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Fifteen new pyrazole-4-carboxylic oxime ester derivatives were conveniently synthesized, and their structures were confirmed by
1H NMR, 13C NMR, HRMS, and X-ray diffraction. Antifungal assays indicated that some of these compounds possessed good
activity against S. sclerotiorum, B. cinerea, R. solani, P. oryae, and P. piricola at 50 ppm. Structure-activity relationships (SAR) were
studied by molecular docking simulation.

1. Introduction

Nitrogen-linked heterocycles are an important skeleton in
synthetic chemistry or natural product chemistry because of
their diversity of structure and activity [1–5]. Among these
nitrogen-linked heterocycles; pyrazole compounds, espe-
cially pyrazole carboxamide compounds, exhibit diverse
activity, with examples possessing nematocidal [6–10], in-
secticidal [11, 12], antibacterial [13], IRAK4 inhibitor [14],
antiproliferative [15], antimicrobial [16], immunomodula-
tory [17], and fungicidal activity [18–20]. Some pyrazole
amide compounds have been commercialized as fungicides
[21] or insecticides [22]. For example, benzovindiflupyr, a
new succinate dehydrogenase inhibitor (SDH) fungicide
developed by Syngenta. In these SDH fungicides, the pyr-
azole ring and carboxamide group are the key functional
groups accounting for their activity.

In our previous work, many nitrogen-linked heterocyclic
compounds with diverse activity were synthesized [23–27],
including many fungicidal pyrazole carboxamide deriva-
tives. In this work, the carboxamide group was replaced by
an oxime ester group (Figure 1). In this paper, a set of

pyrazole oxime esters were synthesized, and their fungicidal
activity was assessed. 3is data was used to assess the
structure-activity relationship (SAR) using molecular
docking.

2. Materials and Methods

2.1. Instruments. Melting points were measured by an X-4
apparatus (Gongyi, China) and the temperature was un-
corrected. 1H NMR and 13C NMR spectra were tested on a
Bruker AV III-500 instrument and 13C NMR spectra were
tested on a Bruker AV-400 instrument in CDCl3. DART-
HRMS was measured on a JEOL AccuTOF instrument.
Single crystal diffraction was performed on a Bruker CCD
area detector diffractometer.

2.2. Chemicals. All benzaldehydes (98% purity) were pur-
chased from Duodian Chemical Co. Ltd, China. Ethyl
difluoroacetate and methyl hydrazine were purchased from
Taizhou Yongxiang Pharmaceutical company; triethyl
orthoformate, acetic acid, ethanol, hydroxylamine hydro-
chloride, and dichlorosulfoxide were purchased from
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Mclean; sodium hydroxide was purchased from Yongda
Reagent company; potassium carbonate, hydrochloric acid,
and DCM were purchased from Sinopharm Chemical Re-
agent Co. Ltd.; TEA was purchased from Qidian Reagent
company.

2.3. Experimental Methods

2.3.1. Synthesis of Intermediate Oximes. Benzaldehyde
(9.5mmol) was added to a mixture of Na2CO3 (0.5 g,
4.7mmol) in ethanol (10mL) and the mixture was stirred at
room temperature. After 30min, NH2OH·HCl (0.7 g,
10.4mmol) was added, and the reaction was monitored by
TLC. 3e water phase was extracted with ethyl acetate (3 ×

20mL). 3e combined organic layers were washed with
saturated brine (3 × 10mL), dried with MgSO4, and evap-
orated in vacuo. 3e crude product was recrystallized from
ethanol and used without further purification.

2.3.2. Synthesis of Target Compounds 5a-5o. 3e two key
intermediates: benzaldehyde oxime and 3-(difluoromethyl)-
1-methyl-1H-pyrazole-4-carbonyl chloride were synthesized
according to our previous reported work [26].

A solution of intermediate benzaldehyde oxime
(7.5mmol) and NEt3 (1mL) in dichloromethane (20mL), 3-
(difluoromethyl)-1-methyl-1H-pyrazole-4-carbonyl chlo-
ride (7.5mmol) was added dropwise at ice bath condition,
then the mixture was stirred at 20°C. When the reaction was
complete (TLC monitoring (VEA/VPE � 1/2)), the solvent
was removed in vacuo, and the crude products were purified
by flash chromatography to afford the title compound 5a-5o.

2.3.3. (E)-Benzaldehyde O-(3-(Difluoromethyl)-1-methyl-1h-
pyrazole-4-carbonyl) Oxime 5a. White solid, yield 73%, m.p.
171–177°C; 1H NMR (CDCl3, 500MHz), δ:8.46 (s, 1H, CH),
8.03 (s, 1H, pyrazole), 7.80–7.76 (m, 2H, Ph), 7.52–7.42 (m,
3H, Ph), 7.12 (t, J� 53.8Hz, 1H, CHF2), 4.01 (s, 3H, CH3);
13C NMR (101MHz, CDCl3) δ: 159.2, 156.8, 146.7, 146.5 (t,
J� 26.3Hz, Py-CHF2), 146.2, 135.3, 131.9, 129.8, 128.9,
128.5, 109.3 (t, J� 238.4Hz, CHF2), 110.8, 39.81; HRMS
(DART) for C13H11F2N3O2 m/z: calculated, 280.0892,
found, 280.0897 [M+H]+.

2.3.4. (E)-2-Methylbenzaldehyde O-(3-(Difluoromethyl)-1-
methyl-1h-pyrazole-4-carbonyl) Oxime 5b. White solid,
yield 72%, m.p. 120–123°C; 1H NMR (CDCl3, 500MHz),

δ:8.71 (s, 1H, CH), 8.04 (d, J� 1.0Hz, 1H, pyrazole), 7.88
(dd, J� 7.8, 1.4Hz, 1H, Ph), 7.38 (td, J� 7.5, 1.4Hz, 1H, Ph),
7.28–7.24 (m, 2H, Ph), 7.14 (t, J� 53.8Hz, 1H, CHF2), 4.01
(s, 3H, CH3), 2.51 (s, 3H, CH3); 13C NMR (101MHz, CDCl3)
δ:159.2, 155.7, 146.6 (t, J� 26.3Hz, Py-CHF2), 138.2, 135.1,
131.5, 131.0, 128.3, 128.2, 126.3, 110.8, 109.2 (t, J� 238.4Hz,
CHF2), 39.8, 19.9; HRMS (DART) for C14H13F2N3O2 m/z:
calculated, 294.1049, found, 294.1054 [M+H]+.

2.3.5. (E)-3-Methylbenzaldehyde O-(3-(Difluoromethyl)-1-
methyl-1h-pyrazole-4-carbonyl) Oxime 5c. White solid,
yield 71%, m.p. 119–123°C; 1H NMR (CDCl3, 500MHz),
δ:8.42 (s, 1H, CH), 8.03 (s, 1H, pyrazole), 7.65 (d, J� 2.1Hz,
1H, Ph), 7.53 (d, J� 7.3Hz, 1H, Ph), 7.34–7.26 (m, 2H, Ph),
7.12 (t, J� 53.8Hz, 1H, CHF2), 4.00 (s, 3H, CH3), 2.39 (s, 3H,
CH3); 13C NMR (101MHz, CDCl3) δ:159.2, 156.7, 146.5 (t,
J� 26.3Hz, Py-CHF2), 138.8, 135.2, 132.7, 129.7, 128.7,
128.5, 126.0, 110.8, 109.3 (t, J� 238.4Hz, CHF2), 39.8, 21.1;
HRMS (DART) for C14H13F2N3O2 m/z: calculated,
294.1049, found, 294.1054 [M+H]+.

2.3.6. (E)-4-Methylbenzaldehyde O-(3-(Difluoromethyl)-1-
methyl-1h-pyrazole-4-carbonyl) Oxime 5d. White solid,
yield 71%, m.p. 147–150°C; 1H NMR (CDCl3, 500MHz),
δ:8.42 (s, 1H, CH), 8.02 (s, 1H, Pyrazole), 7.67 (d, J� 8.1Hz,
2H, Ph), 7.24 (d, J� 8.0Hz, 2H, Ph), 7.12 (t, J� 53.8Hz, 1H,
CHF2), 4.00 (s, 3H, CH3), 2.40 (s, 3H, CH3); 13C NMR
(CDCl3, 101MHz), δ: 159.3, 156.7, 146.4 (t, J� 26.3Hz, Py-
CHF2), 142.5, 135.3, 129.6 (2C, Ph), 128.4 (2C, Ph), 126.9,
110.9, 109.3 (t, J� 238.1Hz, CHF2), 39.8, 21.6; HRMS
(DART) for C14H13F2N3O2m/z: calculated, 294.1049, found,
294.1054 [M+H]+.

2.3.7. (E)-2-Methoxybenzaldehyde O-(3-(Difluoromethyl)-1-
methyl-1h-pyrazole-4-carbonyl) Oxime 5e. Light yellow
solid, yield 70%, m.p. 116–120°C; 1H NMR (CDCl3,
500MHz), δ:8.86 (s, 1H, CH), 8.02–8.01 (m, 2H, pyrazole,
Ph), 7.46 (ddd, J� 8.8, 7.5, 1.8Hz, 1H, Ph), 7.16 (t,
J� 53.8Hz, 1H, CHF2), 7.00 (t, J� 7.5Hz, 1H, Ph), 6.93 (dd,
J� 8.5, 0.9Hz, 1H, Ph), 4.00 (s, 3H, CH3), 3.89 (s, 3H,
CH3O), 1.26 (d, J� 7.0Hz, 3H, CH3); 13C NMR (101MHz,
CDCl3) δ: 159.3, 158.4, 152.7, 146.4 (t, J� 26.3Hz, Py-CHF2),
135.1, 133.2, 127.4, 120.7, 118.1, 111.0, 110.8, 109.1 (t,
J� 238.4Hz, CHF2), 55.5, 39.7; HRMS (DART) for
C14H13F2N3O3 m/z: calculated, 310.0998, found, 310.1003
[M+H]+.
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Figure 1: Design strategy of pyrazole oxime ester compounds 5a∼5o.
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2.3.8. (E)-4-Methoxybenzaldehyde O-(3-(Difluoromethyl)-1-
methyl-1h-pyrazole-4-carbonyl) Oxime 5f. Light yellow
solid, yield 70%, m.p. 131–138°C; 1H NMR (CDCl3,
500MHz), δ:8.40 (s, 1H, CH), 8.02 (s, 1H, pyrazole), 7.73 (d,
J� 8.8Hz, 2H, Ph), 7.12 (t, J� 53.8Hz, 1H, CHF2), 6.96 (d,
J� 8.8Hz, 2H, Ph), 4.00 (s, 3H, CH3), 3.86 (s, 3H, CH3O);
13C NMR (CDCl3, 101MHz), δ: 162.5, 159.4, 156.3, 146.4 (t,
J� 26.3Hz, Py-CHF2), 135.3, 132.3, 130.2 (2C, Ph), 122.2,
114.4 (2C, Ph), 109.3 (t, J� 237.1Hz, CHF2), 55.4, 39.4;
HRMS (DART) for C14H13F2N3O3 m/z: calculated,
310.0998, found, 310.1003 [M+H]+.

2.3.9. (E)-3,4,5-Trimethoxybenzaldehyde O-(3-(Difluor-
omethyl)-1-methyl-1h-pyrazole-4-carbonyl) Oxime 5g.
White solid, yield 68%, m.p. 153–157°C; 1H NMR (CDCl3,
500MHz), δ:8.37 (s, 1H, CH), 8.03 (s, 1H, pyrazole), 7.10
(t, J � 53.8 Hz, 1H, CHF2), 6.99 (s, 2H, Ph), 4.00 (s, 3H,
CH3), 3.91 (d, J � 3.4 Hz, 9H, CH3O); 13C NMR (101MHz,
CDCl3) δ:159.2, 156.7, 153.4, 146.3 (t, J � 26.3 Hz, Py-
CHF2), 141.1, 135.3, 125.0, 110.7, 109.3 (t, J � 237.0 Hz,
CHF2), 105.5, 60.7, 56.2 (2C, OCH3), 39.7; HRMS (DART)
for C14H13F2N3O3 m/z: calculated, 370.1209, found,
370.1213 [M+H]+.

2.3.10. (E)-2-Bromobenzaldehyde O-(3-(Difluoromethyl)-1-
methyl-1h-pyrazole-4-carbonyl) Oxime 5h. Light yellow
solid, yield 70%, m.p. 124–130°C; 1H NMR (CDCl3,
500MHz), δ:8.86 (s, 1H, CH), 8.11 (dd, J � 7.6, 2.0 Hz,
1H, Ph), 8.05 (s, 1H, pyrazole), 7.63 (dd, J � 7.8, 1.5 Hz,
1H, Ph), 7.39–7.33 (m, 2H, Ph), 7.14 (t, J � 53.8 Hz, 1H,
CHF2), 4.01 (s, 3H, CH3); 13C NMR (101MHz, CDCl3)
δ:158.9, 155.8, 146.6 (t, J � 26.3 Hz, Py-CHF2), 135.1,
133.1, 132.9, 129.3, 128.6, 127.7, 124.8, 110.3, 109.1 (t,
J � 238.4 Hz, CHF2), 39.7. HRMS (DART) for
C13H10

79BrF2N3O2 m/z: calculated, 357.9997, found,
358.0003 [M+H]+; for C13H10

81BrF2N3O2 m/z: calcu-
lated, 359.9977, found, 359.9972 [M+H]+.

2.3.11. (E)-4-Bromobenzaldehyde O-(3-(Difluoromethyl)-1-
methyl-1h-pyrazole-4-carbonyl) Oxime 5i. Light yellow
solid, yield 69%, m.p.180–183°C; 1H NMR (CDCl3,
500MHz), δ:8.41 (s, 1H, CH), 8.03 (s, 1H, pyrazole), 7.66 (d,
J� 8.5Hz, 2H, Ph), 7.60 (d, J� 8.5Hz, 2H, Ph), 7.09 (t,
J� 53.8Hz, 1H, CHF2), 4.00 (s, 3H, CH3); 13C NMR (CDCl3,
125MHz) δ: 155.7, 153.7, 145.9 (t, J� 25.6Hz, Py-CHF2),
135.5, 132.3 (2C, Ph), 129.8 (2C, Ph), 128.8, 126.5, 109.3 (t,
J� 237.3Hz, CHF2), 49.1, 40.2; HRMS (DART) for
C13H10

79BrF2N3O2 m/z: calculated, 357.9997, found,
358.0003 [M+H]+; for C13H10

81BrF2N3O2 m/z: calculated,
359.9977, found, 359.9977 [M+H]+.

2.3.12. (E)-2-Nitrobenzaldehyde O-(3-(Difluoromethyl)-1-
methyl-1h-pyrazole-4-carbonyl) Oxime 5j. White solid, yield
73%, m.p. 146–149°C; 1H NMR (CDCl3, 500MHz), δ:9.09 (s,
1H, CH), 8.19 (ddd, J� 17.1, 8.0, 1.4Hz, 2H, Ph), 8.06 (s, 1H,
pyrazole), 7.76 (td, J� 7.6, 1.3Hz, 1H, Ph), 7.70 (td, J� 7.8,
1.5Hz, 1H, Ph), 7.13 (t, J� 53.7Hz, 1H, CHF2), 4.02 (s, 3H,

CH3); 13C NMR (101MHz, CDCl3) δ:158.8, 153.6, 148.0,
146.9 (t, J� 24.8Hz, Py-CHF2), 135.3, 134.1, 132.0, 130.1,
125.5, 125.1, 110.2, 109.1 (t, J� 237.3Hz, CHF2), 39.9; HRMS
(DART) for C13H10F2N4O4 m/z: calculated, 325.0743,
found, 325.0748 [M+H]+.

2.3.13. (E)-3-Nitrobenzaldehyde O-(3-(Difluoromethyl)-1-
methyl-1h-pyrazole-4-carbonyl) Oxime 5k. Light yellow
solid, yield 71%, m.p.172–176°C; 1H NMR (CDCl3,
500MHz), δ:8.59 (t, J� 1.9Hz, 1H, Ph), 8.56 (s, 1H, CH),
8.35 (ddd, J� 8.2, 2.3, 1.1Hz, 1H, Ph), 8.21 (dt, J� 7.9, 1.4Hz,
1H, Ph), 8.06 (s, 1H, pyrazole), 7.67 (t, J� 8.0Hz, 1H, Ph),
7.07 (t, J� 53.8Hz, 1H, CHF2), 4.02 (s, 3H, CH3); 13C NMR
(101MHz, CDCl3) δ: 157.7, 153.4, 145.8, 145.5 (t, J� 27.3Hz,
Py-CHF2), 145.3, 134.6, 132.5, 130.8, 129.1, 125.2, 122.5,
108.4 (t, J� 238.4Hz, CHF2), 38.9; HRMS (DART) for
C13H10F2N4O4 m/z: calculated, 325.0743, found, 325.0748
[M+H]+.

2.3.14. (E)-4-Fluorobenzaldehyde O-(3-(Difluoromethyl)-1-
methyl-1h-pyrazole-4-carbonyl) Oxime 5l. Light yellow
solid, yield 71%, m.p. 144–147°C; 1H NMR (CDCl3,
500MHz), δ:8.43 (s, 1H, CH), 8.03 (s, 1H, pyrazole), 7.79
(dd, J� 8.8, 5.3Hz, 2H, Ph), 7.14 (t, J� 8.6Hz, 2H, Ph), 7.14
(t, J� 53.8Hz, 1H, CHF2), 4.00 (s, 3H, CH3); 13C NMR
(101MHz, CDCl3) δ 163.5, 159.1, 155.50, 146.4 (t,
J� 26.3Hz, Py-CHF2), 135.3, 130.5 (d, J� 8.1Hz, 2C, Ph),
126.1 (d, J� 3.0Hz, Ph), 116.3 (d, J� 11.1Hz, 2C, Ph), 110.7,
109.3 (t, J� 238.4Hz, CHF2), 39.8; HRMS (DART) for
C13H10F3N3O2 m/z: calculated, 298.0798, found, 298.0803
[M+H]+.

2.3.15. (E)-4-(Trifluoromethyl)benzaldehyde O-(3-(Difluor-
omethyl)-1-methyl-1h-pyrazole-4-carbonyl) Oxime 5m.
White solid, yield 70%, m.p. 129–133°C; 1H NMR (CDCl3,
500MHz), δ:8.51 (s, 1H, CH), 8.05 (s, 1H, pyrazole), 7.90 (d,
J� 8.1Hz, 2H, Ph), 7.70 (d, J� 8.2Hz, 2H, Ph), 7.08 (t,
J� 53.8Hz, 1H, CHF2), 4.01 (s, 3H, CH3); 13C NMR
(101MHz, CDCl3) δ:158.9, 155.3, 146.3 (t, J� 25.3Hz, Py-
CHF2), 135.8, 135.6 (2C, Ph), 133.3, 128.7 (2C, Ph), 125.9 (q,
J� 3.8Hz, Ph), 124.9 (q, J� 272.8Hz, CF3), 110.0, 109.3 (t,
J� 236.9Hz, CHF2), 39.8; HRMS (DART) for
C14H10F5N3O2 m/z: calculated, 348.0766, found, 348.0771
[M+H]+.

2.3.16. (E)-4-Chlorobenzaldehyde O-(3-(Difluoromethyl)-1-
methyl-1h-pyrazole-4-carbonyl) Oxime 5n. White solid,
yield 69%, m.p.163–169°C; 1H NMR (CDCl3, 500MHz),
δ:8.43 (s, 1H, CH), 8.03 (s, 1H, pyrazole), 7.73 (d, J� 8.5Hz,
2H, Ph), 7.44 (d, J� 8.5Hz, 2H, Ph), 7.09 (t, J� 53.8Hz, 1H,
CHF2), 4.00 (s, 3H, CH3); 13C NMR (CDCl3, 101MHz), δ:
159.0, 155.5, 146.5 (t, J� 24.3Hz, Py-CHF2), 138.0, 135.4,
132.3, 129.6 (2C, Ph), 129.3 (2C, Ph), 128.3, 109.3 (t,
J� 237.0Hz, CHF2), 39.9; HRMS (DART) for
C13H10

35ClF2N3O2 m/z: calculated, 314.0502, found,
314.0508 [M+H]+; for C13H10

37ClF2N3O2 m/z: calculated,
316.0502, found, 316.0508 [M+H]+.

Heteroatom Chemistry 3



2.3.17. (E)-2,4-Dichlorobenzaldehyde O-(3-(Difluoromethyl)-
1-methyl-1h-pyrazole-4-carbonyl) Oxime 5o. White solid,
yield 67%, m.p. 173–176°C; 1H NMR (CDCl3, 500MHz),
δ:8.83 (s, 1H, CH), 8.10 (d, J� 8.5Hz, 1H, Ph), 8.05 (s, 1H,
pyrazole), 7.47 (d, J� 2.1Hz, 1H, Ph), 7.33 (ddd, J� 8.5, 2.0,
0.7Hz, 1H, Ph), 7.11 (t, J� 53.8Hz, 1H, CHF2), 4.01 (s, 3H,
CH3); 13C NMR (101MHz, CDCl3) δ:158.9, 152.7, 146.8 (t,
J� 26.3Hz, Py-CHF2), 138.4, 135.7, 135.3, 129.9, 129.2,
127.9, 126.4, 110.4, 109.2 (t, J� 238.4Hz, CHF2), 39.9;
HRMS (DART) for C13H9

35Cl2F2N3O2 m/z: calculated,
348.0113, found, 348.0118 [M+H]+; for C13H9

37Cl2F2N3O2
m/z: calculated, 350.0113, found, 350.0118 [M+H]+.

2.4. Structure Determination. One colorless crystal was
cultivated in EtOH by self-volatilization with dimensions of
0.28mm× 0.22mm× 0.14mm for X-ray on a Bruker CCD
area detector diffractometer equipped with a graphite-
monochromatic MoKα radiation (λ� 0.71073 Å). 3e
structure of compound 5d was solved using direct methods
by ShelXS [28] structure solution program and refined with
the ShelXL [29] refinement package using least squares
minimization in Olex2 software [30]. 3e detailed crystal
data are listed in Table 1.

2.5. Fungicidal Activity. Fungicidal activities of pyrazole-4-
carboxylic oxime ester derivatives 5a∼5owere tested according
to reported work [31, 32]. 3e antifungal activities of com-
pounds 5a-5o and fluxapyroxad were tested in vitro against
Gibberella zeae (GZ), Fusarium oxysporum (FO), Phytophthora
infestans (PI), Phytophthora capsici (PC), Rhizoctonia solani
(RS), Sclerotinia sclerotiorum (SS), Alternaria solani (AS),
Physalospora piricola (PP), Cercospora arachidicola (CA), and
Botrytis cinerea (BC). 3e relative percent inhibition (%) has
been determined using the mycelium growth rate method.3e
inhibition of the test compounds compared to the blank assay
was calculated via the following equation:

inhibition(%) �
(CK − CI)

CK
× 100%, (1)

where CK is the average diameter of mycelia in the blank test
and CI is the average diameter of mycelia in the presence of
those compounds. All experiments were replicated three times.

3. Results and Discussion

3.1. Chemistry. 3e intermediate 4 (pyrazole-4-carbonyl
chloride) was prepared by a previously reported method [20]
in four synthetic steps from commercial starting materials.
For the intermediate substituted-benzaldehyde oximes
(Scheme 1), commercially available substituted benzalde-
hydes were condensed with excess NH2OH·HCl and were
used without purification. Finally, the oximes were condensed
with acid chloride 4 to afford the target compounds as white
or light-yellow solids 5a-5o (Scheme 2). From Figure 2, the
torsion angles, C (6)-O (2)-N (3)-C (7) was 172.50 (15)°,
which indicated the two C�N groups are E configuration.

3.2. Fungicidal Activity. Fungicidal activities of compounds
5a∼5o and positive control fluxapyroxad against Rhizoctonia
solani (RS), Phytophthora capsici (PC), Alternaria solani
(AS), Pyricularia oryae (PO), Gibberella zeae (GZ), Botrytis
cinerea (BC), Sclerotinia sclerotiorum (SS), Fusarium
oxysporum (FO), Physalospora piricola (PP), and Cercospora
arachidicola were tested at 50 ppm, the results are shown in
Table 2. 3e fungicidal activity results showed some com-
pounds exhibited good inhibition against S. sclerotiorum,
B. cinerea, P. oryae, R. solani, and P. piricola. For the P. oryae,
compounds 5g (85.7%) and 5j (71.4%) possessed good in-
hibition, compared to that of the control fluxapyroxad
(27.3%). Compound 5k (42.9%) exhibited moderate activity
against P. oryae. For S. sclerotiorum, compounds 5f (60.7%)
and 5i (71.4%) possessed good inhibition, but was weaker
than that of fluxapyroxad (96.4%). While compound 5b
(44.6%), 5g (44.6%), 5h (53.6%), 5k (50.0%), and 5n (44.6%)
displayed moderate activity against S. sclerotiorum. For
R. solani, compound 5e (62.1%) possessed good inhibition,
however, it was weaker than the control fluxapyroxad
(88.4%). Compound 5c (43.1%), 5f (44.8%), 5h (50.0%), and
5j (55.2%) exhibited moderate activity against R. solani. For
B. cinerea, only compound 5h (75.0%) possessed good in-
hibition. For P. piricola, compound 5e (53.1%), 5h (46.9%),
5j (62.5%), and 5o (56.3%) possessed moderate activity.
Most of the title pyrazole oxime ester compounds showed
weak activity against A. solani, G. zeae, P. capsici,
F. oxysporum, and C. arachidicola.

Table 1: Crystal data of compound 5d.

Name 5d
Empirical formula C14H13F2N3O2
Formula weight 293.27
Temperature/K 296 (2)
Crystal system Monoclinic
Crystal size/mm3 0.36× 0.34× 0.32
Space group C2/c
a/Å 16.6161 (11)
b/Å 15.7963 (9)
c/Å 12.9160 (8)
α/° 90
β/° 124.693 (2)
c/° 90
Volume/Å 2787.4 (3)
Z 8
ρcalcg/cm3 1.398
μ/mm−1 0.114
F (000) 1216.0
Radiation MoKα (λ� 0.71073)
2Θ range for data collection/° 5.964 to 54.944

Index ranges -21≤ h≤ 21, -20≤ k≤ 20,
-16≤ l≤ 16

Reflections collected 32252
Independent reflections 3192 [R int � 0.0505, Rsigma � 0.0285]
Data/restraints/parameters 3192/0/192
Goodness-of-fit on F2 1.046
Final R indexes (I≥ 2σ (I)) R1 � 0.0491, wR2 � 0.1243
Final R indexes (all data) R1 � 0.0763, wR2 � 0.1394
Largest diff. peak/hole/e Å−3 0.23/-0.24
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3.3. Docking Study. In order to study the mode of action of
these compounds, molecular docking was carried out between
the compound 5g and the enzyme SDH (PDB:2FBW) using
DS 2.5. 3e docking results indicated that compound 5g can
well occupy the active site of SDH (Figure 3). From Figure 3
(above), two π-cation interactions exist between Arg 43
amino acid residue of SDH and the compound 5g with the
distances of 3.6 Å and 3.9 Å, respectively. 3ere are two

hydrogen bonds between the compound 5g and SDH. One is
between the Ser 39 amino acid residue of SDH and theO atom
of carboxamide group in compound 5g and with the distance
of 2.3 Å.3e other is between the Tyr 58 amino acid residue of
SDH and theO atom ofMeO groupwith the distance of 2.0 Å.
From the docking results, the pyrazole ring and amide group
are key active groups in this fungicide, which is the same as
the lead compound pydiflumetofen (Figure 3).
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Scheme 2: Design strategy of pyrazole oxime ester compounds 5a∼5o.
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Figure 2: Molecular structure of (E)-4-methylbenzaldehyde (O)-(3-(difluoromethyl)-1-methyl-1 (H)-pyrazole-4-carbonyl) oxime.
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Scheme 1: 3e synthetic route of substituted oxime.
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Figure 3: Docking modeling and molecular receptor-ligand interactions of compound 5g (above, left 3D, right 2D) and CK (down, left 3D,
right 2D) with SDH.

Table 2: 3e fungicidal activity of compounds 5a∼5o at 50 ppm.

No. R AS GZ PO PC SS BC RS FO CA PP
5a H 27.8± 0.1 12.2± 0.1 28.6± 0.4 5.3± 0.1 17.9± 0.3 9.4± 0.3 32.8± 0.2 7.7± 0.1 17.6± 0.1 15.6± 0.2
5b 2-CH3 11.1± 0.2 12.2± 0.1 17.1± 0.4 10.5± 0.1 44.6± 0.3 12.5± 0.4 20.7± 0.1 19.2± 0.3 17.6± 0.1 25.0± 0.2
5c 3-CH3 16.7± 0.2 12.2± 0.1 14.3± 0.5 10.5± 0.2 17.9± 0.1 3.1± 0.3 43.1± 0.3 15.4± 0.1 23.5± 0.1 31.3± 0.2
5d 4-CH3 33.3± 0.3 12.2± 0.3 17.1± 0.2 5.3± 0.1 25.0± 0.4 9.4± 0.3 37.9± 0.1 7.7± 0.1 17.6± 0.1 31.3± 0.1
5e 2- OCH3 27.8± 0.3 29.3± 0.1 14.3± 0.1 13.2± 0.1 17.9± 0.3 12.5± 0.1 62.1 ± 0.3 19.2± 0.4 29.4± 0.1 53.1 ± 0.1
5f 4- OCH3 16.7± 0.1 22.0± 0.1 28.6± 0.1 5.3± 0.2 60.7 ± 0.1 18.8± 0.1 44.8± 0.1 19.2± 0.4 17.6± 0.1 9.4± 0.2
5g 3,4,5-tri-OCH3 33.3± 0.1 12.2± 0.1 85.7 ± 0.1 7.9± 0.2 44.6± 0.4 18.8± 0.1 29.3± 0.1 15.4± 0.1 17.6± 0.1 3.1± 0.1
5h 2-Br 16.7± 0.2 17.1± 0.3 14.3± 0.1 5.3± 0.1 53.6± 0.1 75.0 ± 0.3 50.0± 0.3 23.1± 0.3 29.4± 0.3 46.9± 0.3
5i 4-Br 11.1± 0.4 12.2± 0.1 28.6± 0.4 5.3± 0.1 71.4± 0.1 18.8± 0.1 37.9± 0.1 15.4± 0.1 11.8± 0.1 31.3± 0.1
5j 2-NO2 5.6± 0.2 12.2± 0.1 71.4 ± 0.1 18.4± 0.2 7.1± 0.3 25.0± 0.4 55.2± 0.1 23.1± 0.1 47.1± 0.1 62.5 ± 0.1
5k 4-NO2 5.6± 0.1 12.2± 0.2 42.9± 0.1 5.3± 0.1 50.0± 0.1 12.5± 0.1 27.6± 0.5 19.2± 0.1 17.6± 0.4 3.1± 0.3
5l 4-F 11.1± 0.1 12.2± 0.1 28.6± 0.2 10.5± 0.3 21.4± 0.3 34.4± 0.1 34.5± 0.1 7.7± 0.3 17.6± 0.1 12.5± 0.1
5m 4-CF3 5.6± 0.3 12.2± 0.1 14.3± 0.1 5.3± 0.1 32.1± 0.1 9.4± 0.5 17.2± 0.3 7.7± 0.3 5.9± 0.3 28.1± 0.3
5n 4-Cl 16.7± 0.3 17.1± 0.1 17.1± 0.3 5.3± 0.1 44.6± 0.1 25.0± 0.1 37.9± 0.1 19.2± 0.1 17.6± 0.1 28.1± 0.3
5o 2,4-di-Cl 11.1± 0.2 12.2± 0.1 14.3± 0.1 5.3± 0.1 7.1± 0.3 12.5± 0.2 20.7± 0.5 15.4± 0.4 17.6± 0.2 56.3 ± 0.4
CK 88.9± 0.2 28.6± 0.2 27.3± 0.2 16.7± 0.2 96.4± 0.2 63.6± 0.2 88.4± 0.2 29.4± 0.2 100± 0.2 63.6± 0.2

6 Heteroatom Chemistry



4. Conclusions

In conclusion, a series of pyrazole-4-carboxylic oxime ester
derivatives were synthesized using a bioisosterism strategy.
3e X-ray analysis results showed that the oxime has an E
configuration. 3e antifungal activity of the target pyrazole-
4-carboxylic oxime ester compounds against ten fungi was
tested at 50 ppm, and some of the target compounds showed
good fungicidal activity against B. cinerea, S. sclerotiorum,
R. solani, P. oryae, and P. piricola. 3ese structures can be
further optimized for discovering new fungicides.
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