LATENT ROOTS OF TRI-DIAGONAL MATRICES

by F. M. ARSCOTT

A considerable amount is known about the latent roots of matrices of the form

$$
L_{n} \equiv\left[\begin{array}{cccccc}
b_{1} & c_{1} & & & & \\
a_{2} & b_{2} & c_{2} & & & \\
& a_{3} & b_{3} & c_{3} & & \\
& & \cdots \cdots \cdots \cdots & \\
& & & & a_{n} & b_{n}
\end{array}\right]
$$

in the case when each cross-product of non-diagonal elements, $a_{i} c_{i-1}$, is positive. One forms the sequence of polynomials $f_{r}(\lambda)=\left|L_{r}-\lambda I\right|$ for $r=1$, $2, \ldots n$, and observes that

$$
f_{r+1}(\lambda)=\left(b_{r+1}-\lambda\right) f_{r}(\lambda)-a_{r} c_{r-1} f_{r-1}(\lambda) ;
$$

then it is easy to deduce that (i) the zeros of $f_{n}(\lambda)$ and $f_{n-1}(\lambda)$ interlace-that is, between two consecutive zeros of either polynomial lies precisely one zero of the other (ii) at the zeros of $f_{n}(\lambda)$ the values of $f_{n-1}(\lambda)$ are alternately positive and negative, (iii) all the zeros of $f_{n}(\lambda)$-i.e. all the latent roots of L_{n}-are real and different.

For the corresponding matrix in which the cross-products of non-diagonal elements are negative, nothing can be said about the real nature of the roots, but it is possible to give some bounds for the real roots. There are also parallel theorems to (ii) and (iii) in a particular case-namely, when the diagonal elements are in increasing order of magnitude.

Theorem 1. Let M_{n} denote the matrix

$$
\left[\begin{array}{rrrrrr}
b_{1} & -c_{1} & & & & \\
a_{2} & b_{2} & -c_{2} & & & \\
& \cdot & a_{3} & b_{3} & -c_{3} & \\
& & \ldots \ldots \ldots \ldots \cdots & \\
& & & & a_{n} & b_{n}
\end{array}\right]
$$

(all other elements being zero) in which all the a, b, c are real, and each product $a_{i} c_{i-1}$ is positive. Then all the real latent roots of M_{n} lie between the least and the greatest of the b_{i}.

Proof. We first establish a lemma. Consider the matrix M_{n}^{*} obtained by replacing the diagonal elements in M_{n} by elements b_{i}^{*} which are all positive; we shall show that the real latent roots of this are all positive.

We observe that, because the b_{i}^{*} and all the products $a_{i} c_{i-1}$ are all positive,
every second-order principal minor in M_{n}^{*} is positive. Every first-order principal minor is, of course, simply a b^{*} and hence positive also. Now consider a principal minor of order r; expanding by its first row and column expresses it as the sum of positive multiples of two principal minors of orders $r-1, r-2$. Hence, inductively, all the principal minors of M_{n}^{*} are positive (including $\left|M_{n}^{*}\right|$ itself).

Now consider the equation $f_{n}^{*}(\lambda) \equiv\left|M_{n}^{*}-\lambda I\right|=0$. Expanding the determinant according to its diagonal elements, we obtain

$$
f_{n}^{*}(\lambda)=\sum_{r}(-)^{n+r} d_{r} \lambda^{n-r}
$$

where all the d_{r}, being sums of principal minors of M_{n}^{*}, are positive. It is now obvious that no negative or zero value of λ can make $f_{n}^{*}(\lambda)$ vanish, and the lemma is proved.

Now we return to the matrix M_{n} and let b_{l} be the least of the diagonal elements. The equation $\left|M_{n}-\lambda I\right|=0$ may be written

$$
\begin{equation*}
\left|M_{n}-b_{l} I-\lambda^{\prime} I\right|=0, \text { where } \lambda^{\prime}=\lambda-b_{l}, . . \tag{1}
\end{equation*}
$$

and since the matrix ($M_{n}-b_{1} I$) has the form of the matrix M_{n}^{*} considered in the lemma, all the real λ^{\prime} satisfying (1) are positive-that is, all the real λ are greater than b_{1}.

Finally, let b_{g} be the greatest of the diagonal elements. The equation $\left|M_{n}-\lambda I\right|=0$ may be written

$$
\begin{equation*}
\left|b_{g} I-M_{n}-\lambda^{\prime \prime} I\right|=0, \text { where } \lambda^{\prime \prime}=b_{g}-\lambda \tag{2}
\end{equation*}
$$

and the matrix $\left(b_{g} I-M_{n}\right)$ has again the form of the matrix M_{n}^{*} (the signs of the non-diagonal elements are reversed but the relevant products are unaltered). Thus every real $\lambda^{\prime \prime}$ satisfying (2) is positive-that is, all the λ are less than b_{g}. All the λ satisfying $\left|M_{n}-\lambda I\right|=0$, therefore, lie between b_{l} and b_{g}, these values excluded.

Theorem 2. Let M_{n} denote the matrix above, with the additional restriction imposed that $b_{1}<b_{2} \ldots<b_{n}$. Then the latent roots of M_{n} and the latent roots of M_{n-1} cannot interlace-in fact, between any two adjacent real latent roots of M_{n} must lie, if any, an even number of real latent roots of M_{n-1}. If $f_{n}(\lambda)$ denote $\left|M_{n}-\lambda I\right|$, then at the zeros of $f_{n}(\lambda)$, the sign of $f_{n-1}(\lambda)$ is $(-)^{n-1}$ always.

Proof. Considering again the sequence of polynomials $f_{r}(\lambda) \equiv\left|M_{r}-\lambda I\right|$ ($r=1,2, \ldots n$), we have

$$
\begin{align*}
f_{1}(\lambda) & =b_{1}-\lambda \ldots \tag{3a}\\
f_{2}(\lambda) & =\left(b_{1}-\lambda\right)\left(b_{2}-\lambda\right)+a_{2} c_{1} \ldots \ldots \ldots \ldots \tag{3b}\\
f_{r}(\lambda) & =\left(b_{r}-\lambda\right) f_{r-1}(\lambda)+a_{r} c_{r-1} f_{r-2}(\lambda), r=2,3, \ldots \lambda, \tag{3c}
\end{align*}
$$

the last relation being established by expanding $\left|M_{r}-\lambda I\right|$ according to its last row and column.

For large negative λ, all the $f_{r}(\lambda)$ are positive; for large positive $\lambda, f_{r}(\lambda)$ has the sign $(-)^{r}$; for brevity, we call this the " proper" sign of $f_{r}(\lambda)$ and $(-)^{r+1}$ the " reversed" sign.

From Theorem 1 it follows at once that for $\lambda \geqq b_{r}, f_{r}(\lambda)$ has its proper sign (otherwise it would have a zero in (b_{r}, ∞)). Let us suppose that, if possible, there is a value λ_{0} of λ such that $f_{n}\left(\lambda_{0}\right)=0$ and $f_{n-1}\left(\lambda_{0}\right)$ has its reversed sign. λ_{0} must lie in (b_{1}, b_{n}), and since $b_{1}<b_{2} \ldots<b_{n}$, there will be some s such that λ_{0} lies in the interval $b_{s-1} \leqq \lambda_{0}<b_{s}$. Then relation (3c) with $r=n$ shows that at $\lambda=\lambda_{0}, f_{n-2}\left(\lambda_{0}\right)$ also has its reversed sign; applying (3c) successively with $r=n-1, n-2, \ldots, s$ shows that all the $f_{r}(\lambda)$ from $r=n-1$ down to and including $r=s-2$ have reversed signs at $\lambda=\lambda_{0}$. This, however, is impossible since $f_{s-1}(\lambda)$ and $f_{s-2}(\lambda)$ certainly have their proper signs when $\lambda \geqq b_{s-1}$, so the supposition is false and there can be no value of λ where $f_{n}(\lambda)=0$ and $f_{n-1}(\lambda)$ has reversed sign.

It is easy to see, moreover, that if $f_{n}\left(\lambda_{0}\right)=0$, then $f_{n-1}\left(\lambda_{0}\right) \neq 0$; for if this were not so, then (from (3)) $f_{n-2}\left(\lambda_{0}\right)=f_{n-3}\left(\lambda_{0}\right)=\ldots=f_{1}\left(\lambda_{0}\right)=0$ also, hence $\lambda_{0}=b_{1}$, which contradicts Theorem 1. At every real zero of $f_{n}(\lambda)$, therefore, $f_{n-1}(\lambda)$ must have its proper sign, namely $(-)^{n-1}$.

The property of the latent roots of M_{n} and M_{n-1} follows immediately, and the theorem is proved.

I am grateful to a referee for some comments which shortened the proof of Theorem 1.

Battersea College of Technology
London, S.W. 11

