with the
mean expression level. More specifically, we can write the
number of plasmids in a cell as np ¼ hnpi þ δnp with mean
hnpi and fluctuation δnp; our model remains the same with
the mean production rate Kn ¼ K̃nhnpi, where K̃n is the
mean production rate per plasmid; and the noise term

ηn ¼ ηð0Þn þ ηp, which includes the noise ηp ¼ δnp=hnpi
from the plasmid number fluctuations and the noise ηð0Þn from
all other extrinsic noise sources. In our study, the overall
noise strength Δn is obtained by fitting our stochastic model
to experimental data without separately considering contri-
butions from different noise sources. Since ηn describes
fluctuations in the external processes, its strengthΔn as well
as all other parameters in our model is assumed to be
independent of Kn (see Sec. III for possible implications
when this assumption is not valid).
The intrinsic noise can also be considered in our model

by including an additive noise term δKn in Kn. In the low
expression regime, the intrinsic noise becomes dominant,
and it changes the scaling behavior [13], which is captured
by the modified model as shown later in this section.
Following previous work [32,41,42], we introduce a

feedback control for cell division based on the division
protein number Z. In particular, we implement a soft-
thresholding process with a simple logistic function
[Fig. 5(a) (bottom)]:

PdðZÞ ¼
Δt−1

1þ exp ½ðZ0 − ZÞ=ΔZ� ; ð8Þ

which is the probability rate of cell division for a given Z.
PdðZÞ is characterized by three parameters, each with clear
biological meaning. The threshold value Z0 is the value
of Z at which the division probability increases sharply, with
the sharpness determined by ΔZ ≪ Z0 (Pd is simply a step
function whenΔZ ¼ 0). Once cell division starts, it can take
a finite time to complete. This small but finite timescale is
given by Δt in Eq. (8). Other forms of PdðZÞ with the same
general properties considered here are usedwithout affecting
the general results. The choice of parameters used in our
simulations is discussed in Appendix B.
There are two sources of noise due to fluctuations in

growth rates and in partition factors, respectively. The noise

in growth rates (ηn;l) for N and L can be estimated from
measurements and analysis shown in Figs. 4(a) and 4(b).
Similarly, the noise in partition factors (wðn;lÞ) can be
determined from the measured distributions for wðn;lÞ as
shown in Fig. 4(c). Though there is a strong correlation
between these two partition factors [Fig. 4(d)], their differ-
ence remains significant, and it gives rise to another source of
noise for c. Dynamics of the two hiddenvariablesR andZ are
not directly measured. However, their dynamics and effects
of their noise can be inferred by fitting our stochastic model
to the measured dynamics of N and L.
We study our model by solving the stochastic equations

[Eqs. (4)–(7)] numerically with physiologically reasonable
parameters, some of which are estimated from the mother
machine experiments. In Fig. 5(b), we show the time traces
of different variables as well as the dynamics of the protein
concentration. Cell division controlled by the variable Z
can be seen from the top in Fig. 5(b), which shows that Z
follows the same growth and division dynamics as other
variables and division occurs with a high probability as
Z (red) crosses the threshold Z0 (dashed line). As shown in
the middle in Fig. 5(b), both L (blue) andN (orange) follow
the same general growth and division pattern as that of Z,
but their dynamics are not identical. As a result, the protein
concentration c (black) shows smaller but finite and
continuous fluctuations that are different from those in
N or L. The behaviors of N, L, and c from our model
closely resemble those from experiments shown in Fig. 1.
We also study cell size homeostasis during growth

[8,43], i.e., the dependence of elongation ΔL and division
time ΔT on initial cell size L0 during each cell cycle
under different growth conditions. The model results are in
quantitative agreement with experiments, which validates
the model for describing cell growth and division (see
Appendix C for details).
To quantitatively compare the results from the model

with the experimental results, we tune the rates (Kn;l;r;z) and
the noise strength (Δn;l;r;z), in accordance with experimen-
tal data for different promoters and in different nutrient
conditions. Given that the promoter strength primarily
influences the expression rate of the corresponding pro-
teins, we assume that the change in promoter is captured in
the model by a change in the value of Kn, so that the rate of
increase in N would be directly affected. However, all the
other parameters (Kl;r;z andΔn;l;r;z) are kept the same for all
experimental conditions, which reduces the number of
parameters in our model.
The mechanism by which the nutrient condition

influences the kinetic rates of growth and expression is
beyond the scope of this work. Here, we treat the nutrient
dependence within our model phenomenologically based
on experiments. In particular, from the experiments, the
average division time hΔTi is longer in the poor nutrient
condition, whereas the average length size hLi is smaller.
We find that the simplest way to account for this observed
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difference in our model is by assuming that the production
rate for the division variable Z, Kz, is roughly independent
of nutrient conditions, while the other two rates for growth-
related variables (R and L) are scaled by a common
nutrient-dependent constant ξ, i.e., Ki → ξKi with i ¼ r,
l, ξ ¼ 1 for rich medium and ξ ¼ 0.6 for poor medium (see
Appendix C for details). Operationally, we first tune Kl and
Kr to match the observed cell growth statistics in different
nutrient conditions before we tune Kn to properly fit the
value of hci. See Appendix B for details of the simulations
and parameter choice.
As shown in Fig. 5(c), where the variance of c is plotted

as a function of its mean, the simulation results from our
model obey the same square Taylor’s law as in the
experiments with the coefficient of proportionality A ¼
0.034� 0.006 that is in quantitative agreement with the
experiments (the error bar here is small, because we do not
consider cell-cell variability in our study). Furthermore, the
normalized distribution function for c shows the same
collapse for all values of Kn as shown in Fig. 5(d).

C. The Langevin equation for stochastic protein
concentration dynamics

In the previous section, we study protein concentration
fluctuations by simulating the full model [Eqs. (5)–(7)]
numerically. Here, by using a mean-field approximation,
we derive the Langevin equation for protein concentration
fluctuations, which leads to a closed form relation between
the variance and the mean of c and an analytical expression
for the probability distribution of c.
We start by considering the equation for c, obtained from

Eqs. (4) and (5) (see Appendix D for details):

dc
dt

¼ K̂n − K̂lcþ c
XndðtÞ
i

fðwðlÞ
i − wðnÞ

i Þδ½t − tiðZÞ�g; ð9Þ

where we define the effective rates K̂l ¼ rKlð1þ ηlÞ and
K̂n ¼ rKnð1þ ηnÞ, with r ¼ R=L. The difference δwi ¼
wðlÞ
i − wðnÞ

i has zero mean hδwii ¼ 0 and a delta-function
correlation hδwiδwji ¼ 2Δwδij, as δwi for different division
events can be considered independent. For a timescale
longer than the division time, we can define a mean-field
cell division noise ηd whose correlation has the form
hηdðt1Þηdðt2Þi ¼ 2Δdδðt1 − t2Þ with Δd ¼ Δw=hΔTi the
average (mean-field) cell division noise strength (see
Appendix H for a derivation of the division time distribu-
tion and the mean-field noise).
The variables K̂l and K̂n in Eq. (9) can be written as

K̂l;n ¼ hK̂l;nið1þ χl;nÞ, where χl;n ¼ ½ðδrÞ=hri� þ ηn;l is
the fractional noise with δr ð¼ r − hriÞ and hri the
fluctuation and the mean of r, respectively. Thus, by taking
the mean-field approximation in the long time limit, the
Langevin equation [Eq. (9)] can be rewritten as

dc
dt

¼ ½hK̂liðμ − cÞ þ μηa þ cηm�; ð10Þ

where μ ¼ hK̂ni=hK̂li is the average of c: hci ¼ μ, which is
varied experimentally by changing the promoter strength
or the nutrient condition, whereas ηa ¼ hK̂liχn and ηm ¼
ηd − hK̂liχl are the two noise terms for c.
It is interesting to note that both noise terms (ηa and ηm)

in Eq. (10) are multiplied by either the mean concentration
(μ) or the instantaneous concentration (c) itself. As a result
of the multiplicative nature of the noise terms, Eq. (10) is
invariant if c and μ are scaled by an arbitrary constant
factor. [44] It is easy to see that the scale invariance is
absent if the noise is additive with a constant strength. This
scale invariance in the multiplicative noise Langevin
equation [Eq. (10)] immediately suggests that the distri-
bution of c=μ is independent of μ. As a consequence, the
variance of c is proportional to the square of its mean,
which is just the square TL. Indeed, by solving the Fokker-
Planck equation corresponding to Eq. (10), we derive an
exact relationship between the variance and the mean (see
Appendix E for details):

σ2c ¼ Ahci2; ð11Þ

and the prefactor A can be determined analytically:
A ¼ ðΔg þ ΔdÞ=ðhK̂li − ΔmÞ, where Δg¼hK̂li2ðΔnþΔlÞ
is the strength of the growth-dependent noise due to fluctua-
tions in growth and production rates for cell size (Δl)
and protein number (Δn); Δm ¼ Δd þ hK̂li2ðΔðrÞ þ ΔlÞ
is the strength of the noise ηm with ΔðrÞ the noise strength
for δr=hri. The typical timescale for the c dynamics is given
by τc ≡ hK̂li−1, which is comparable to the average cell
division time τc ∼ hΔTi. The strength of the noise averaged
over the typical timescale τc is given by ΔnðlÞ=τc, which is
found to be small: ΔnðlÞ=τc ≪ 1. Taken together with the

fact that Δw ≪ 1, we have Δm ≪ hK̂li and the prefactor A
can be expressed as

A ≈ hK̂li−1ðΔg þ ΔdÞ; ð12Þ

where the two terms on the right-hand side of the equation
above represent contributions to A from the noise sources in
the growth and division processes, respectively.
Finally, by solving the steady-state Fokker-Planck equa-

tion exactly, we obtain an analytical expression for the
probability distribution of the protein concentration:

PðcÞ ¼ 1

Z

�
μ2Δa þ 2μΔamcþ Δmc2

hK̂li

�−1−ðhK̂li=2ΔmÞ

× exp

�
2hK̂liðΔam þ ΔmÞtan−1½μΔamþΔmc

μρΔ
�

2ΔmρΔ

�
; ð13Þ
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and Pðc < 0Þ ¼ 0, where Z is the normalization constant,
Δa ¼ hK̂li2ðΔðrÞ þ ΔnÞ is the noise strength for ηa, Δam ¼
−hK̂li2ΔðrÞ is the correlation between ηa and ηm, and

ρΔ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ΔaΔm − Δ2

am

p
. There is a negligibly small value for

PðcÞ at c ¼ 0, which is caused by assuming ηa to be an
unbounded Gaussian noise. For c ≫ μ, PðcÞ decays as a
power law ∼c−2½1þðhK̂li=2ΔmÞ�, which is different from a log-
normal distribution but similar to an inverse Gamma
distribution, which is the solution for PðcÞ in the limit
of negligible additive noise (Δa ¼ Δam ¼ ρΔ ¼ 0). In
Figs. 2(b) and 5(d), we plot the analytical distribution
function given in Eq. (13) (black dashed line), which
quantitatively agrees with experimental results and simu-
lation results from the full stochastic model.

D. Microscopic origins of protein
concentration fluctuations

Our model not only demonstrates the square TL in protein
concentration fluctuations in single cells, it also reveals
the microscopic origins of the concentration fluctuations. In
particular, Eq. (12) shows that the prefactor A depends on
parameters such as the extrinsic noise strengths Δn and Δl,
the noise strength of division Δd, and the effective average
cell growth rate hK̂li, all ofwhich can be different in different
cells and/or under different experimental conditions. For
example, the use of plasmids as opposed to chromosomal
integration of the promoters leads to a different noise strength
in the protein expression rate (see also Refs. [45,46]) and,
consequently, a different distribution of the prefactor A,
which is consistent with experimental data shown in Fig. 10
in Appendix G. Moreover, external regulators that are

involved in the transcription process can also affect the noise
in the production rate, which explains the broader distribu-
tion of A with a larger mean hAi observed in the genome-
wide study [13]. Note that this additional source of noise is
reduced in our study by the use of constitutive promoters,
which are not directly regulated by specific transcriptional
regulators. However, from Eq. (12), we see that A does not
depend on the mean protein expression rate Kn, which is
consistent with the absence of correlation between A and the
mean expression level μ observed in all existing experiments.
This independence ofA onμ is critical for the existence of the
square TL in the high expression regime.
It is shown explicitly in our model [Eq. (12)] that there

are two contributions to A: Ag¼hK̂li−1Δg¼hK̂liðΔnþΔlÞ
and Ad ¼ hK̂li−1Δd ¼ Δw=ðhK̂lihΔTiÞ represent contribu-
tions from the growth and production noise and the cell-
division partition noise, respectively. Quantitatively, Ag and
Ad can be determined by the different noise strengths
(Δn, Δl, and Δw) and timescales (hΔTi and hK̂li−1), which
can be estimated by fitting our model to the experimental
data (see Appendixes D and F for details). In Fig. 6(a), the
values of A obtained from our model Amodel ¼ Ag þ Ad are
shown to be highly consistent with those determined
directly from concentration fluctuations Aexp ¼ σ2c=hci2
for individual cells for different promoters and different
growth conditions. The distribution of the log-ratio
[lnðAg=AdÞ] for all individual cells is shown in Fig. 6(b),
which reveals that the contribution from growth-related
noise is significantly stronger than that from cell-division
partition noise.
The expression for the coefficient A shown in Eq. (12)

also highlights an important difference between statistics of

FIG. 6. Fluctuation strength (prefactor in TL) A from experiments and model. (a) Comparison of A obtained from direct measurements
(Aexp) and from model (Amodel) for individual cells (circles) across different promoters and different growth conditions. (b) Distribution
of the log-ratio [lnðAg=AdÞ] for all individual cells. Ag and Ad, which represent contributions to A from growth-related processes and cell
division, are obtained from our model. It is clear that Ag dominates over Ad with lnðAg=AdÞ ¼ 2.8� 1.0.
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the protein concentration and the protein number N. Even
though they both satisfy the square Taylor’s law, the
coefficient A for c depends on noise in the cell size growth
rate, whereas the coefficient An for N does not. To verify
this difference, we run simulations for different noise
strengths Δl and compare A with An, obtained by comput-
ing the variance and the mean value of N. As we show in
Fig. 12 in Appendix I, while A increases with Δl, An is
independent of Δl. Another significant difference is that
An ≫ A, as the variation of N is dominated by the large
change (approximately twofold) of N during each growth
and division cycle even in the absence of any noise effect.

E. The low expression regime

For low copy number genes (below ten proteins per
cycle), it is shown experimentally [13] that the prefactor A
is proportional to the inverse of the mean value: A ∼ 1=hci,
which is understood by considering a model of key
biochemical reactions in the transcriptional process and
the underlying intrinsic noise [13]. Here, we ask whether
the protein concentration fluctuations in the low expression
regime can also be studied in our coarse-grained model.
To include the intrinsic noise in the transcriptional

process, we change the parameter Kn in our model to a
time-dependent random variable Kn ¼ K̄n þ δKnðtÞ with
mean K̄n and a noise term δKn with variance hδK2

ni ¼ σ2k.
As the chemical reactions underlying Kn are Poisson
processes, we assume the variance is proportional to the

mean: σ2k ¼ ΔkK̄n with a constant Δk, which characterizes
the strength of the intrinsic noise. We run simulations of the
modified model for different values of K̄n and study how
the protein concentration variance σ2c scales with its mean
hci or, equivalently, how the prefactor A≡ σ2c=hci2 varies
with hci. As shown in Fig. 7, for smaller values of hciwhen
K̄n < Δk=Δn, A is a decreasing function of hci: A ∼ hci−1.
For larger values of hci, A becomes a constant, which
indicates the existence of the square Taylor’s law consistent
with the results from the previous sections when the
intrinsic noise is neglected. The transition from the low
expression regime behavior (σ2c ∝ hci) to the square
Taylor’s law (σ2c ∝ hci2) occurs at a crossover concentra-
tion hci� ∝ Δ−1

k , which depends inversely on the intrinsic
noise strength Δk.
Our results suggest that the modified model that includes

the intrinsic noise in Kn can be used to study single-cell
protein concentration dynamics and the variance-mean
relation in the whole range of gene expression.

III. DISCUSSION

In this paper, we measure protein concentration dynam-
ics in single cells for many generations using the mother
machine microfluidic device. By using a set of constitutive
promoters with strength varying over 2 orders of magni-
tude, we confirm the square TL. In addition, we find that
the prefactor in the square TL varies from cell to cell
independent of the mean expression level. Guided by these
observations, we develop a minimal mechanistic model
with four biologically meaningful variables (R, Z, N,
and L) to study stochastic dynamics of protein concen-
tration in growing and dividing cells. A Langevin equation
to describe the stochastic dynamics of the concentration c is
derived from the minimal model. The balance between
growth and division processes is key to maintain a dynamic
equilibrium for cells. By considering these two stochastic
processes consistently in the minimal model and the
Langevin equation, we not only prove the square TL,
but also obtain an analytical expression for the distribution
function of the normalized concentration, which is in
quantitative agreement with our mother machine experi-
ments with different promoters and under different nutrient
conditions. In addition, our study shows how the prefactor
A in the square TL depends on the strength of the two main
noise sources (growth and division), which explains the
observed cell-to-cell variability in A. We also use our model
to analyze previous experiments [25] under different
experimental conditions and obtain consistent results,
although the data there cover a much smaller range
(approximately 1=2 decade) of mean protein concentrations
(see Fig. 11 in Appendix G for details).
There are two central regulatory variables in our model,

R and Z, which control growth and division, respectively.
Both R and Z can be considered as large complexes with

FIG. 7. A as a function of hci when Kn is generated from a
Gamma distribution with mean value K̄n and variance
σ2k ¼ ΔkK̄n, for three values of Δk. The mean value hci is
changed by changing K̄n. The error bars are obtained by running
the simulations for five realizations and calculating the resulting
standard deviation.
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multiple components; however, each of them has identifi-
able key components: R is associated with ribosome,
whereas Z is associated with FtsZ. In our minimal model,
we implement only the simplest possible interactions
between R and Z—the production rates of all proteins
(including R and Z themselves) are proportional to R; and
the probability of cell division increases sharply when Z
crosses a certain threshold Z0. Despite its simplicity, the
minimal model is able to reproduce the observed statistics
of protein concentration fluctuations and cell size homeo-
stasis. More importantly, the minimal model provides a
mathematical framework to ask further questions regarding
molecular origins of the growth and division processes. For
the division control, one key question is about the molecu-
lar origin for the cell division regulation, which is modeled
here by the assumption (hypothesis) that the probability of
division increases sharply when Z crosses a threshold Z0.
For the growth process, we do not take into account the way
resources are allocated to the production of different protein
classes in our model where all production rates are linearly
proportional to R [47]. The effect of proteome allocation
can be studied in our model by allowing different substrates
(mRNAs) to compete for the same finite pool of R with
different affinities, which results in a nonlinear dependence
of the production rates on R. It would be interesting to
study proteome allocation [41] in dividing cells by intro-
ducing nonlinear growth rates in our model.
Though we focus on explaining TL with exponent p ¼ 2

for protein concentration fluctuations in the high expression
regime, our model also indicates how the exponent p may
deviate from 2. In particular, from the analytical expression
for the variance-average dependence [Eq. (11)], it is easy to
see that if the prefactor A is correlated with the mean
μð≡hciÞ, then the variance-mean relation would deviate
from the square TL; e.g., if A depends on μ in a power law
form, A ∼ μα, then the variance-mean relation follows the
TL with an exponent p ¼ 2þ α. In the low expression
regime, the intrinsic noise can be considered as a special
case with α ¼ −1. In the high expression regime, from the
expression for the prefactor A [Eq. (12)], such a correlation
may exist if there is a correlation between the noise strength
(Δg;d) and μ. In our experiments, the mean concentration is
varied by changing the promoter strength characterized by
Kn in our model. SinceKn does not appear in the expression
for A, there is no correlation between A and the mean μ,
which leads to the observed square TL. However, μ also
depends on the elongation rate Kl, which affects A.
Therefore, if the mean concentration μ can be varied by
changing the elongation rate Kl, our model would predict a
deviation from the square TL, which may be tested exper-
imentally. More generally, changes in the coefficient of
variation in the protein content are discussed in several
previous works [40,45,46,48]. It would be interesting to do
an extensive analysis of the biological conditions that
determine the noise parameters that appear in Eq. (12)

and infer in this way the classes of systems in which the
Taylor’s law is satisfied with the same coefficient.
Taylor’s law is a ubiquitous scaling law observed in a

plethora of different systems, from the occurrence of
measles cases [17] to the share price fluctuations in stock
market [49]. However, these observations of Taylor’s law
remain largely empirical with little understanding of their
mechanistic origins. Here, we show the existence of
Taylor’s law (with exponent p ¼ 2) for a set of constitutive
promoters with different strengths and operating in two
different conditions. Given the generic nature of these
promoters, there is no a priori reason for the exponent to be
dependent on specific properties of these promoters in the
high expression regime where the intrinsic noise can be
neglected. Indeed, as we show in this paper, the square
Taylor’s law exists generally in systems that can be
described by a Langevin equation with a relaxational
deterministic linear term and a multiplicative noise; i.e.,
the noise term is multiplied by the variable of interest. Even
though we focus on studying protein concentration fluc-
tuations in bacterial cells such as E. coli, the general
theoretical framework used in this paper may be applicable
to other systems where the dominant noise source is
multiplicative. Different TL exponents observed in differ-
ent systems may be caused by possible correlations
between key parameters in the system (e.g., the relaxation
timescale and the noise strength) and the mean.
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APPENDIX A: EXPERIMENTAL METHODS

A vector with the artificial Pro5 promoter [19] upstream
of the gene of the fluorescent protein Venus followed by the
rrnB T1 terminator is inserted into a pSC101 plasmid with
the kanamycin antibiotic resistance gene. It is assembled
using the isothermal assembly protocol to construct
pPro5Venus plasmid. It is transformed into DH5α strain
(New England Biolabs) for selection and amplification.
The plasmid sequence is verified by sequencing and named
pPro5Venus.
The rest of the plasmids are constructed out of

pPro5Venus. The complete sequence of the plasmid is
amplified with primers that help swap the 10 box with the
respective sequence from other promoters from the set
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published in Ref. [19]. Each plasmid is circularized using
the NEB KLD enzyme mix (New England Biolabs).
The background strain for this work is MGR-E98K [22],

which is E. coli MG1655 (CGSC No. 6300) with a point
mutation in MotA that disables rotation and prevents cells
from swimming out of the cell channels in the microfluidic
device. Each plasmid is transformed into the strain by
electroporation, and the final set of strains is named
ProVenus set. Selected colonies have kanamycin resistance
and are fluorescent under the microscope. The content is
verified by colony polymerase chain reaction. Using flow
cytometry, it is confirmed that the sets of strains have
different fluorescent levels.
Two growth media are used to grow the cells in the

microfluidic device. They are selected considering that
wild-type E. coli’s growth rate is significantly higher in
one medium compared to the other on a batch experiment.
Richmedia.—MOPSEZ rich definedmedium fromTeknova,
supplemented with 0.4% glycerol. Poor media.—M91X,
2 mM MgSO4, 0.1 mM CaCl2, 0.5% casamino acids, 0.4%
glycerol, and1 ug/ml thiamine. In bothmedia, Pluronic F-108
(Sigma-Aldrich) is added to final concentration of 0.85 g/l, to
act as a surfactant in the microfluidic device.
Each ProVenus strain is grown overnight in 1 ml of the

same growth media that is used in the microfluidic experi-
ment. In each microfluidic experiment, there are four differ-
ent stains in the same device to ensure they grow in the
same conditions, avoiding day-to-day variations in the setup.
In all experiments, the wild-type strain is included, and the
remaining strains are chosen so that they have distinguish-
able fluorescence levels. The overnight cultures are centri-
fuged at 6000 g for 1 min, and from each of them the same
volume of the pellet is taken and mixed by gently pipetting.
The microfluidic device used in this work is an adaptation

of the mother machine described in Ref. [23]. The design of
the device and the protocol for the mold construction can be
found in Ref. [22]. For every experiment, a microfluidic
device is cast from the same mold. The cells are loaded into
the device by pipetting into it the high-density mixture of
strains. The loaded microfluidic device is connected to a
pump that delivers growth media with a constant flow of
5 ul/min. It is placed under the inverted microscope in an
incubated box at 30 °C during all the experiment.
Cells are tracked using imaging microscopy by taking

phase contrast and fluorescent images with the YFP channel
every 5 min for 24 h. The microscope setup is controlled
using custom software on MATLAB 2013a interfacing with μ
Manager 1.4. Multiple positions of the device are captured.
We use the software Bacmman for cell segmentation and

tracking [24].

APPENDIX B: DETAILS OF THE NUMERICAL
SIMULATIONS

We solve our stochastic model [Eqs. (4)–(7) in the main
text] numerically. Between two consecutive divisions, the

integration is performed with the Euler-Maruyama method,
which is a standard method to find the numerical solution
of stochastic differential equations. At each time step δt, a
division could takeplacewith a probabilityPd½ZðtÞ�δt,where
ZðtÞ is the value of the division protein number at the time t.
In case of division, every variable is multiplied by a factor f,
wheref ¼ 1=2ð1þ ϵdÞ, where ϵd is aGaussianvariablewith
variance σ2d. We denote τð¼ 45 minÞ as the average division
time in rich nutrient conditions, and a small time step is
chosen to be δt ¼ 10−3τ. The parameters chosen for PdðZÞ
are ΔZ=Z0 ¼ 2.7 × 10−2 and Δt ¼ 2 min. The rate of
expression of the division protein is Kz ¼ 1 min−1. The
noise strengths for ηn, ηz, ηl, and ηr are Δn ¼ 1.2 min,
Δz ¼ 1 min, Δl ¼ 0.2 min, and Δr ¼ 1, respectively.
The standard deviation for the partition error is σd ¼ 0.1,

inferred from experiments.We tune the parameterKl in such a
way that the average size at division is the same as in the
experiments and the parameter Kn for the concentration to
match the value of the fluorescence traces for every nutrient
condition (see Table I for the numerical value of Kl and Kn).
In most cases, the simulation is run for a total time Tt ¼
5 × 103 min, but in the case to obtain the probability distri-
bution we use Tt ¼ 5 × 104 min to sample a larger statistics.
We do not have direct measurements of the ribosome

number. However, there are some choices of the parameters
that are constrained by the experimental results. Indeed, if
we consider the equation for R, for small noise, the solution
between two cell divisions is given by

RðtÞ ¼ R0 exp ½Krt�: ðB1Þ
Since we want to have hRðtfÞi ¼ 2hRðtinÞi, where tf and tin
are the final and initial time of a given cell cycle,
respectively, in order to have a stationary state, the average
division time must be

τd ¼ htf − tini ¼ ln 2=Kr; ðB2Þ

independently of any other parameter. Therefore, if we set
Kr ¼ ln 2=τd, where τd ¼ hΔTi is taken from the experi-
ments, the simulation leads to an average division time that
is coherent with the results of the experiments performed

TABLE I. Rates Kn and Kl used in the simulations for the two
nutrient conditions. The units of measurement are such that RKn
is in units of fluorescence per minute, while RKl is in microns per
minute, where R is a variable indicating the number of ribosomes.

Promoters Rich Poor

Kn Pro4 0.014 0.04
Pro5 0.04 0.2
ProB 0.16 0.4
ProC 0.26 0.61
ProD 0.92 0.97

Kl 1.5 × 10−4 9 × 10−5
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with the mother machine technique. To study the deviation
from the TL for low expression, we generate the value
of Kn from a Gamma distribution with shape parameter
k ¼ K̂n=Δk and scale parameter θ ¼ Δk, where K̂n and Δk

are two constants, so that the mean value would be kθ ¼ K̂n

and the variance kθ2 ¼ K̂nΔk.

APPENDIX C: THE MINIMAL GROWTH-
DIVISION MODEL EXPLAINS OBSERVED

CELL DIVISION STATISTICS

There have been extensive experimental studies and
analysis on the dependence of the elongation ΔL and
the division time ΔT on the initial cell size L0 during each
cell cycle under different growth conditions. Here, we first
briefly describe correlations among these quantities from
our mother machine experiments, and then we check if our

model can reproduce the observed results quantitatively. In
Fig. 8(a), the division timeΔT is plotted as a function of the
size at birth L0 for every cell cycle (lighter dots), together
with the mean corresponding to a specific division time
(darker dots), for two nutrient conditions from our mother
machine experiments. Consistent with previous experi-
ments [8], the size at birth has a negative correlation with
respect to the division time; i.e., longer cells tend to divide
faster. The mean value of the division time decreases for
richer nutrient condition, suggesting that the rate of cell
growth is influenced by the nutrient condition.
In Fig. 8(b), values of ΔL for each generation are shown

as a function of L0 (lighter dots). It is clear from the mean
values (darker dots) that the elongation ΔL does not depend
on the initial size L0, but it slightly increases when the
nutrient conditions are richer. The independence ofΔL onL0

is also consistent with previous experiments [8]. In fact, this

FIG. 8. Comparison between experiments and model results. (a) Division time ΔT versus the cell size at birth L0 from the mother
machine experiment for rich and poor nutrient conditions. Each lighter dot represents a single cell cycle data. Darker dots are bin
averages. (b) Elongation ΔL versus L0 for the same experiments as in (a). (c),(d) The same plots as (a) and (b), respectively, from
numerical simulations of our model. The same PdðZÞ as in Fig. 5 is used. See Appendix B for details on the simulations.
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empirical observation is incorporated into the phenomeno-
logical adder model [27,43], which starts from the
assumption that a cell divides when its elongation reaches
a fixed value independent of its size at birthL0. The negative
correlation betweenΔT and L0 and the independence ofΔL
on L0 are the two key features in cell size control we wish to
reproduce from our growth-division model.
In Fig. 8(c), we show the division timeΔT versus the size

at birth L0 for each individual cell cycle (lighter dots) from
our model. We divide the values of L0 into equally spaced
bins and calculate the average of ΔT and L0 for each bin
(darker dots). The same analysis is used to plot the increment
ΔL as a function of the size at birthL0 for different cell cycles
in Fig. 8(d). Our model reproduces the negative correlation
betweenL0 andΔT aswell as the independence ofΔL onL0.
Furthermore, the dependence of ΔT, L0, and ΔL on the
nutrient conditions is also in quantitative agreement with our
mother machine experiments. Moreover, for a given nutrient

condition, it is possible to appreciate the dependency of ΔT
and ΔL on L0 by considering the conditional probability
distributions. In Fig. 9, we plot the distributions of ΔT and
ΔL for cell cycles in which the initial length L0 is in specific
ranges.We can, thus, notice that, whileΔT tends to decrease
for largerL0, the distributions ofΔL collapse, and the results
from the simulations are in line with the ones from the
experiments.

APPENDIX D: DERIVATION OF THE LANGEVIN
EQUATION FOR THE CONCENTRATION USING

A MEAN-FIELD APPROXIMATION

In this section and the next one, we derive the differential
equation of the probability distribution PðcÞ and the relation
between the mean and the variance of the protein concen-
tration in our mean-field model. To do so, we first write the
time derivative of c in terms of derivatives of N and L:

FIG. 9. Conditional distributions in experiments and model. (a),(b) The distributions of the division time (ΔT) and the length
elongation (ΔL) when the size at birth L0 is in three different percentiles from experimental measurements. The corresponding
distributions from model results are shown in (c),(d).
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dc
dt

¼ 1

L
dN
dt

−
c
L
dL
dt

: ðD1Þ

UsingEqs. (4) and (5) in themain text, theLangevin equation
becomes

dc
dt

¼ K̂n − K̂lcþ c
XndðtÞ
i

½ðwðlÞ
i − wðnÞ

i Þδðt − tiÞ�: ðD2Þ

The two variables for the division term are

wðlÞ
i ¼ La

Lb
; ðD3Þ

wðnÞ
i ¼ Na

Nb
; ðD4Þ

where Lb, Nb, La, and Na are the values of the size and the
protein number before and after the division, respectively.

The difference δwi ¼ wðlÞ
i − wðnÞ

i has the following
properties:

hδwii ¼ 0;

hδwiδwji ¼ 2Δwδij; ðD5Þ
whereΔw is the variance of the partition difference. We can,
thus, define the noise due to cell division:

ηdðtÞ≡
XndðtÞ
i

δwiδ½t − tiðZÞ�: ðD6Þ

This new stochastic variable has still mean equal to zero,
and it is delta-function correlated:

hηdðtÞi ¼ 0 ðD7Þ
and

hηdðt1Þηdðt2Þi ¼ 2Δdδðt2 − t1Þ; ðD8Þ
where

Δd ¼
1

2hΔTi
��

La

Lb
−
Na

Nb

�
2
�
: ðD9Þ

The other sources of noise are discussed in Appendix F.

APPENDIX E: DERIVATION OF THE
SQUARE TAYLOR’S LAW

From the Langevin equation [Eq. (9) in the main text],
the steady-state protein concentration distribution function
PðcÞ satisfies the stationary Fokker-Planck equation [50]:

hK̂li
d
dc

½ðμ − cÞP� ¼ d2

dc2
½DðcÞP�; ðE1Þ

where DðcÞ ¼ μ2Δa þ 2μcΔam þ c2Δm with Δða;m;amÞ rep-
resenting the noise strength for ηa, ηm, and their correlation.

The solution of Eq. (E1) is reported in themain text [Eq. (13)].
Here, we derive the relation between the mean and the
variance.
After a first integration over c, we obtain

hK̂li½ðμ − cÞPðcÞ� ¼ d
dc

½DðcÞPðcÞ�: ðE2Þ

If we integrate on both sides and we use the fact that
PðcÞDðcÞ → 0 when c → ∞, we have

hK̂liðμ − hciÞ ¼ 0; ðE3Þ
and, thus, hci ¼ μ. If instead we multiply Eq. (E2) on both
sides for ðμ − cÞ=hK̂li and we integrate over c, on the left-
hand side we simply have σ2c. Therefore, after an integration
by parts, the equation reduces to

σ2c ¼
1

hK̂li
Z

DðcÞPðcÞdc

¼ 1

hK̂li
½μ2Δa þ 2μ2Δam þ ðμ2 þ σ2cÞΔm�: ðE4Þ

By solving Eq. (E4), we obtain the variance as a function of
the noise strengths and μ:

σ2c ¼
Δa þ 2Δam þ Δm

hK̂li − Δm
μ2 ¼ Δd þ Δg

hK̂li − Δm
μ2; ðE5Þ

where Δa ¼ hK̂li2ðΔðrÞ þ ΔnÞ is the noise strength for ηa,
Δam ¼ −hK̂li2ΔðrÞ is the correlation between ηa and ηm, and
Δm ¼ Δd þ hK̂li2ðΔðrÞ þ ΔlÞ is the strength of the noise ηm
with ΔðrÞ ¼ hδr2i=hri2 the noise strength for δr=hri. The
above equation [Eq. (E5)] is the same as Eq. (11) in the
main text.

APPENDIX F: DETAILED NOISE ANALYSIS IN
DATA BASED ON THE MODEL

The averages of the effective growth and expression
rates hK̂l;ni can be calculated from experiments in the
following way:

hK̂li ¼
�
1

L
δL
δt

�
;

hK̂ni ¼
�
1

L
δN
δt

�
; ðF1Þ

where δL, δN, and δt are the smallest increment allowed
by the experimental setup. In our case, the time step is
δt ¼ 5 min. From the experiments, we do not have direct
information about R, and the noise from the observable
variables includes contributions from r and contributions
fromN andL. In otherwords,we can directlymeasure χl and
χn but not ηl and ηn. The noise strengths of χl and χn are given
by the following formula:
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Δðχl;χnÞ ¼
1

2

Z
dshχðl;nÞðtÞχðl;nÞðtþ sÞi: ðF2Þ

Here, the average is over an ensemble of time traces, and the
result does not depend on the specific time t.
Since the noises ηn and ηl are independent, when we

calculate the correlation between χl and χn, we obtain the
strength of the noise δr=hri—the only nonzero term in the
correlation—that we call ΔðrÞ (not to be confused with
the strength of ηr):

ΔðrÞ ¼
1

2

Z
dshχlðtÞχnðtþ sÞi: ðF3Þ

Once we have ΔðrÞ, by subtracting it from Δχl and Δχn , we
obtain Δl and Δn, respectively.
We can now write Δa, Δam, and Δm in terms of these

noise strengths:

Δa ¼ hK̂li2Δχn ;

Δm ¼ Δd þ hK̂li2Δχl ;

Δam ¼ −hK̂li2ΔðrÞ:

The growth noise strength is defined as

Δg ¼ hK̂li2ðΔχn þ Δχl − 2ΔðrÞÞ: ðF4Þ
The noise strengths and other relevant parameters aver-

aged over all cells with each of the combinations of nutrient
conditions and promoter strengths are reported in Table II.

APPENDIX G: TAYLOR’S LAW IS CONFIRMED
IN ADDITIONAL EXPERIMENTS

We investigate whether Taylor’s law would still be valid
in case the constitutive promoters are integrated in the
chromosome. We plot the variance of the fluorescence

TABLE II. Relevant parameters inferred from the experiments for different promoter strengths and nutrient conditions. These values
are calculated by averaging over different mother cells with the same promoter and under the same growth conditions.

Conditions Δχl (min) Δχn (min) hK̂liðmin−1Þ ΔðrÞ (min) Δmðmin−1Þ Δdðmin−1Þ Δgðmin−1Þ
Rich 4 0.619 2.4 0.017 0.66 0.000 23 5.5 × 10−5 4.8 × 10−4

Rich 5 0.412 2.8 0.017 0.12 0.000 15 3.7 × 10−5 8.1 × 10−4

Rich B 0.429 1.7 0.017 0.56 0.000 17 4.5 × 10−5 3.1 × 10−4

Rich C 0.654 2.3 0.016 0.63 0.0002 3.7 × 10−5 4.4 × 10−4

Rich D 0.904 1.8 0.015 0.85 0.000 22 3 × 10−5 2.1 × 10−4

Poor 4 9.42 8.5 0.0075 5.3 0.000 57 3.9 × 10−5 4.3 × 10−4

Poor 5 8.2 6.25 0.0092 4.3 0.000 74 3.9 × 10−5 4.7 × 10−4

Poor B 8.2 5.15 0.0087 3.5 0.000 63 2.5 × 10−5 5.5 × 10−4

Poor C 4.7 4.1 0.0092 2.2 0.000 42 2.1 × 10−5 3.8 × 10−4

Poor D 5.49 6.3 0.0087 3.4 0.000 44 1.9 × 10−5 3.6 × 10−4

FIG. 10. Taylor’s law in strains with chromosomal integrated promoters. (a) Variance as a function of the mean for fluorescence data in
which constitutive promoters from the same family of promoters used in the current study are integrated in the chromosome. The
prefactor determined from the data for individual mother cells is found to lie in the range A ¼ 0.083� 0.046. The slope of the black line
is 2. (b) Distributions of the prefactor A≡ σ2c=μ2 for different promoters. No statistically significant correlation between A and μ is found
with CAμ ¼ −0.07, which is consistent with experiments using plasmids. Data taken from Ref. [22].
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intensity as a function of the mean value in the case of
experiments using the same constitutive promoters, with
the difference that they are integrated in the chromosome
rather than using plasmids. As shown in Fig. 10, the
relation σ2c ¼ Ahci2 is confirmed for almost one order of
magnitude of the mean value, with A ¼ 0.083� 0.046.
Moreover, the same relation between the variance and

the mean with a different prefactor A is confirmed by data
collected from fluorescence experiments described in
Ref. [25], kindly shared by Hanna Salman (see Fig. 11).

APPENDIX H: DERIVATION OF THE DIVISION
TIME DISTRIBUTION

We see that the probability rate of division is a function
PdðZÞ, depending on the stochastic variable Z, that is the
division protein number, following the formula

PdðZÞ ¼
Δt−1

1þ exp ½ðZ0 − ZÞ=ΔZ� : ðH1Þ

Then, the survival probability SðtÞ for a division not to take
place before a time t is the solution of the differential
equation:

dS
dt

¼ −SðtÞPd½ZðtÞ�; ðH2Þ

and, thus, we have

SðtÞ ¼ exp

�
−
Z

t

0

Pd½Zðt0Þ�dt0
�
: ðH3Þ

The survival probability can be used to determine the
distribution of the division time ΔT, that we call pðΔTÞ:

pðΔTÞ¼−
dS
dt

				
t¼ΔT

¼Pd½ZðΔTÞ�exp
�
−
Z

ΔT

0

Pd½Zðt0Þ�dt0
�
:

ðH4Þ
Note that the variance of ΔT is finite, given that the
distribution decreases exponentially for large times, and as
a consequence nd has finite variance as well.

APPENDIX I: ADDITIONAL FIGURES 11 AND 12

FIG. 11. (a) The variance versus mean of the fluorescence density, both in arbitrary units (arb. units), from the experiments reported in
Ref. [25]. The dashed line is obtained using an average value for the coefficient A ¼ σ2c=hci2. The value obtained in this set of data is
hAi ¼ 0.12. (b) The scaled protein concentration distributions from the experimental data reported in Ref. [25]. The black curve is the
distribution that we show in the main text.

FIG. 12. Prefactors for the concentration (A) and the protein
number (An) obtained from the numerical solution of the stochastic
differential equations for different values of the parameterΔl. The
error bars are obtained by using the standard deviation of the
fluctuations of the prefactor for different promoter strengths.
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