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Abstract. We study the averageLq-dimensions of typical Borel probability measures belonging

to the Gromov–Hausdorff–Prohoroff space (of all Borel probability measures with compact supports)

equipped with the Gromov–Hausdorff–Prohoroff metric. Previously the lower and upper average

Lq-dimensions of a typical measure µ have been found for q ∈ (1,∞). In this paper we determine

the lower and upper average Lq-dimensions of a typical measure µ in the two limiting cases: q = 1

and q = ∞. In particular, we prove that a typical measure µ is as irregular as possible: for q = 1

and q = ∞, the lower average Lq-dimension attains the smallest possible value, namely 0, and the

upper average Lq-dimension attains the largest possible value, namely ∞. The proofs rely on some

non-trivial semi-continuity properties of Lq-dimensions that may be of interest in their own right.

1. Statement of results

Recall that a subset E of a (complete) metric space M is called co-meagre if its
complement is meagre, and we say that a typical element x ∈ M has property P if
the set E = {x ∈ M | x has property P} is co-meagre, see Oxtoby [Oxt] for more
details. For 1 < q < ∞, the Lq-dimensions, also sometimes called the Renyi en-
tropies, of a typical Borel probability measures belonging to the Gromov–Hausdorff–
Prohoroff space (of all Borel probability measures with compact support) equipped
with the Gromov–Hausdorff–Prohoroff metric have recently been computed. In the
present paper we complete this study by computing the Lq-dimensions/Renyi en-
tropies of a typical Borel probability measures belonging to the Gromov–Hausdorff–
Prohoroff space equipped with the Gromov–Hausdorff–Prohoroff metric for the two
limiting cases, namely, q = 1 and q = ∞. In Section 1.1 we recall the definition of
the Gromov–Hausdorff–Prohoroff space and the Gromov–Hausdorff–Prohoroff met-
ric, and in Section 1.2 we recall the definitions of the Lq-dimensions. The main results
are presented in Section 1.3 and Section 1.4. We note that the proofs of our main
results rely on some non-trivial semi-continuity properties of Lq-dimensions/Renyi
entropies that may be of interest in their own right; these semi-continuity results are
stated and discussed in Section 1.5.

1.1. The Gromov–Hausdorff–Prohoroff space PGHP and the Gromov–
Hausdorff–Prohoroff metric dGHP. For a compact metric space X, we denote
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the family of all Borel probability measures on X by P(X), i.e. we write

(1.1) P(X) = {µ | µ is a Borel probability measure on X}.

The pre-Gromov–Hausdorff–Prohoroff space PGHP is now defined by

PGHP =
⋃

X is a compact

metric space

P(X)

= {µ | µ is a Borel probability measure on a compact metric space}.

Next, we define the equivalence relation ∼ in PGHP as follows. Namely, for
µ, ν ∈ PGHP, we write

µ ∼ ν ⇐⇒ there is a bijective isometry f : supp µ → supp ν such that ν = µ ◦ f−1.

It is clear that ∼ is an equivalence relation in PGHP, and the Gromov–Hausdorff–
Prohoroff space PGHP is defined by

PGHP = PGHP/∼,

see, for example, [ADH, p. 4] or [Mie, Section 6.2]. While elements of PGHP are
equivalence classes of measures, we will use the standard convention and identify an
equivalence class with its representative, i.e. we will regard the elements of PGHP as
measures and not as equivalence classes of measures.

Next, we define the Gromov–Hausdorff–Prohoroff metric dGHP on PGHP. For a
compact metric space, let K(X) denote the family of non-empty compact subsets of
X. For A,B ∈ K(X), the Hausdorff distance dH(A,B) between A and B is defined
by

(1.2) dH(A,B) = max
(

sup
x∈A

dist(x,B), sup
y∈B

dist(y, A)
)

,

where dist(x, E) = infz∈E d(x, z) for x ∈ X and E ⊆ X. Also, for µ, ν ∈ P(X), the
Prohoroff distance dP(µ, ν) between µ and ν is defined as follows. Let Lip(X) denote
the family of Lipschitz functions f : X → R with |f | ≤ 1 and Lip(f) ≤ 1 where Lip(f)
denotes the Lipschitz constant of f , i.e. Lip(X) = {f : X → R | |f | ≤ 1, Lip(f) ≤ 1}.
The Prohoroff distance dP(µ, ν) between µ and ν is defined by

(1.3) dP(µ, ν) = sup
f∈Lip(X)

∣

∣

∣

∣

∣

ˆ

f dµ−

ˆ

f dν

∣

∣

∣

∣

∣

.

Finally, the Gromov–Hausdorff–Prohoroff metric dGHP on PGHP is defined by

dGHP(µ, ν) = inf{dH(f(supp µ), g(supp ν)) + dP(µ ◦ f−1, ν ◦ g−1)

| X is a compact metric space and f : suppµ → X

and g : supp ν → X are isometries}.(1.4)

for µ, ν ∈ PGHP, see, for example, [ADH, p. 4] or [Mie, Section 6.2] (see also [Vi]);
here, and below, we write supp µ for the topological support of a Borel measure µ
on a metric space. The Gromov–Hausdorff–Prohoroff metric extends the Hausdorff
metric, the Gromov–Hausdorff metric on the space of all compact metric spaces,
and the Prohoroff metric. It can be shown that Gromov–Hausdorff–Prohoroff metric
space (PGHP, dGHP) is complete and the classification of “sizes” of subsets of PGHP

using Baire category is therefore meangingful; the reader is referred to [ADH, p. 4] or
[Mie, Section 6.2] for a proof of this and for a discussion of the Gromov–Hausdorff–
Prohoroff metric space.
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1.2. Lq-dimensions/Renyi entropies. For a probability measure µ on a
compact metric space, the Lq-dimensions of µ are defined as follows, see, for exam-
ple, [Fal, Pes]; we note that the Lq-dimensions are also sometimes called the Renyi
entropies. For r > 0 and an extended real number q with 1 ≤ q ≤ ∞, write

(1.5) Iqr (µ) =



























exp

ˆ

suppµ

logµ(B(x, r)) dµ(x) for q = 1;

(
ˆ

suppµ

µ(B(x, r))q−1 dµ(x)

)
1

q−1

for 1 < q < ∞;

supx∈suppµ µ(B(x, r)) for q = ∞,

where B(x, r) denotes the open ball with centre at x and radius equal to r. The
lower and upper Lq-dimensions of order q are now defined by

(1.6) Dq(µ) = lim inf
rց0

log Iqr (µ)

log r
, D

q
(µ) = lim sup

rց0

log Iqr (µ)

log r
.

The definitions of I1r (µ) and I∞r (µ) are, of course, motivated by the fact that
limqց1 I

q
r (µ) = I1r (µ) and limqր∞ Iqr (µ) = I∞r (µ). We also note the following the

relationship between the Lq-dimensions for different values of q ∈ [1,∞]; below we
denote the lower and upper box dimensions of a compact metric space X by dimB(X)
and dimB(X), respectively (the reader is referred to [Fal] for the definitions of the
box dimensions). Namely, for all measures µ ∈ P(K) on a compact metric space X
and all p, q ∈ (1,∞) with p ≤ q, we have

0 ≤ D∞(µ) ≤ Dq(µ) ≤ Dp(µ) ≤ D1(µ) ≤ dimB(X),

0 ≤ D
∞
(µ) ≤ D

q
(µ) ≤ D

p
(µ) ≤ D

1
(µ) ≤ dimB(X).

(1.7)

Indeed, since µ is a probability measure, the inequalities D∞(µ) ≤ Dq(µ) ≤ Dp(µ) ≤

D1(µ) and D
∞
(µ) ≤ D

q
(µ) ≤ D

p
(µ) ≤ D

1
(µ) follow from standard Lp-norm in-

equalities, see, for example, [Str, Exercise 6.2.8.(i)]. Finally, the inequalities D1(µ) ≤

dimB(X) and D
1
(µ) ≤ dimB(X) follow from routine arguments and we have decided

to omit the proofs for brevity. In particular, it follows from (1.7) that if µ ∈ PGHP

and p, q ∈ (1,∞) with p ≤ q, then

0 ≤ D∞(µ) ≤ Dq(µ) ≤ Dp(µ) ≤ D1(µ) ≤ ∞,

0 ≤ D
∞
(µ) ≤ D

q
(µ) ≤ D

p
(µ) ≤ D

1
(µ) ≤ ∞.

(1.8)

The Lq-dimensions were essentially introduced by Rényi [Rén1,Rén2] in 1960
as a tool for analyzing various problems in information theory, and later in the
1980’s by theoretical physicists [HJKPS] as a tool for investigating highly irregular
distributions. The main significance of the Lq-dimensions is their relationship with
the multifractal spectrum of µ. In the 1980’s it was conjectured in the physics
literature [HJKPS] that for “good” measures µ the multifractal spectrum of µ equals
the Legendre transform of the Lq-dimensions. This result is known as the Multifractal
Formalism. During the 1990’s there has been an enormous interest in verifying the
Multifractal Formalism and computing the multifractal spectra and Lq-dimensions
of measures in the mathematical literature, see [Fal, Pes] and the references therein.

1.3. Lq-dimensions of typical measures. The purpose of this paper is to
investigate the Lq-dimensions of a typical measure µ ∈ PGHP for q = 1 and q = ∞. We
immediately note that the Lq-dimensions for 1 < q < ∞ of a typical measure have
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been studied earlier [Bay1,Bay2,MR,Ols1,Ols2,Ols3]. For example, Bayart [Bay1],
Myjak and Rudnicki [MR] (for q = 2) and Olsen [Ols1] show that if X is a compact
Ahlfors regular subset of Rd, then a typical measure µ ∈ P(X) satisfies

Dq(µ) = 0 for all 1 < q < ∞,

D
q
(µ) = dimH(X) for all 1 < q < ∞,

(1.9)

where dimH(X) denotes the Hausdorff dimension of X. In particular, since the lower
box dimension, the upper box dimension and the Hausdorff dimension of a compact
Ahlfors regular space X coincide, (1.7) and (1.9) show that a typical measure on X
is as “irregular” as possible: the lower dimension Dq(µ) is as small as possible and
the upper dimension D

q
(µ) is as big as possible. However, it follows from [Ols3] that

by shifting the viewpoint from the study of typical measures belonging to P(X) for
a fixed compact metric space X to the study of typical measures belonging to the
“enlarged” space PGHP of all measures, then the “irregular” behaviour of a typical
measure is amplified very dramatically. In particular, the following result follows
from [Ols3] and the inequalities in (1.8).

Theorem A. [Ols3, Theorem 1.1] A typical measure µ ∈ PGHP satisfies

Dq(µ) = 0 for all 1 < q < ∞,

D
q
(µ) = ∞ for all 1 < q < ∞.

Proof. This follows almost immediately from [Ols3, Theorem 1.1]. However,
since the definitions in [Ols3] differ slightly from the definitions used here, we will
provide some further details.

Indeed, in [Ols3] the following slightly different definitions are used. Namely, for
q > 1, r > 0 and µ ∈ PGHP, let Iq

r (µ) =
´

supp µ
µ(B(x, r))q−1 dµ(x), and put

Dq(µ) = lim inf
rց0

log Iq
r (µ)

− log r
, D

q
(µ) = lim sup

rց0

log Iq
r (µ)

− log r
.

One of the main results in [Ols3, Theorem 1.1] now says that all measures µ ∈ PGHP

satisfy −∞ ≤ Dq(µ) ≤ D
q
(µ) ≤ 0 for all q > 1, and for a typical measure µ ∈ PGHP,

we have

Dq(µ) = −∞ for all q ≥ 2,(1.10)

D
q
(µ) = 0 for all q > 1.(1.11)

However, it is clear that Iqr (µ) = Iq
r (µ)

1

q−1 for q > 1, whence

Dq(µ) =
1

1− q
D

q
(µ) for q > 1,(1.12)

D
q
(µ) =

1

1− q
Dq(µ) for q > 1.(1.13)

We can now prove the statements in Theorem A. To prove the first statement in
Theorem A, we note that it follows from (1.11) and (1.12) that for a typical µ ∈ PGHP,
we have

Dq(µ) =
1

1− q
D

q
(µ) =

1

1− q
0 = 0 for all q > 1.

This proves the first statement in Theorem A.
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To prove the second statement in Theorem A, we note that it follows from (1.10)
and (1.13) that for a typical µ ∈ PGHP, we have

(1.14) D
q
(µ) =

1

1− q
Dq(µ) =

1

1− q
(−∞) = ∞ for all q ≥ 2,

and inequality (1.8) and (1.14) therefore show that for a typical µ ∈ PGHP, we have

(1.15) D
q
(µ) ≥ D

2
(µ) = ∞ for all 1 < q < 2.

The second statement in Theorem A now follows from (1.14) and (1.15). �

The first main result shows that the conclusion in Theorem A also holds in the
limiting cases for q = 1 and q = ∞. These are the statements in the next theorems.

Theorem 1.1. The case: q = 1. A typical measure µ ∈ PGHP satisfies

D1(µ) = 0,(1.16)

D
1
(µ) = ∞.(1.17)

Theorem 1.2. The case: q = ∞. A typical measure µ ∈ PGHP satisfies

D∞(µ) = 0,(1.18)

D
∞
(µ) = ∞.(1.19)

Of course, (1.17) and (1.18) follow immediately from Theorem A and the state-
ments in (1.17) and (1.18) are only included for completeness. The other statements
in Theorems 1.1–1.2, namely, (1.16) and (1.19), follow from more general results in
Section 1.3. Indeed, Theorems 1.1–1.2 show that the lower Lq-dimensions for q = 1
and q = ∞ of a typical measure are as small as possible and that the upper Lq-
dimensions for q = 1 and q = ∞ of a typical measure are as big as possible. Other
results, including, for example, (1.9) from [Bay1, Ols1] and Theorem A, as well as
the results in [Bay2, Gen, Has, MR, Ols2], investigating the typical Lq-dimensions
and other dimensions of measures show a similar dichotomy. In the next section we
will analyse the intriguing dichotomy in Theorem A and Theorems 1.1–1.2 in more
detail using the notion of averaging systems. In particular, we will prove more gen-
eral results about average Lq-dimensions from which Theorems 1.1–1.2 are special
cases.

1.4. Average Lq-dimensions of typical measures. For a Borel probability
measure µ with compact support and a real number q with 1 ≤ q ≤ ∞, we define
the q’th moment scaling function f q

µ : (0,∞) → [0,∞] of µ by

(1.20) f q
µ(t) =

log Iq
e−t(µ)

log e−t
=

log Iq
e−t(µ)

−t
.

Using this notation, the Lq-dimensions of µ are now given by

Dq(µ) = lim inf
t→∞

f q
µ (t), D

q
(µ) = lim sup

t→∞
f q
µ(t),

and Theorem A and Theorems 1.1–1.2 therefore show that the moment scaling func-
tion f q

µ(t) of a typical measure µ ∈ PGHP diverges in the worst possible way as t → ∞.
However, there are standard techniques, known as averaging systems, that (at least in
some cases) can assign limiting values to divergent functions (the precise definitions
will be given below). We will now analysis the divergence of the moment scaling
function f q

µ(t) of a typical measure µ using these ideas.
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We start by recalling the definition of an averaging (or summability) system;
the reader is referred to Hardy’s classical text [Har] for a systematic treatment of
averaging systems.

Definition. Averaging system. An averaging system is a family Π = (Πt)t≥t0

with t0 > 0 such that

(i) Πt is a finite Borel measure on [t0,∞);
(ii) Πt has compact support;
(iii) The Consistency Condition: If f : [t0,∞) → [0,∞) is a positive measurable

function and there is a real number a such that f(t) → a as t → ∞, then
´

f dΠt → a as t → ∞.

If f : [t0,∞) → [0,∞) is a positive measurable function, then we define lower and
upper Π-average of f by

AΠf = lim inf
t→∞

ˆ

f dΠt

and

AΠf = lim sup
t→∞

ˆ

f dΠt,

respectively.

Applying averaging systems to the moment scaling function f q
µ(t) in (1.20) leads

to our key definition, namely, the definition of average Lq-dimensions.

Definition. Average Lq-dimension. Let Π = (Πt)t≥t0 be an averaging system.
Let q ∈ [1,∞] and let µ be a Borel probability measure with compact support. We
define the lower and upper Π-average Lq-dimensions of µ by

Dq
Π(µ) = AΠf

q
µ = lim inf

t→∞

ˆ

log Iq
e−s(µ)

−s
dΠt(s),

and

D
q

Π(µ) = AΠf
q
µ = lim sup

t→∞

ˆ

log Iq
e−s(µ)

−s
dΠt(s),

respectively.

We first note that it follows by an argument similar to the proof of (1.8) that the
average Lq-dimensions satisfy the following inequalities for 1 < p ≤ q < ∞, namely,
we have

0 ≤ D∞
Π (µ) ≤ Dq

Π(µ) ≤ Dp
Π(µ) ≤ D1

Π(µ) ≤ ∞,

0 ≤ D
∞

Π (µ) ≤ D
q

Π(µ) ≤ D
p

Π(µ) ≤ D
1

Π(µ) ≤ ∞.
(1.21)

We also note that Lq-dimensions are, in fact, average Lq-dimensions. Indeed, if µ is
a Borel probability measure with compact support and we let Π denote the average
system defined by Π = (δt)t≥1 (where δt denotes the Dirac measure concentrated at
t), then clearly

(1.22) Dq
Π(µ) = Dq(µ), D

q

Π(µ) = D
q
(µ).

In [Ols3] is was shown that not only is the moment scaling function f q
µ(t) for

1 < q < ∞ of a typical measure µ divergent as t → ∞, but it is so irregular that it
remains spectacularly divergent as t → ∞ even after being “averaged” or “smoothened
out” using arbitrarily powerful averaging systems; this is the contents of Theorem
B below and follows from [Ols3, Theorem 1.4] and the inequalities in (1.21) by an
argument similar to the proof of Theorem A.
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Theorem B. [Ols3, Theorem 1.4] Let Π be an averaging system. A typical
measure µ ∈ PGHP satisfies

Dq
Π(µ) = 0 for all 1 < q < ∞,

D
q

Π(µ) = ∞ for all 1 < q < ∞.

The second main result shows that the conclusion in Theorem B also holds in the
limiting cases for q = 1 and q = ∞. These are the statements in the next theorems.

Theorem 1.3. The case: q = 1. Let Π be an averaging system. A typical
measure µ ∈ PGHP satisfies

D1
Π(µ) = 0,(1.23)

D
1

Π(µ) = ∞.(1.24)

Theorem 1.4. The case: q = ∞. Let Π be an averaging system. A typical
measure µ ∈ PGHP satisfies

D∞
Π (µ) = 0,(1.25)

D
∞

Π (µ) = ∞.(1.26)

Of course, (1.24) and (1.25) follow immediately from Theorem B and the state-
ments in (1.24) and (1.25) are only included for completeness. The proofs of the other
statements in Theorems 1.3–1.4, namely, (1.23) and (1.26), are given in Sections 3–6.
Sections 3–4 contains various semi-continuity results that may be of interest in their
own right; the reader is referred to Theorems 1.5–1.6 in Section 1.5 for a detailed
discussion of this. The proof of (1.23) is given in Section 5 and the proof of (1.26) is
given in Section 6. We now make some remarks about the proofs and statements in
Theorems 1.3–1.4.

Remark. We note that the statement in Theorem B follows immediately from
Theorems 1.3–1.4 and the inequalities in (1.21), and Theorems 1.3–1.4 therefore
provide an alternative proof of Theorem B.

Remark. Observe that if we apply Theorem 1.3 and Theorem 1.4 to the averag-
ing system Π defined by Π = (δt)t≥1, then it follows from (1.22) that the statements
in Theorem 1.3 and Theorem 1.4 reduce to the statements in Theorem 1.1 and The-
orem 1.2, respectively.

1.5. Semi-continuity of Lq-dimensions/Renyi entropies. The proofs
of Theorem 1.3 and Theorem 1.4 rely on two semi-continuity results of the Lq-
dimensions/Renyi entropies for q = 1 and q = ∞. Continuity and semi-continuity
properties of entropies form a fundamental and important part of ergodic theory and
information theory (see, for example, [Wa, Chapter 8]), and these results may there-
fore be of interest in their own right. For this reason we have decided to state the
results explicitly. We first recall and define the following notation. Recall, that the
r-approximative Lq-dimension/Renyi entropy I1r : PGHP → R for q = 1 is defined by

I1r (µ) = exp

ˆ

suppµ

log µ(B(x, r)) dµ(x)

Also for a compact metric space X and x ∈ X, we let C(x, r) denote the closed ball
with centre at x and radius equal to r, i.e. C(x, r) = {y ∈ X | d(x, y) ≤ r}, and define
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J1
r : PGHP → R by

J1
r (µ) = exp

ˆ

suppµ

log µ(C(x, r)) dµ(x).

Next, recall that that the r-approximative Lq-dimension/Renyi entropy I∞r : PGHP →
R for q = ∞ is defined by

I∞r (µ) = sup
x∈suppµ

µ(B(x, r)),

and define J∞
r : PGHP → R by

J∞
r (µ) = sup

x∈suppµ

µ(C(x, r)).

We can now state the semi-continuity results that the proofs of Theorem 1.3 and
Theorem 1.4 rely on; this is done in Theorem 1.5 and Theorem 1.6 below. We
provide a detailed discussion of Theorem 1.5 and Theorem 1.6 after we have stated
them.

Theorem 1.5.

(1) The function I1r : PGHP → R is lower semi-continuous on PGHP for all r > 0.
(2) The function J1

r : PGHP → R is upper semi-continuous on PGHP for all r > 0.

Theorem 1.6.

(1) The function I∞r : PGHP → R is lower semi-continuous on PGHP for all r > 0.
(2) The function J∞

r : PGHP → R is upper semi-continuous on PGHP for all r > 0.

The proof of Theorem 1.5 is given in Section 3 and the proof of Theorem 1.6 is
given in Section 4. The proof of Theorem 1.3 relies crucially on Theorem 1.5, and the
proof of Theorem 1.4 relies crucially on Theorem 1.6. While it is not very difficult
to show that the functions I∞r and J∞

r are semi-continuous, we found it far more
challenging to show that the functions I1r and J1

r are semi-continuous. For example,
in order to show that I1r is lower semi-continuous, we must show that if (µn)n is a
sequence in PGHP and µ ∈ PGHP such that µn → µ with respect to dGHP, then

I1r (µ) ≤ lim inf
n

I1r (µn),

i.e. (using the fact that the exponential function is continuous and increasing) we
must prove that

(1.27)

ˆ

suppµ

log µ(B(x, r)) dµ(x) ≤ lim inf
n

ˆ

suppµ

log µn(B(x, r)) dµn(x).

Since µm → µ weakly (because µm → µ with respect to dGHP), we conclude that
logµ(B(x, r)) ≤ lim infm logµm(B(x, r)), whence (using Fatou’s lemma)

ˆ

suppµ

log µ(B(x, r)) dµ(x) ≤

ˆ

supp µ

lim inf
m

logµm(B(x, r)) dµ(x)

≤ lim inf
m

ˆ

suppµ

logµm(B(x, r)) dµ(x).

(1.28)

Also, since µn → µ weakly and since it is not difficult to see that the function
x → log µm(B(x, r)) is lower semi-continuous for each m, we conclude that for each
fixed m, we have

(1.29)

ˆ

suppµ

log µm(B(x, r)) dµ(x) ≤ lim inf
n

ˆ

suppµ

log µm(B(x, r)) dµn(x).
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Combining (1.28) and (1.29) shows that

(1.30)

ˆ

supp µ

logµ(B(x, r)) dµ(x) ≤ lim inf
m

lim inf
n

ˆ

supp µ

logµm(B(x, r)) dµn(x).

Of course, inequality (1.30) is not the same as inequality (1.27). Indeed, in (1.30), the
indices n and m tend to infinity independently whereas this is not the case in (1.27).
Unfortunately, we found it surprisingly difficult to overcome this problem, and the
proof of the lower semi-continuity of the function I1r : PGHP → R is therefore con-
siderably more involved using the power-series expansion of the logarithmic function
to show that log I1r can be written as a converging series of lower semi-continuous
functions. Finally, since we can show that this series converges sufficiently rapidly,
this allow is us to conclude that I1r is lower semi-continuous. The reader is referred
to Section 4 for the details of this argument.

As an application of Theorems 1.3–1.4 we will now consider higher order Hölder
and Cesàro averages of the moment scaling function f q

µ of a typical measure µ; this
is done in next section.

2. Hölder and Cesàro averages of the
Lq-dimension of a typical measure

Two of the most commonly used averaging systems are Hölder averages and
Cesàro averages. We will now define these averaging systems and apply them to the

moment scaling function f q
µ(t) =

log I
e−t (µ)

t
of a Borel probability measure µ. For a > 0

and a positive measurable function f : (a,∞) → [0,∞), we define Mf : (a,∞) →
[0,∞) by

(Mf)(t) =
1

t

ˆ t

a

f(s) ds.

For a positive integer n, we now define the lower and upper n’th order Hölder averages
of f by

Hnf = lim inf
t→∞

(Mnf)(t), Hnf = lim sup
t→∞

(Mnf)(t).

The Cesàro averages are defined as follows. First, we define If : (a,∞) → [0,∞) by

(If)(t) =

ˆ t

a

f(s) ds.

For a positive integer n, we now define the lower and upper n’th order Cesàro averages
of f by

Cnf = lim inf
t→∞

n!

tn
(Inf)(t), Cnf = lim sup

t→∞

n!

tn
(Inf)(t).

It is well-known that that the Hölder and Cesàro averages satisfy the following in-
equalities, namely,

lim inf
t→∞

f(t) = H0f ≤ H1f ≤ H2f ≤ . . . ≤ H2f ≤ H1f ≤ H0f = lim sup
t→∞

f(t),

lim inf
t→∞

f(t) = C0f ≤ C1f ≤ C2f ≤ . . . ≤ C2f ≤ C1f ≤ C0f = lim sup
t→∞

f(t).
(2.1)

It is also well-known that the Hölder and Cesàro averages can be expressed using
averaging systems in the sense of the definition in Section 1.4. Indeed, if for a
positive integer n, we define the averaging system ΠH

n = (ΠH

n,t)t≥a by

ΠH

n,t(B) =
1

(n− 1)! t

ˆ

[a,t]∩B

(log t− log s)n−1 ds
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for Borel subsets B of [a,∞), then

Hnf = lim inf
t

ˆ

f dΠH

n,t, Hnf = lim sup
t

ˆ

f dΠH

n,t,

see, for example, [Ja, p. 675]. Similarly, if for a positive integer n, we define the
averaging system ΠC

n = (ΠC

n,t)t≥a by

ΠC

n,t(B) =
n

tn

ˆ

[a,t]∩B

(t− s)n−1 ds

then

Cnf = lim inf
t

ˆ

f dΠC

n,t, Cnf = lim sup
t

ˆ

f dΠC

n,t,

see, for example, [Har, pp. 110–111].
Using Hölder and Cesàro averages we can now introduce average Hölder and

Cesàro Lq-dimensions by applying the definitions of the Hölder and Cesàro averages
to the function f q

µ(t). This is the content of the next definition.

Definition. Average Hölder and Cesàro Lq-dimensions. Let µ ∈ PGHP. For
q ∈ [1,∞], we define the lower and upper n’th order average Hölder Lq-dimension
of µ, denoted by Dq

H,n(µ) and D
q

H,n(µ), as the lower and upper n’th order Hölder
average of the function f q

µ(t) for t ≥ 1, i.e. we put

Dq
H,n(µ) = Hnf

q
µ, D

q

H,n(µ) = Hnf
q
µ.

Similarly, we define the lower and upper n’th order average Cesàro Lq-dimension of
µ, denoted by Dq

C,n(µ) and D
q

C,n(µ), by

Dq
C,n(µ) = Cnf

q
µ, D

q

C,n(µ) = Cnf
q
µ.

The higher order average Hölder and Cesàro Lq-dimensions form a double infinite
hierarchy in (at least) countably infinite many levels, namely, we have (using (2.1))

Dq(µ) = Dq
H,0(µ) ≤ Dq

H,1(µ) ≤ . . . ≤ D
q

H,1(µ) ≤ D
q

H,0(µ) = D
q
(µ),

Dq(µ) = Dq
C,0(µ) ≤ Dq

C,1(µ) ≤ . . . ≤ D
q

C,1(µ) ≤ D
q

C,0(µ) = D
q
(µ).

(2.2)

As an application of Theorem B and Theorems 1.3–1.4, we will now show that the
behaviour of a typical measure µ ∈ PGHP is so irregular that not even the hierarchies
in (2.2) formed by taking Hölder and Cesàro averages of all orders are sufficiently
powerful to “smoothen out” the behaviour of the box counting function f q

µ(t) for
q ∈ [1,∞] as t → ∞.

Theorem 2.1. A typical measure µ ∈ PGHP satisfies

Dq
H,n(µ) = Dq

C,n(µ) = 0 for all 1 ≤ q ≤ ∞,

D
q

H,n(µ) = D
q

C,n(µ) = ∞ for all 1 ≤ q ≤ ∞,

for all n ∈ N ∪ {0}.

Proof. This statement follows immediately from Theorem B and Theorems 1.3–
1.4. �
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3. Proof of Theorem 1.6

Fix µ ∈ PGHP. Recall, that for r > 0, we write

I∞r (µ) = sup
x∈suppµ

µ(B(x, r)).

Also recall that for a compact metric space X and x ∈ X, we let C(x, r) denote the
closed ball with centre at x and radius equal to r, i.e. C(x, r) = {y ∈ X | d(x, y) ≤ r},
and write

J∞
r (µ) = sup

x∈suppµ

µ(C(x, r)).

We also introduce the dual notions, namely, for r > 0, we write

I−∞
r (µ) = inf

x∈suppµ
µ(B(x, r)),

and

J−∞
r (µ) = inf

x∈suppµ
µ(C(x, r)).

The purpose of this section is twofold. The first purpose is to state and prove Propo-
sition 3.2, saying that the functions I∞r and J∞

r are semi-continuous, and Proposi-
tion 3.3, saying that the the functions I−∞

r and J−∞
r are semi-continuous, and the

second purpose is to prove Theorem 1.6. The semi-continuity results in Proposi-
tions 3.2–3.3 play crucial parts in the proofs of Theorems 1.3–1.5 in Sections 4–6 but
may also be of interest in their own right. We start by proving the following lemma.

Lemma 3.1. Let X be a metric space. Let C ∈ K(X) and for each positive
integer n, let Cn ∈ K(X). Let x ∈ X and for each positive integer n, let xn ∈ Cn.
Assume that Cn → C with respect to dH and that xn → x. Then x ∈ C.

Proof. Assume, in order to reach a contradiction, that x /∈ C. We can therefore
find a positive real number r > 0 such that B(x, r) ⊆ X \ C. Also, since xn → x,
we can choose a positive integer N such that xn ∈ B(x, r

2
) for all n ≥ N . In

particular, we conclude that C ∩ B(x, r) = ∅ and Cn ∩B(x, r
2
) 6= ∅ for n ≥ N , and

so dH(Cn, C) ≥ r
2

for all n ≥ N . However, this contradicts the fact that Cn → C
with respect to dH. �

We can now state the first main semi-continuity results in the section.

Proposition 3.2.

(1) The function I∞r : PGHP → R is lower semi-continuous on PGHP for all r > 0.
(2) The function J∞

r : PGHP → R is upper semi-continuous on PGHP for all r > 0.

Proof. (2) Let µ ∈ PGHP and let µn ∈ PGHP for n ∈ N with µn → µ with respect
to dGHP. For brevity write Λ = lim supn J

∞
r (µn) and note that we must now prove

that Λ ≤ J∞
r (µ).

We may clearly assume that there is a compact metric space X such that µ ∈
P(X) and µn ∈ P(X) for n ∈ N.

We can clearly find a subsequence (µnk
)k such that

(3.1) J∞
r (µnk

) → Λ.

Next, fix ε > 0, and note that for each positive integer n, we can choose a point
xn ∈ suppµn such that

(3.2) J∞
r (µn)− ε ≤ µn(C(xn, r)).
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It also follows from the compactness of X that there is a subsequence (xnkl
)l and a

point x0 ∈ X such that

xnkl → x0.

Since xnkl → x0, it follows that we can find a positive integer Lε such that if
l ≥ Lε, then

C(xnkl
, r) ⊆ C(x0, r + ε).

In particular, we conclude from this that

(3.3) lim sup
l

µnkl
(C(xnkl

, r)) ≤ lim sup
l

µnkl
(C(x0, r + ε)).

However, since µn → µ with respect to dGHP, it follows that µn → µ with respect
to dP, i.e. µn → µ with respect to the weak topology, and so µnkl

→ µ with respect
to the weak topology, It follows immediately from this and the fact that the set
C(x0, r + ε) is closed that

(3.4) lim sup
l

µnkl
(C(x0, r + ε)) ≤ µ(C(x0, r + ε)).

Combining (3.3) and (3.4) now shows that

(3.5) lim sup
l

µnkl
(C(xnkl

, r)) ≤ µ(C(x0, r + ε)).

Hence, using (3.1), (3.2) and (3.5),

Λ = lim
k

J∞
r (µnk

) = lim
l
J∞
r (µnkl

)

≤ lim sup
l

(

µnkl
(C(nkl, r)) + ε

)

≤ µ(C(x0, r + ε)) + ε
(3.6)

for all ε. Since (3.6) holds for all ε > 0, it follows that

Λ ≤ inf
ε>0

(

µ(C(x0, r + ε)) + ε
)

= inf
ε>0

µ(C(x0, r + ε)) = µ

(

⋂

ε>0

C(x0, r + ε)

)

.
(3.7)

However, since clearly
⋂

ε>0C(x0, r + ε) = C(x0, r), we deduce from (3.7) that

(3.8) Λ ≤ µ(C(x0, r)).

Finally, note that since µnk
→ µ with respect to dGHP, it follows that supp µnk

→
suppµ with respect to dH. Since also xnk

∈ supp µnk
and xnk

→ x0, we deduce from
this and Lemma 3.1 that x0 ∈ suppµ, whence

(3.9) µ(C(x0, r)) ≤ sup
x∈suppµ

µ(C(x, r)) = J∞
r (µ).

The desired result now follows from (3.8) and (3.9).
(1) The proof of Part (1) is similar to the proof of Part (2), and for sake of brevity

we have therefore decided to omit it. �

We now state the second main result in this section.

Proposition 3.3.

(1) The function I−∞
r : PGHP → R is lower semi-continuous on PGHP for all r > 0.

(2) The function J−∞
r : PGHP → R is upper semi-continuous on PGHP for all r > 0.
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Proof. The proof of this proposition is very similar to the proof of Proposition 3.2,
and for the sake of brevity we have therefore decided to omit the proof. �

Finally, we prove Theorem 1.6.

Proof of Theorem 1.6. This result follows immediately from Proposition 3.2. �

4. Proof of Theorem 1.5.

Recall that for r > 0, the functions I1r , J
1
r : PGHP → R are defined by

I1r (µ) = exp

ˆ

suppµ

log µ(B(x, r)) dµ(x),

J1
r (µ) = exp

ˆ

suppµ

log µ(C(x, r)) dµ(x);

see Section 1.5. The purpose of this section is to prove Theorem 1.5 saying that the
functions I1r and J1

r are semi-continuous. Fix r > 0. Define f, g : PGHP → R by

f(µ) =

ˆ

suppµ

log µ(B(x, r)) dµ(x),

g(µ) =

ˆ

suppµ

log µ(C(x, r)) dµ(x),

and for a positive integer m, define fm, gm : PGHP → R by

fm(µ) =

ˆ

suppµ

µ(suppµ \B(x, r))m dµ(x),

gm(µ) =

ˆ

suppµ

µ(suppµ \ C(x, r))m dµ(x).

Before proving Theorem 1.5, we first prove the following six auxiliary lemmas.

Lemma 4.1. For integers n,m ∈ N, let xm,n ≥ 0.

(1) If

(4.1) lim sup
n

∑

m≥M

xm,n → 0 as M → ∞,

then we have

lim sup
n

∑

m≥1

xm,n ≤
∑

m≥1

lim sup
n

xm,n.

(2) We have

lim inf
n

∑

m≥1

xm,n ≥
∑

m≥1

lim inf
n

xm,n.

Remark. Before proving Lemma 4.1 we make the following remark. While the
statement in Lemma 4.1.(2) is a trivial consequence of Fatou’s Lemma, the “reverse”
statement in Lemma 4.1.(1) does not follow from the Reverse Fatou’s Lemma; re-
call that the Reverse Fatou’s Lemma says the following: if (M, E , µ) is a measure
space and (ϕn)n is a sequence of positive measurable functions ϕn : M → [0,∞] with
´

supn ϕn dµ < ∞, then lim supn

´

ϕn dµ ≤
´

lim supn ϕn dµ. We will now explain
this in more detail. Indeed, consider the following two conditions:

Condition (∗):
∑

m≥1 supn xm,n < ∞,

Condition (∗∗): lim supn

∑

m≥M xm,n → 0 as M → ∞,
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and note that Condition (∗∗) is weaker than Condition (∗), i.e.

Condition (∗) =⇒ Condition (∗∗);

indeed, in order to prove this implication we note that Condition (∗) implies that
∑

m≥M supk xm,k → 0 as M → ∞, whence

lim sup
n

∑

m≥M

xm,n ≤ lim sup
n

∑

m≥M

sup
k

xm,k =
∑

m≥M

sup
k

xm,k → 0

as M → ∞, and Condition (∗∗) is therefore satisfied.
If Condition (∗) is satisfied, then it follows immediately from the Reverse Fatou’s

Lemma that
lim sup

n

∑

m≥1

xm,n ≤
∑

m≥1

lim sup
n

xm,n .

Unfortunately, we have not been able to verify that Condition (∗) is satisfied for
the particular choice of xm,n that we need. In stead, we can show that the weaker
Condition (∗∗) is satisfied for the choice of xm,n that we need, and Lemma 4.1.(1) says
that the weaker Condition (∗∗) is, in fact, sufficient to guarantee that the conclusion
of the Reverse Fatou’s Lemma is valid, i.e. it is sufficient to guarantee that we have

lim sup
n

∑

m≥1

xm,n ≤
∑

m≥1

lim sup
n

xm,n.

Proof of Lemma 4.1. (1) Since lim sup is finitely sub-additive, it follows that if
M is a positive integer, then

(4.2) lim sup
n

∑

m≥1

xm,n ≤
∑

m<M

lim sup
n

xm,n + lim sup
n

∑

m≥M

xm,n

By letting M → ∞ in the previous inequality, we now conclude that

(4.3) lim sup
n

∑

m≥1

xm,n ≤
∑

m≥1

lim sup
n

xm,n + lim sup
M

lim sup
n

∑

m≥M

xm,n.

The desired result follows immediately from assumption (4.1) and inequality (4.3).
(2) This statement follows immediately from Fatou’s Lemma. �

Lemma 4.2. Let µ ∈ PGHP and define ϕ : suppµ → R by ϕ(x) = µ(B(x, r)).

(1) The function ϕ : supp µ → R is lower semi-continuous.
(2) I−∞

r (µ) > 0; recall that the function I−∞
r : PGHP → R is defined at the

beginning of Section 3.

Proof. (1) Let (xn)n be a sequence in supp µ and let x ∈ suppµ and assume that
xn → x. We must now prove that ϕ(x) ≤ lim infn ϕ(xn). Fix ε. Since xn → x, we
can choose a positive integer Nε such that if n ≥ Nε, then B(x, r − ε) ⊆ B(xn, r),
and so µ(B(x, r − ε)) ≤ µ(B(xn, r)) = ϕ(xn) for all n ≥ Nε. This clearly implies
that µ(B(x, r − ε)) ≤ lim infn ϕ(xn). Since ε > 0 was arbitrary, we conclude from
this that

(4.4) sup
ε>0

µ(B(x, r − ε)) ≤ lim inf
n

ϕ(xn).

However, as ∪ε>0B(x, r−ε) = B(x, r), we have supε>0 µ(B(x, r−ε)) = µ(∪ε>0B(x, r−
ε)) = µ(B(x, r)) = ϕ(x), and it therefore follows immediately from (4.4) that ϕ(x) ≤
lim infn ϕ(xn).

(2) Indeed, since suppµ is compact and since it follows from (1) that ϕ : supp µ →
R is lower semi-continuous, it is well-known that there is a point x0 ∈ supp µ such
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that ϕ(x0) = infx∈suppµ ϕ(x). This implies that I−∞
r (µ) = infx∈suppµ µ(B(x, r)) =

infx∈suppµ ϕ(x) = ϕ(x0) = µ(B(x0, r)). However, since x0 ∈ suppµ, we have µ(B(x0,
r)) > 0, and the previous equality therefore shows that I−∞

r (µ) = µ(B(x0, r)) >
0. �

Lemma 4.3.

(1) For µ ∈ PGHP, we have

f(µ) = −
∑

m≥1

1

m
fm(µ).

(2) For µ ∈ PGHP, we have

g(µ) = −
∑

m≥1

1

m
gm(µ).

Proof. (1) Since log(1− t) = −
∑

m≥1
1
m
tm for |t| < 1 and µ(suppµ\B(x, r)) < 1

for all x ∈ supp µ, we conclude that

(4.5) logµ(B(x, r)) = log(1− µ(supp µ \B(x, r))) = −
∑

m≥1

1

m
µ(suppµ \B(x, r))m

for all x ∈ supp µ. Next, because 1
m
µ(suppµ \ B(x, r))m ≥ 0 for all x, it follows

immediately from (4.5) and an application of the Lebesgue’s Monotone Convergence
theorem that

f(µ) =

ˆ

suppµ

log µ(B(x, r)) dµ(x) = −

ˆ

suppµ

∑

m≥1

1

m
µ(suppµ \B(x, r))m dµ(x)

= −
∑

m≥1

1

m

ˆ

suppµ

µ(supp µ \B(x, r))m dµ(x) = −
∑

m≥1

1

m
fm(µ).

This completes the proof.
(2) The proof of Part (2) is similar to the proof of Part (1), and for the sake of

brevity we have therefore decided to omit the proof. �

Lemma 4.4.

(1) The function fm : PGHP → R is upper semi-continuous.
(2) The function gm : PGHP → R is lower semi-continuous.

Proof. (1) Let µ ∈ PGHP and let µn ∈ PGHP for n ∈ N with µn → µ with respect
to dGHP. We must now show that lim supn fm(µn) ≤ fm(µ).

We first note that we may clearly assume that there is a compact metric space
X such that µ ∈ P(X) and µn ∈ P(X) for n ∈ N. Next, define Fm : Xm+1 → R by

Fm(y1, . . . , ym, x) = 1Πm
i=1

(X\B(x,r))(y1, . . . , ym)

(above we have used the following notation, namely, if A is a subset of a set M , then
we will write 1A : M → R for the indicator function on A), and note that for all
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ν ∈ P (X), we have

fm(ν) =

ˆ

supp ν

ν(supp ν \B(x, r))m dν(x) =

ˆ

ν(X \B(x, r))m dν(x)

=

ˆ

(

m
∏

i=1

ˆ

1X\B(x,r)(yi) dν(yi)

)

dν(x)

=

ˆ m
∏

i=1

1X\B(x,r)(yi) dν
m+1(y1, . . . , ym, x)

=

ˆ

1Πm
i=1

(X\B(x,r))(y1, . . . , ym) dν
m+1(y1, . . . , ym, x) =

ˆ

Fm dνm+1.

(4.6)

Before proving the statement in the proposition, we prove the following two claims.

Claim 1. The function Fm is upper semi-continuous.

Proof of Claim 1. Let (y1,n, . . . , ym,n, xn)n be a sequence in Xm+1 and let (y1, . . . ,
ym, x) ∈ Xm+1 such that (y1,n, . . . , ym,n, xn) → (y1, . . . , ym, x). We must now prove
that

(4.7) lim sup
n

Fm(y1,n, . . . , ym,n, xn) ≤ Fm(y1, . . . , ym, x).

If (y1, . . . , ym) ∈
∏m

i=1(X \B(x, r)), then (4.7) is clearly satisfied, and we may there-
fore assume that (y1, . . . , ym) 6∈

∏m

i=1(X \ B(x, r)). Since (y1, . . . , ym) 6∈
∏m

i=1(X \
B(x, r)), we conclude that there is an index k such that yk 6∈ X \ B(x, r), whence
yk ∈ B(x, r), and we can therefore choose a positive number s > 0 such that
B(yk, s) ⊆ B(x, r). Also, since (y1,n, . . . , ym,n, xn) → (y1, . . . , ym, x), we can now
choose a positive integer N such that for all n ≥ N , we have

B(yk, s) ⊆ B(xn, r)

and

yk,n ∈ B(yk, s).

Consequently, for n ≥ N , we have yk,n ∈ B(yk, s) ⊆ B(xn, r), and so yk,n 6∈
X \B(xn, r), whence (y1,n, . . . , ym,n) 6∈

∏m

i=1(X \B(xn, r)). This clearly implies that
if n is a positive integer with n ≥ N , then we have lim supn Fm(y1,n, . . . , xm,n, yn) =
1Πm

i=1
(X\B(xn,r))(y1,n, . . . , ym,n) = 0, and so lim supn Fm(y1,n, . . . , xm,n, yn) = 0 ≤ Fm(y1,

. . . , ym, x). This completes the proof of Claim 1.

Claim 2. µm+1
n → µm+1 with respect to the weak topology.

Proof of Claim 2. Since X is separable (because X is compact) and µn → µ with
respect to dGHP and therefore, in particularly, with respect to the weak topology, it
follows from [Bil, p. 21, Theorem 3.2] that µm+1

n → µm+1 with respect to the weak
topology. This completes the proof of Claim 2.

We can now prove the statement in the proposition. Indeed, it follows immedi-
ately from (4.6), Claim 1 and Claim 2 that

lim sup
n

fm(µn) = lim sup
n

ˆ

Fm dµm+1
n ≤

ˆ

Fm dµm+1 = fm(µ).

This completes the proof.
(2) The proof of Part (2) is similar to the proof of Part (1), and for the sake of

brevity we have therefore decided to omit the proof. �
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Lemma 4.5. Let µ ∈ PGHP and µn ∈ PGHP for n ∈ N with µn → µ with respect
to dGHP.

(1) We have

lim sup
n

∑

m≥M

1

m
fm(µn) → 0 as M → ∞,

and

lim sup
n

∑

m≥1

1

m
fm(µn) ≤

∑

m≥1

1

m
lim sup

n

fm(µn).

(2) We have

lim inf
n

∑

m≥1

1

m
gm(µn) ≥

∑

m≥1

1

m
lim inf

n
gm(µn).

Proof. (1) We first show that lim supn

∑

m≥M
1
m
fm(µn) → 0 as M → ∞. For

brevity write LM,n =
∑

m≥M
1
m
fm(µn). We must now prove that lim supn LM,n → 0

as M → ∞. Define the function hn : supp µn → R by hn(x) = µn(suppµn \B(x, r)),
and note that

LM,n =
∑

m≥M

1

m
fm(µn) =

∑

m≥M

1

m

ˆ

suppµn

µn(supp µn \B(x, r))m dµn(x)

=
∑

m≥M

1

m

ˆ

suppµn

hm
n dµn ≤

∑

m≥M

1

m
‖hn‖

m
∞ ≤

1

M

∑

m≥0

‖hn‖
m
∞ =

1

M

1

1− ‖hn‖∞
.

We conclude from this that

(4.8) lim sup
n

LM,n ≤
1

M
lim sup

n

1

1− ‖hn‖∞
=

1

M

1

lim infn(1− ‖hn‖∞)
.

However, we clearly have

1− ‖hn‖∞ = 1− sup
x∈suppµn

µn(suppµn \B(x, r))

= 1− sup
x∈suppµn

(1− µn(B(x, r)))

= inf
x∈suppµn

(1− (1− µn(B(x, r))))

= inf
x∈suppµn

µn(B(x, r))) = I−∞
r (µn);

(4.9)

recall, that the function I−∞
r : PGHP → R is defined in Section 3. In particular,

combining (4.8) and (4.9), we now deduce that

(4.10) lim sup
n

LM,n ≤
1

M

1

lim infn I−∞
r (µn)

.

Next, since µn → µ with respect to dGHP and since Proposition 3.3 shows that
the function I−∞

r : PGHP → R is lower semi-continuous, it follows that I−∞
r (µ) ≤

lim infn I
−∞
r (µn), and we therefore conclude from (4.10) that

(4.11) lim sup
n

LM,n ≤
1

M

1

I−∞
r (µ)

.

Finally, since it follows from Lemma 4.2 that I−∞
r (µ) > 0 (and so 1

I−∞
r (µ)

< ∞), we

now deduce from (4.11) that lim supn LM,n → 0 as M → ∞.
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Next, we show that lim supn

∑

m≥1
1
m
fm(µn) ≤

∑

m≥1
1
m
lim supn fm(µn). How-

ever, this statement follows immediately from Lemma 4.1 and the fact that lim supn
∑

m≥M
1
m
fm(µn) → 0 as M → ∞.

(2) This statement follows immediately from Lemma 4.1. �

Lemma 4.6.

(1) The function f : PGHP → R is lower semi-continuous.
(2) The function g : PGHP → R is upper semi-continuous.

Proof. (1) Let µ ∈ PGHP and µn ∈ PGHP for n ∈ N with µn → µ with respect to
dGHP. We must now prove that f(µ) ≤ lim infn f(µn). However, combining Lemma
4.3.(1), Lemma 4.4.(1) and Lemma 4.5.(1) we immediately conclude that

lim inf
n

f(µn) = lim inf
n

−
∑

m≥1

1

m
fm(µn) [by Lemma 4.3.(1)]

= − lim sup
n

∑

m≥1

1

m
fm(µn)

≥ −
∑

m≥1

1

m
lim sup

n

fm(µn) [by Lemma 4.5.(1)]

≥ −
∑

m≥1

1

m
fm(µ) [by Lemma 4.4.(1)]

= f(µ). [by Lemma 4.3.(1)]

This completes the proof of Part (1).
(2) Let µ ∈ PGHP and µn ∈ PGHP for n ∈ N with µn → µ with respect to dGHP.

We must now prove that g(µ) ≥ lim supn g(µn). Similar to the proof of Part (1),
combining Lemma 4.3.(2), Lemma 4.4.(2) and Lemma 4.5.(2) we now conclude that

lim sup
n

g(µn) = lim sup
n

−
∑

m≥1

1

m
gm(µn) [by Lemma 4.3.(2)]

= − lim inf
n

∑

m≥1

1

m
gm(µn)

≤ −
∑

m≥1

1

m
lim inf

n
gm(µn) [by Lemma 4.5.(2)]

≤ −
∑

m≥1

1

m
gm(µ) [by Lemma 4.4.(2)]

= g(µ). [by Lemma 4.3.(2)]

This completes the proof of Part (2). �

We can now prove the main semi-continuity result in the section.

Proposition 4.7.

(1) The function I1r : PGHP → R is lower semi-continuous on PGHP for all r > 0.
(2) The function J1

r : PGHP → R is upper semi-continuous on PGHP for all r > 0.

Proof. This follows from Lemma 4.6 since I1r (µ) = exp f(µ) and J1
r (µ) = exp g(µ)

for all µ ∈ PGHP. �

Finally, we can prove Theorem 1.5.
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Proof of Theorem 1.5. This result follows immediately from Proposition 4.7. �

We finish this section by proving the following useful approximation result.

Lemma 4.8. Let X be a compact metric space and µ ∈ P(X). Let r > 0. Then
there is a measure P ∈ P(X) with finite support satisfying suppP ⊆ supp µ such
that dH(suppµ, suppP ) < r and dP(µ, P ) < r (recall that the Hausdorff metric dH is
defined in (1.2) and that the Prohoroff metric dP is defined in (1.3)).

Proof. The proof of this lemma is given in [Ols3, Lemma 3.3]. �

5. Proof of Theorem 1.3 Equation (1.23):
D1

Π
(µ) = 0 for a typical µ ∈ PGHP

In this section we prove Theorem 1.3 Equation (1.23). The first lemma (i.e.
Lemma 5.1) is standard; however, for the benefit of the reader we have decided to
state it explicitly.

Lemma 5.1. The Reverse Fatou’s Lemma. [Str, Theorem 3.2.3] Let (M, E , µ)
be a measure space and let (ϕn)n be a sequence of positive measurable functions
ϕn : M → [0,∞]. If

´

supn ϕn dµ < ∞, then lim supn

´

ϕn dµ ≤
´

lim supn ϕn dµ.

Lemma 5.2. Let Π = (Πt)t≥t0 be an averaging system. Let c ∈ R and t ≥ t0.
Then the set

{

µ ∈ PGHP

∣

∣

∣

∣

ˆ

log I1
e−s(µ)

−s
dΠt(s) < c

}

is open in PGHP.

Proof. Write

F = PGHP \

{

µ ∈ PGHP

∣

∣

∣

∣

ˆ

log I1
e−s(µ)

−s
dΠt(s) < c

}

=

{

µ ∈ PGHP

∣

∣

∣

∣

ˆ

log I1e−s(µ)

−s
dΠt(s) ≥ c

}

.

We must now prove that F is closed in PGHP. In order to show this, we fix a sequence
(µn)n in F and µ ∈ PGHP with µn → µ. We must now prove that µ ∈ F , i.e. we

must prove that
´ log I1

e−s(µ)

−s
dΠt(s) ≥ c. For brevity define functions ϕ, ϕn : [t0,∞) →

[0,∞) by ϕ(s) =
log I1

e−s(µ)

−s
and ϕn(s) =

log I1
e−s (µn)

−s
. We now prove the following three

claims.

Claim 1. For all s ≥ t0, we have ϕ(s) ≥ lim supn ϕn(s). In particular
´

ϕdΠt ≥
´

lim supn ϕn dΠt.

Proof of Claim 1. It follows from Proposition 4.7 that the function I1r : PGHP → R
is lower semi-continuous for all r > 0, and we therefore conclude that I1

e−s(µ) ≤
lim infn I

1
e−s(µn). We immediately deduce from this that

ϕ(s) =
log I1e−s(µ)

−s
≥

log lim infn I
1
e−s(µn)

−s
= lim sup

n

log I1e−s(µn)

−s
= lim sup

n

ϕn(s).

This completes the proof of Claim 1.

Claim 2. We have
´

supn ϕn dΠt < ∞.

Proof of Claim 2. The measure Πt has compact support and we can there-
fore choose T0 ≥ t0 such that suppΠt ∈ [t0, T0]. Next, since clearly I1

e−T0
(µ) >
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0 and I1
e−T0

: PGHP → R is lower semi-continuous (by Proposition 4.7), we con-
clude that 0 < I1

e−T0
(µ) ≤ lim infn I

1
e−T0

(µn), and we therefore deduce that c0 =
infn I

1
e−T0

(µn) > 0. It follows from this that for all s ∈ [t0, T0], we have supn ϕn(s) =

supn

log I1
e−s(µn)

−s
= supn

log I1
e−s(µn)−1

s
≤ supn

log I1
e−T0

(µn)−1

t0
≤

log c−1

0

t0
. This clearly implies

that
´

supn ϕn dΠt =
´ T0

t0
supn ϕn dΠt ≤

´ T0

t0

log c−1

0

t0
dΠt = Πt([t0, T0])

log c−1

0

t0
< ∞. This

completes the proof of Claim 2.

Claim 3. We have
´

lim supn ϕn dΠt ≥ c.

Proof of Claim 3. Since µn ∈ F , we conclude that
´

ϕn dΠt =
´ log I1

e−s(µn)

−s
dΠt(s) ≥

c for all n, whence

(5.1) c ≤ lim sup
n

ˆ

ϕn dΠt.

We also note that since ϕn ≥ 0, it follows from Claim 2 and the Reverse Fatou’s
lemma (Lemma 4.1) that

(5.2) lim sup
n

ˆ

ϕn dΠt ≤

ˆ

lim sup
n

ϕn dΠt.

Combining the (5.1) and (5.2) we now conclude that

c ≤ lim sup
n

ˆ

ϕn dΠt ≤

ˆ

lim sup
n

ϕn dΠt.

This completes the proof of Claim 3.

Finally, we deduce from Claim 1 and Claim 3 that
ˆ

log I1e−s(µ)

−s
dΠt(s) =

ˆ

ϕdΠt ≥

ˆ

lim sup
n

ϕn dΠt ≥ c.

This completes the proof. �

We now turn towards the proof of Theorem 1.3 Equation (1.23).

Proof of Theorem 1.3 Equation (1.23). We must prove that for a typical measure
µ ∈ PGHP, we have D1

Π(µ) = 0. Since D1
Π(µ) ≥ 0, it suffices to prove that the set

U =
{

µ ∈ PGHP | D1
Π(µ) > 0

}

is meagre. For u > 0, write

Uu = {µ ∈ PGHP | D1
Π(µ) > u}.

Since

U =
⋃

u∈Q

u>0

Uu,

it suffices to show that Uu is meagre for all u ∈ Q with u > 0.
We therefore fix u ∈ Q with u > 0. Next, in order to show that Uu is meagre,

we note that it suffices to show that there is a countable family (Gk)k of open and
dense subsets of PGHP with ∩kGk ⊆ PGHP \ Uu. We now construct the sets Gk. For
t ≥ t0, let

Lt =

{

µ ∈ PGHP

∣

∣

∣

∣

ˆ

log I1e−s(µ)

−s
dΠt(s) < u

}

,
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and for each positive integer k, put

Gk =
⋃

t≥k

Lt.

Below we show that the family (Gk)k consists of open and dense subsets of PGHP

with ∩kGk ⊆ PGHP \ Uu; this is the content of the following three claims.

Claim 1. The set Gk is open in PGHP.

Proof of Claim 1. Indeed, since it follows from Lemma 5.2 that Lt is open for
all t ≥ t0, we immediately conclude that Gk =

⋃

t≥k Lt is open. This completes the
proof of Claim 1.

Claim 2. The set Gk is dense in PGHP.

Proof of Claim 2. Let µ ∈ PGHP and let r > 0. We must now find ν ∈ PGHP such
that dGHP(µ, ν) < r and ν ∈ Gk. Writing X = supp µ, it follows from Lemma 4.8 that
we can find a measure ν ∈ P(X) with finite support such that dH(supp µ, supp ν) <

r
2

and dP(µ, ν) <
r
2
.

In particular, we conclude that dGHP(µ, ν) ≤ dH(supp µ, supp ν) + dP(µ, ν) <
r
2
+ r

2
= r.

Next, we show that ν ∈ Gk. Indeed, since the support of ν is finite, there is
a finite subset E of X and a probability vector (px)x∈E such that ν =

∑

x∈E pxδx,
whence

(5.3) I1e−t(ν) = exp

ˆ

log
∑

y∈E

pyδy(B(x, e−t)) dν(x)

for all t > 0. Next, write rE = minx1,x2∈E, x1 6=x2
|x1 − x2|, and note that rE > 0

because E is finite. Choose tE such that e−tE = rE and note that it follows from
the definition of rE that log

∑

y∈E py δy(B(x, e−t)) =
∑

y∈E(log py) δy(B(x, e−t)) for

all x ∈ X and all t ≥ tE . We conclude from this and (5.3) that

I1e−t(ν) = exp
∑

y∈E

(log py)

ˆ

δy(B(x, e−t)) dν(x)

= exp
∑

y∈E

(log py)
∑

x∈E

pxδy(B(x, e−t))
(5.4)

for all t ≥ tE . However, since
∑

x∈E pxδy(B(x, e−t)) = py for all y ∈ E and all t ≥ tE ,
we deduce from (5.4) that

(5.5) I1e−t(ν) = exp
∑

y∈E

py log py

for all t ≥ tE. It follows from (5.5) that
log Iq

e−t (ν)

−t
→ 0, and the consistency condition

therefore implies that
´ log I1

e−s(ν)

−s
dΠt(s) → 0 as t → ∞. We conclude immediately

from this and the fact that u > 0 that there is a real number t ≥ k such that
´ log I1

e−s(ν)

−s
dΠt(s) < u, and so ν ∈ Lt ⊆ Gk. This completes the proof of Claim 2.

Claim 3. We have ∩kGk ⊆ PGHP \ Uu.

Proof of Claim 3. Let µ ∈ ∩kGk. Hence for each positive integer k, we can

find tk ≥ k such that µ ∈ Ltk , whence
´ log I1

e−s(µ)

−s
dΠtk(s) < u for all positive

integers k. We conclude from this that D1
Π(µ) = lim inft→∞

´ log I1
e−s(µ)

−s
dΠt(s) ≤
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lim infk
´ log I1

e−s(µ)

−s
dΠtk(s) ≤ u, whence µ ∈ PGHP \ Uu. This completes the proof of

Claim 3.

Combining Claim 1, Claim 2 and Claim 3, we now conclude that Uu is meagre. �

6. Proof of Theorem 1.4 Equation (1.26):

D
∞

Π
(µ) = ∞ for a typical µ ∈ PGHP.

In this section we prove Theorem 1.4 equation (1.26).

Lemma 6.1. Let Π = (Πt)t≥t0 be an averaging system. Let c ∈ R and t ≥ t0.
Then the set

{

µ ∈ PGHP

∣

∣

∣

∣

ˆ

log J∞
e−s(µ)

−s
dΠt(s) > c

}

is open in PGHP.

Proof. Write

F = PGHP \

{

µ ∈ PGHP

∣

∣

∣

∣

ˆ

log J∞
e−s(µ)

−s
dΠt(s) > c

}

=

{

µ ∈ PGHP

∣

∣

∣

∣

ˆ

log J∞
e−s(µ)

−s
dΠt(s) ≤ c

}

.

We must now prove that F is closed in PGHP. In order to show this, we fix a sequence
(µn)n in F and µ ∈ PGHP with µn → µ. We must now prove that µ ∈ F , i.e. we

must prove that
´ log J∞

e−s(µ)

−s
dΠt(s) ≤ c. For brevity define functions ϕ, ϕn : [t0,∞) →

[0,∞) by ϕ(s) =
log J∞

e−s(µ)

−s
and ϕn(s) =

log J∞

e−s(µn)

−s
. We now prove the following two

claims.

Claim 1. We have
´

lim infn ϕn dΠt ≤ c.

Proof of Claim 1. Since µn ∈ F , we conclude that
´

ϕn dΠt =
´ log Jq

e−s(µn)

s
dΠt(s)

≤ c for all n, whence lim infn
´

ϕn dΠt ≤ c. Also, since ϕn ≥ 0, it therefore follows
from Fatou’s lemma that

´

lim infn ϕn dΠt ≤ lim infn
´

ϕn dΠt ≤ c. This completes
the proof of Claim 2.

Claim 2. For all s ≥ t0, we have ϕ(s) ≤ lim infn ϕn(s). In particular
´

ϕdΠt ≤
´

lim infn ϕn dΠt.

Proof of Claim 2. It follows from Proposition 3.2 that the function J∞
r : PGHP →

R is upper semi-continuous for all r > 0, whence lim supn J
∞
e−s(µn) ≤ J∞

e−s(µ). We
conclude immediately from this that

ϕ(s) =
log J∞

e−s(µ)

−s
≤

log lim supn J
∞
e−s(µn)

−s
= lim inf

n

log J∞
e−s(µn)

−s
= lim inf

n
ϕn(s).

This completes the proof of Claim 2.

Finally, we deduce from Claim 1 and Claim 2 that
ˆ

log J∞
e−s(µ)

s
dΠt(s) =

ˆ

ϕdΠt ≤

ˆ

lim inf
n

ϕn dΠt ≤ c.

This completes the proof. �

We now turn towards the proofs of Theorem 1.4 Equation (1.26).
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Proof of Theorem 1.4 Equation (1.26). We must prove that for a typical measure
µ ∈ PGHP, we have D

∞

Π (µ) = ∞, i.e. we must prove that the set

U =
{

µ ∈ P(X) | D
∞

Π (µ) < ∞
}

is meagre. For u ∈ R, write

Uu =
{

µ ∈ P(X) | D
∞

Π (µ) < u
}

.

Since

U =
⋃

u∈Q

Uu,

it suffices to show that Uu is meagre for all u ∈ Q with u > 0.
We therefore fix u ∈ Q with u > 0, and note that it suffices to show that there is

a countable family (Gk)k of open and dense subsets of PGHP with ∩kGk ⊆ PGHP \Uu.
We now construct the sets Gk. For t ≥ t0, let

Lt =

{

µ ∈ PGHP

∣

∣

∣

∣

ˆ

log J∞
e−s(µ)

−s
dΠt(s) > u

}

,

and for each positive integer k, put

Gk =
⋃

t≥k

Lt.

Below we show that the family (Gk)k consists of open and dense subsets of PGHP

with
⋂

k Gk ⊆ PGHP \ Uu; this is the content of the following three claims.

Claim 1. The set Gk is open in PGHP.

Proof of Claim 1. Indeed, since it follows from Lemma 6.1 that Lt is open for all
t ≥ t0, we immediately conclude that Gk = ∪t≥kLt is open. This completes the proof
of Claim 1.

Claim 2. The set Gk is dense in PGHP.

Proof of Claim 2. Let µ ∈ PGHP and r > 0. We must now find ν ∈ PGHP with
dGHP(µ, ν) < r and ν ∈ Gk. Write M = supp µ. It follows from Lemma 4.8 that
there is a measure P ∈ P(M) with finite support such that dH(suppµ, suppP ) < r

4
and dP(µ, P ) < r

4
. Also, we can find a positive integer N with N > u. We now write

C = {x ∈ RN | |x| ≤ r
4
} and let λ denote the normalized N -dimensional Lebesgue

measure restricted to C. Finally, put

ν = P × λ.

Below we prove that dGHP(µ, ν) < r and ν ∈ Gk.
We first prove that dGHP(µ, ν) < r. Let X = suppµ × C and equip X with the

maximum metric. Next, define f : suppµ → X and g : supp ν = suppP × C → X
by f(x) = (x, 0) and g(x, y) = (x, y), and note that f and g are isometries. Next, we
observe that

dP(µ ◦ f−1, ν ◦ g−1) = sup
F∈Lip(X)

∣

∣

∣

∣

ˆ

F d(µ ◦ f−1)−

ˆ

F d(ν ◦ g−1)

∣

∣

∣

∣

= sup
F∈Lip(X)

∣

∣

∣

∣

ˆ

F (x, 0) dµ(x)−

ˆ

F (x, y) dν(x, y)

∣

∣

∣

∣
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= sup
F∈Lip(X)

∣

∣

∣

∣

ˆ

supp µ

F (x, 0) dµ(x)−

ˆ

C

ˆ

suppµ

F (x, y) dP (x) dλ(y)

∣

∣

∣

∣

(6.1)

= sup
F∈Lip(X)

∣

∣

∣

∣

ˆ

C

ˆ

supp µ

F (x, 0) dµ(x) dλ(y)−

ˆ

C

ˆ

suppµ

F (x, y) dP (x) dλ(y)

∣

∣

∣

∣

≤ sup
F∈Lip(X)

ˆ

C

∣

∣

∣

∣

ˆ

suppµ

F (x, 0) dµ(x)−

ˆ

supp µ

F (x, y) dP (x)

∣

∣

∣

∣

dλ(y).

However, for all F ∈ Lip(X) and y ∈ C, we have
∣

∣

∣

∣

ˆ

suppµ

F (x, 0) dµ(x)−

ˆ

supp µ

F (x, y) dP (x)

∣

∣

∣

∣

≤

∣

∣

∣

∣

ˆ

supp µ

F (x, 0) dµ(x)−

ˆ

suppµ

F (x, 0) dP (x)

∣

∣

∣

∣

+

∣

∣

∣

∣

ˆ

suppµ

F (x, 0) dP (x)−

ˆ

suppµ

F (x, y) dP (x)

∣

∣

∣

∣

≤ dP(µ, P ) +

ˆ

suppµ

|F (x, 0)− F (x, y)| dP (x)

≤ dP(µ, P ) +

ˆ

suppµ

Lip(X) |(x, 0)− (x, y)| dP (x)

≤ dP(µ, P ) +

ˆ

suppµ

|y| dP (x) ≤ dP(µ, P ) +
r

4
<

r

4
+

r

4
=

r

2
.

(6.2)

Combining (6.1) and (6.2), we conclude that

(6.3) dP(µ ◦ f−1, ν ◦ g−1) < sup
F∈Lip(X)

ˆ

C

r

2
dλ(y) =

r

2
.

We also note that

dH(f(suppµ), g(supp ν)) = dH(supp µ× {0}, suppP × C)

≤ dH(supp µ× {0}, suppP × {0}) + dH(suppP × {0}, suppP × C)

≤ dH(supp µ, suppP ) + dH({0}, C) <
r

4
+

r

4
=

r

2
.

(6.4)

Finally, combining (6.3) and (6.4) immediately gives

dGHP(µ, ν) ≤ dH(f(supp µ), g(supp ν)) + dP(µ ◦ f−1, ν ◦ g−1) < r.

Next, we prove that ν ∈ Gk. Indeed, since λ is the normalized N -dimensional
Lebesgue measure restricted to C = {x ∈ RN | |x| ≤ r

4
}, a simple and straightforward

calculation shows that log J∞
r (λ)

log r
→ N as r ց 0. It follows from this and the fact that

suppP is finite that log J∞
r (ν)

log r
= log J∞

r (P×λ)
log r

→ N as r ց 0, and so
log J∞

e−t (ν)

−t
→ N as

t → ∞. We deduce from this and the consistency condition that
´ log J∞

e−s(ν)

−s
dΠt(s) →

N as t → ∞, and since N > u, we can therefore find t ≥ k with
´ log J∞

e−s (ν)

−s
dΠt(s) >

u, whence ν ∈ Lt ⊆ Gk. This completes the proof of Claim 2.

Claim 3. We have
⋂

k Gk ⊆ PGHP \ Uu.
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Proof of Claim 3. Let µ ∈
⋂

k Gk. Hence for each positive integer k, we can

find tk ≥ k such that µ ∈ Ltk , whence
´ log J∞

e−s (µ)

−s
dΠtk(s) > u for all positive inte-

gers k. Since clearly I∞r (µ) ≤ J∞
r (µ) for all r > 0, we immediately conclude from

this that D
∞

Π (µ) = lim supt→∞

´ log I∞
e−s (µ)

−s
dΠt(s) ≥ lim supt→∞

´ log J∞

e−s(µ)

−s
dΠt(s) ≥

lim supk

´ log J∞

e−s(µ)

−s
dΠtk(s) ≥ u, and so µ ∈ PGHP \ Uu. This completes the proof of

Claim 3.

Combining Claim 1, Claim 2 and Claim 3, we now conclude that Uu is meagre. �

Acknowledgements. The author thanks an anonymous referee for carefully read-
ing the manuscript and for pointing out that the statement in Lemma 4.1.(2) follows
immediately from Fatou’s Lemma.
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